$I = \frac{10^{n}}{10^{n}} (11)^{n} = \frac{10^{n}}{10^{n}} (11)^{n} = \frac{10^{n}}{10^{n}} (11)^{n}$ $I = \frac{10^{n}}{10^{n}} I = \frac{10^{n}}{10^$

(11)h off o(12) 10" エット, トラリエ I+2, I+1I I-JOA 177, 170F A7> A711 A7 11A I - 1 A, A + 7, A + OA 100° 15 7? 100 ガナ ot? 006 ot?

DIGIT: = '0' | '1' | '2' | - - . | '9'

EXPSYM: = 'E'

B 100101B

(So, 0, So, 0, R) (So, 1, So, (,R)

(So, B, S, 1, L)

\$1001001100110111010

00

(So, O, So, O, R)

(So,1,5,1,R)

(So, B, Sqn, B, R)

//found 15 one

(S, 0, So, 0, R)

(SI, B, SA, BIR)

(Si, 1, 0,0 Sz, 0, L)

(S2,1,5m,0,R)

A recurrence relation is a way to describe a sequence of numbers, where the nth humber is Some function of the first (h-1) humbers.

n!: (n-1)! (n)

1!:1

2": 2(2"')

5": 1

Stales (" "')

Stales (" "')

1+ Stales (S station from 3th chock)

h disks 2"-1 Mous

(h+1) disks notisks

h disks

Let T (h): # of Moves for in disks

T(n+1) = T(n)+1+T(n)

-27(h)+1

T(1) = 1

466-7 7406 4 1	\$	1					TOTAL	
4	1	>						ı
1							2	
1	1		1				3	
2	1	51		1			5	
3	2	1	1		1		8	
5	3	2	1	1		1	13	ı
		1	'	1	(1		
		/						

466-7 74156 1	\$						P(1)= 1 P(2)= 1
1	1						P(3): 2
1 2	1	\$ 1	1	1			P(4) = 3 P(5) = 5
3 5	2	2	1	1	1	1	P(b): 8 P(5)= 13
							Let P(h) = pop of time h
		,	Ciboha	ci Sequ	rice fi	in: Fi : Fs:	1 h > 3

74166 -7 74166 -1	1						P(1)= 1 P(2)= 1
1 2 3	1 (1)		1		1		P(3): 2 P(4): 3 P(5): 5 P(6): 8
5	3	2	Ciboha	ci Sequ	ruce fi	in: Fn	P(5)= 13 P(0)= \$P(0) +P(0) Let P(0)= pap at time by

1,1,2,3,5,8,13,21,34,55,89,...

34 55 89 21 74 55

Golder Ratio

How Many N-bit Strings do not have 2 consecution o's? Let Phi= Hot n-bit Stirs Was t 2 consec. 0's. P(3) p(5)= p(4)+p(3)

 $\frac{1}{\sqrt{\varepsilon}} \left(\frac{1+\sqrt{\varepsilon}}{2} \right)^{n} - \frac{1}{\sqrt{\varepsilon}} \left(\frac{1-\sqrt{\varepsilon}}{2} \right)^{n}$