

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports

ISBN 0-9755787-7-4

Learning Simulink
© COPYRIGHT 1999 - 2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are
registered trademarks of The MathWorks, Inc. Other product or brand names are trademarks
or registered trademarks of their respective holders.

Patents
The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
August 1999 First printing New manual
January 2001 Second printing Revised for Simulink 4.0 (Release 12)
November 2002 Third printing Revised for Simulink 5.0 (Release 13)
July 2004 Fourth printing Revised for Simulink 6.0 (Release 14)
December 2005 Fifth printing Revised for Simulink 6.3 (Release 14SP3)

Contents

Introducing Simulink

1
About the Student Version . 1-2

Student Use Policy . 1-2
Student Version Activation . 1-2

Obtaining Additional MathWorks Products 1-4

Getting Started with Simulink . 1-5

Finding Reference Information . 1-6

Troubleshooting . 1-7

Other Resources . 1-8
Documentation . 1-8
MathWorks Web Site . 1-8
MathWorks Academia Web Site . 1-8
MATLAB & Simulink Based Books 1-8
MathWorks Store . 1-8
MATLAB Central – File Exchange/Newsgroup Access 1-9
Technical Support . 1-9

Differences Between the Student and Professional
Versions . 1-10

How Simulink Works

2
Introduction . 2-2

i

Modeling Dynamic Systems . 2-3
Block Diagram Semantics . 2-3
Creating Models . 2-4
Time . 2-4
States . 2-4
Block Parameters . 2-8
Tunable Parameters . 2-8
Block Sample Times . 2-9
Custom Blocks . 2-10
Systems and Subsystems . 2-10
Signals . 2-11
Block Methods . 2-12
Model Methods . 2-13

Simulating Dynamic Systems . 2-14
Model Compilation . 2-14
Link Phase . 2-14
Simulation Loop Phase . 2-15
Solvers . 2-17
Zero-Crossing Detection . 2-19
Algebraic Loops . 2-24

Modeling and Simulating Discrete Systems 2-31
Specifying Sample Time . 2-31
Purely Discrete Systems . 2-34
Multirate Systems . 2-34
Determining Step Size for Discrete Systems 2-36
Sample Time Propagation . 2-37
Constant Sample Time . 2-39
Mixed Continuous and Discrete Systems 2-41

Simulink Basics

3
Starting Simulink . 3-2

Opening Models . 3-3
Opening Models with Different Character Encodings 3-3
Avoiding Initial Model Open Delay 3-4

ii Contents

Model Editor . 3-5
Editor Components . 3-5
Undoing a Command . 3-6
Zooming Block Diagrams . 3-7
Panning Block Diagrams . 3-7
View Command History . 3-7

Updating a Block Diagram . 3-9

Saving a Model . 3-11
Saving Models with Different Character Encodings 3-12
Saving a Model in Earlier Formats 3-12

Printing a Block Diagram . 3-15
Print Dialog Box . 3-15
Print Command . 3-17
Specifying Paper Size and Orientation 3-18
Positioning and Sizing a Diagram . 3-18

Generating a Model Report . 3-20
Model Report Options . 3-21

Summary of Mouse and Keyboard Actions 3-23
Model Viewing Shortcuts . 3-23
Block Editing Shortcuts . 3-24
Line Editing Shortcuts . 3-25
Signal Label Editing Shortcuts . 3-25
Annotation Editing Shortcuts . 3-26

Ending a Simulink Session . 3-27

Creating a Model

4
Creating an Empty Model . 4-2

Creating a Model Template . 4-2

iii

Selecting Objects . 4-4
Selecting an Object . 4-4
Selecting Multiple Objects . 4-4

Specifying Block Diagram Colors 4-6
Choosing a Custom Color . 4-6
Defining a Custom Color . 4-7
Specifying Colors Programmatically 4-7
Displaying Sample Time Colors . 4-8

Connecting Blocks . 4-10
Automatically Connecting Blocks . 4-10
Manually Connecting Blocks . 4-13
Disconnecting Blocks . 4-18

Annotating Diagrams . 4-19
Annotations Properties Dialog Box 4-21
Annotations API . 4-23

Creating Subsystems . 4-24
Creating a Subsystem by Adding the Subsystem Block . . . 4-24
Creating a Subsystem by Grouping Existing Blocks 4-25
Model Navigation Commands . 4-26
Window Reuse . 4-27
Labeling Subsystem Ports . 4-27

Creating Conditionally Executed Subsystems 4-29
Enabled Subsystems . 4-30
Triggered Subsystems . 4-34
Triggered and Enabled Subsystems 4-37

Using Callback Functions . 4-41
Tracing Callbacks . 4-41
Creating Model Callback Functions 4-41
Creating Block Callback Functions 4-42
Port Callback Parameters . 4-45

iv Contents

Working with Blocks

5
About Blocks . 5-2

Block Data Tips . 5-2
Virtual Blocks . 5-2

Editing Blocks . 5-4
Copying and Moving Blocks from One Window to

Another . 5-4
Moving Blocks in a Model . 5-6
Copying Blocks in a Model . 5-6
Deleting Blocks . 5-6

Working with Block Parameters . 5-7
Displaying a Block’s Parameter Dialog Box 5-8
Specifying Parameter Values . 5-8
Working with Tunable Parameters 5-8
Block Properties Dialog Box . 5-10

Changing a Block’s Appearance . 5-15
Changing the Orientation of a Block 5-15
Resizing a Block . 5-15
Displaying Parameters Beneath a Block 5-16
Using Drop Shadows . 5-16
Manipulating Block Names . 5-17
Specifying a Block’s Color . 5-18

Displaying Block Outputs . 5-19
Enabling Port Values Display . 5-19
Port Values Display Options . 5-20

Working with Block Libraries . 5-21
Terminology . 5-21
Simulink Block Library . 5-21
Creating a Library Link . 5-22
Disabling Library Links . 5-23
Modifying a Linked Subsystem . 5-23
Propagating Link Modifications . 5-24
Updating a Linked Block . 5-25
Breaking a Link to a Library Block 5-25

v

Finding the Library Block for a Reference Block 5-26
Library Link Status . 5-26
Displaying Library Links . 5-27
Getting Information About Library Blocks 5-28
Browsing Block Libraries . 5-28

Working with Signals

6
Signal Basics . 6-2

About Signals . 6-2
Creating Signals . 6-2
Signal Line Styles . 6-2
Signal Labels . 6-3
Displaying Signal Values . 6-4
Signal Dimensions . 6-4
Complex Signals . 6-4
Virtual Signals . 6-5
Control Signals . 6-8
Signal Buses . 6-9
Checking Signal Connections . 6-12
Signal Glossary . 6-13

Determining Output Signal Dimensions 6-14
Determining the Output Dimensions of Source Blocks . . . 6-14
Determining the Output Dimensions of Nonsource

Blocks . 6-15
Signal and Parameter Dimension Rules 6-15
Scalar Expansion of Inputs and Parameters 6-16

Displaying Signal Properties . 6-19
Display Options . 6-19
Signal Names . 6-21
Signal Labels . 6-21
Displaying Signals Represented by Virtual Signals 6-22

vi Contents

Running Simulations

7
Simulation Basics . 7-2

Controlling Execution of a Simulation 7-2
Interacting with a Running Simulation 7-5

Specifying a Simulation Start and Stop Time 7-6

Choosing a Solver . 7-7
Choosing a Solver Type . 7-7
Choosing a Fixed-Step Solver . 7-8
Choosing a Variable-Step Solver . 7-13

Importing and Exporting Simulation Data 7-17
Importing Data from the MATLAB Workspace 7-17
Exporting Data to the MATLAB Workspace 7-22
Importing and Exporting States . 7-24
Limiting Output . 7-26
Specifying Output Options . 7-26

Configuration Sets . 7-29
Configuration Set Components . 7-29
The Active Set . 7-29
Displaying Configuration Sets . 7-30
Activating a Configuration Set . 7-30
Copying, Deleting, and Moving Configuration Sets 7-31
Copying Configuration Set Components 7-31
Creating Configuration Sets . 7-32
Setting Values in Configuration Sets 7-32
Model Configuration Dialog Box . 7-32
Model Configuration Preferences Dialog Box 7-34

Configuration Parameters Dialog Box 7-36

Diagnosing Simulation Errors . 7-38
Simulation Diagnostics Viewer . 7-38

Improving Simulation Performance and Accuracy 7-40
Speeding Up the Simulation . 7-40

vii

Improving Simulation Accuracy . 7-41

Exploring, Searching, and Browsing Models

8
The Model Explorer . 8-2

Setting the Model Explorer’s Font Size 8-3
Model Hierarchy Pane . 8-3
Contents Pane . 8-5
Dialog Pane . 8-9
Main Toolbar . 8-9
Search Bar . 8-12

The Finder . 8-16
Filter Options . 8-18
Search Criteria . 8-18

The Model Browser . 8-22
Navigating with the Mouse . 8-23
Navigating with the Keyboard . 8-23
Showing Library Links . 8-23
Showing Masked Subsystems . 8-23

Creating Masked Subsystems

9
About Masks . 9-2

Mask Features . 9-2
Creating Masks . 9-5

Masked Subsystem Example . 9-6
Creating Mask Dialog Box Prompts 9-7
Creating the Block Description and Help Text 9-10
Creating the Block Icon . 9-10

viii Contents

Masking a Subsystem . 9-12

Mask Editor . 9-14
Icon Pane . 9-16
Parameters Pane . 9-19
Control Types . 9-23
Initialization Pane . 9-25
Documentation Pane . 9-28
Changing Default Values for Mask Parameters in a

Library . 9-30

Linking Mask Parameters to Block Parameters 9-32

Simulink Debugger

10
Introduction . 10-2

Using the Debugger’s Graphical User Interface 10-3
Toolbar . 10-4
Breakpoints Pane . 10-5
Simulation Loop Pane . 10-6
Outputs Pane . 10-7
Sorted List Pane . 10-8
Status Pane . 10-9

Using the Debugger’s Command-Line Interface 10-10
Method ID . 10-10
Block ID . 10-10
Accessing the MATLAB Workspace 10-10

Getting Online Help . 10-12

Starting the Debugger . 10-13

Starting a Simulation . 10-14

ix

Running a Simulation Step by Step 10-15
Block Data Output . 10-16
Stepping Commands . 10-16
Continuing a Simulation . 10-17
Running a Simulation Nonstop . 10-19
Debug Pointer . 10-20

Setting Breakpoints . 10-22
Setting Unconditional Breakpoints 10-22
Setting Conditional Breakpoints . 10-24

Displaying Information About the Simulation 10-28
Displaying Block I/O . 10-28
Displaying Algebraic Loop Information 10-30
Displaying System States . 10-31
Displaying Solver Information . 10-31

Displaying Information About the Model 10-32
Displaying a Model’s Sorted Lists . 10-32
Displaying a Block . 10-33

Block Libraries

A
Commonly Used . A-3

Continuous . A-5

Discontinuities . A-6

Discrete . A-7

Logic and Bit Operations . A-8

Lookup Tables . A-10

Math Operations . A-11

x Contents

Model Verification . A-13

Model-Wide Utilities . A-15

Ports & Subsystems . A-16

Signal Attributes . A-18

Signal Routing . A-19

Sinks . A-20

Sources . A-21

User-Defined Functions . A-23

Additional Discrete . A-24

Additional Math . A-26

Simulink Extras . A-27

Index

xi

xii Contents

1

Introducing Simulink

This chapter introduces the version of Simulink® included in MATLAB &
Simulink Student Version.

About the Student Version (p. 1-2) Description of the version of
Simulink included in MATLAB &
Simulink Student Version.

Obtaining Additional MathWorks
Products (p. 1-4)

How to acquire other products that
enhance the version of Simulink
included in MATLAB & Simulink
Student Version

Getting Started with Simulink
(p. 1-5)

Basic steps for using Simulink

Finding Reference Information
(p. 1-6)

How to learn more about Simulink

Troubleshooting (p. 1-7) Getting help with and reporting
problems

Other Resources (p. 1-8) Additional sources of information
for the version of Simulink included
in MATLAB & Simulink Student
Version

Differences Between the Student
and Professional Versions (p. 1-10)

How the version of Simulink
included in MATLAB & Simulink
Student Version differs from the
professional version of Simulink.

1 Introducing Simulink

About the Student Version
Simulink is an interactive tool for modeling, simulating, and analyzing
dynamic systems, including controls, signal processing, communications,
and other complex systems. The version of Simulink included in MATLAB
& Simulink Student Version provides all of the features of professional
Simulink, with model sizes up to 1000 blocks. It gives you immediate access
to the high-performance simulation power you need.

Simulink is a key member of the MATLAB® family of products used in a
broad range of industries, including automotive, aerospace, electronics,
environmental, telecommunications, computer peripherals, finance, and
medical. More than one million technical professionals at the world’s most
innovative technology companies, government research labs, financial
institutions, and at more than 3500 universities, rely on MATLAB and
Simulink as the fundamental tools for their engineering and scientific work.

Student Use Policy
This MATLAB & Simulink Student Version License is for use in conjunction
with courses offered at degree-granting institutions. The MathWorks offers
this license as a special service to the student community and asks your help
in seeing that its terms are not abused.

To use this Student License, you must be a student either enrolled in a
degree-granting institution or participating in a continuing education
program at a degree-granting educational university.

You may not use this Student License at a company or government lab. Also,
you may not use it if you are an instructor at a university, or for research,
commercial, or industrial purposes. In these cases, you can acquire the
appropriate professional or academic license by contacting The MathWorks.

Student Version Activation
Activation is a secure process that verifies licensed student users. This
process validates the serial number and ensures that it is not used on more
systems than allowed by the MathWorks End User License Agreement.

1-2

About the Student Version

The activation technology is designed to provide an easier and more effective
way for students to authenticate and use their product than prior releases of
MATLAB & Simulink Student Version.

The quickest way to activate your software is to use the activation program
that starts following product installation. The activation program will guide
you through the activation process. Alternatively, you can activate your
software on the mathworks.com Web site.

Activation requires completion of three activities:

• Provide registration information by creating a MathWorks Account.

• Provide your serial number and the Machine ID for the computer you will
be installing the software on.

• For those students who did not provide proof of student status at the time of
purchase, submission and verification of proof of student status is needed.

For more information on activation, see
www.mathworks.com/academia/student_version/activation.html.

1-3

1 Introducing Simulink

Obtaining Additional MathWorks Products
Simulink comes with a standard blockset that addresses a wide range of
applications. Additional blocksets are available that simplify modeling
in specific applications. Other products that address specific simulation
applications are available as well. You may purchase and download some
of these additional products at special student prices from the MathWorks
Store at www.mathworks.com/store.

Some of the products you can purchase include

• Communications Blockset

• Stateflow® (A demo version of Stateflow is included with your Student
Version.)

For an up-to-date list of available toolboxes and blocksets, visit the
MathWorks Store.

Note The blocksets that are available for use with MATLAB & Simulink
Student Version have the same functionality as the full, professional versions.
However, the student versions of the toolboxes and blocksets will work only
with the Student Version. Likewise, the professional versions of the toolboxes
and blocksets will not work with the Student Version.

1-4

http://www.mathworks.com/store

Getting Started with Simulink

Getting Started with Simulink

What I Want What I Should Do

I need to install Simulink. See Chapter 2, “Installing MATLAB & Simulink Student
Version” in the Learning MATLAB book.

I want to start Simulink. (Microsoft Windows) Double-click the MATLAB icon on your
desktop. Click the Simulink icon on the toolbar to start Simulink.

(Macintosh OS X) Double-click the MATLAB icon on your desktop.
Click the Simulink icon on the toolbar to start Simulink.

(Linux) Enter the matlab command at the command prompt.
Click the Simulink icon on the toolbar to start Simulink.

I’m new to Simulink and
want to learn it quickly.

Start by reading “Getting Started with Simulink” in the online
documentation. You’ll get a quick overview of how to model,
simulate, and analyze dynamic systems. Then read this book
for a more in-depth introduction to Simulink. Since Simulink
is graphical and interactive, this book encourages you to use it
quickly. You can access the rest of the Simulink documentation
through the online help facility (Help).

I want to look at some
samples of what you can do
with Simulink.

There are numerous demonstrations included with Simulink.
You can see the demos by clicking Demos in the Help Navigator
or selecting Demos from the Help menu. There are Simulink
demos for simple models, complex models, and other related
products. You also will find a large selection of demos at
www.mathworks.com/demos.

1-5

http://www.mathworks.com/demos

1 Introducing Simulink

Finding Reference Information

What I Want What I Should Do

I want to know how to use a
specific Simulink block.

Use the online help facility (Help). The
Simulink blocks are described under Simulink
(Simulink > Blocks—Categorical List and
Simulink > Blocks—Alphabetical List).

I want to find a block for a specific
purpose but I don’t know its name.

There are several choices:

• From Help, peruse Simulink > Blocks—Categorical
List or Simulink > Blocks—Alphabetical List.

• Use Index or Search from Help.

I want to know what blocks are
available in a general area.

Use Help to view Simulink > Blocks—Categorical List
under Simulink. Help provides access to the reference pages
for the blocks included with Simulink.

1-6

Troubleshooting

Troubleshooting

What I Want What I Should Do

I have a Simulink specific problem I want help
with.

From Help, select Support and Web Services
and then choose Technical Support.

I want to report a bug or make a suggestion. Use Help or send e-mail
to bugs@mathworks.com or
suggest@mathworks.com.

1-7

1 Introducing Simulink

Other Resources

Documentation
When you install MATLAB & Simulink Student Version on your computer,
you automatically install the complete online documentation for Simulink.
Access this documentation from Help.

Note References to UNIX in the documentation include both Linux and
Mac OS X.

Web-Based Documentation
Documentation for all MathWorks products, including Simulink, is online and
available from the Support area of the MathWorks Web site. In addition to
tutorials and function reference pages, you can find PDF versions of all the
manuals.

MathWorks Web Site
At www.mathworks.com, you’ll find information about MathWorks products
and how they are used in education and industry, product demos, and
MATLAB and Simulink based books.

MathWorks Academia Web Site
At www.mathworks.com/academia, you’ll find resources for students and
instructors for courses in engineering, mathematics, and science.

MATLAB & Simulink Based Books
At www.mathworks.com/support/books, you’ll find books in many disciplines
that use MATLAB and Simulink for examples and assignments.

MathWorks Store
At www.mathworks.com/store, you can purchase add-on products and
documentation.

1-8

Other Resources

MATLAB Central – File Exchange/Newsgroup Access
At www.mathworks.com/matlabcentral, you can access the MATLAB Usenet
newsgroup (comp.soft-sys.matlab) as well as an extensive library of
user-contributed files called the MATLAB Central File Exchange. MATLAB
Central is also home to the Link Exchange where you can share your favorite
links to various educational, personal, and commercial MATLAB Web sites.

The comp.soft-sys.matlab newsgroup is for professionals and students who
use MATLAB and have questions or comments about it and its associated
products. This is an important resource for posing questions and answering
queries from other MATLAB users. MathWorks staff also participates actively
in this newsgroup.

Technical Support
At www.mathworks.com/support, you can get technical support.

Telephone and e-mail access to our technical support staff is not available
for students running the version of Simulink included in MATLAB &
Simulink Student Version unless you are experiencing difficulty installing
or downloading MATLAB or related products. There are numerous other
vehicles of technical support that you can use. The “Resources and Support”
section in the CD holder identifies the ways to obtain additional help.

After checking the available MathWorks sources for help, if you still cannot
resolve your problem, please contact your instructor. Your instructor should
be able to help you. If your instructor needs assistance doing so, telephone
and e-mail technical support is available to registered instructors who have
adopted MATLAB & Simulink Student Version in their courses.

1-9

1 Introducing Simulink

Differences Between the Student and Professional Versions
This Student Version differs from the Professional Version in the following
respects.

• Models are limited to 1000 blocks.

Note You may encounter some demos that use more than 1000 blocks.
In these cases, a dialog will display stating that the block limit has been
exceeded and the demo will not run.

• The window title bars include the words

<Student Version>

• Printouts contain the footer

Student Version of MATLAB

Note The Using Simulink documentation, which is accessible from the
Help browser, contains all of the information in this book plus additional
advanced information.

1-10

2

How Simulink Works

The following sections explain how Simulink® models and simulates dynamic
systems. This information can be helpful in creating models and interpreting
simulation results.

Introduction (p. 2-2) Brief overview of Simulink.

Modeling Dynamic Systems (p. 2-3) How Simulink models a dynamic
system.

Simulating Dynamic Systems
(p. 2-14)

How Simulink simulates a dynamic
system.

Modeling and Simulating Discrete
Systems (p. 2-31)

How Simulink models and simulates
discrete systems.

2 How Simulink Works

Introduction
Simulink is a software package that enables you to model, simulate, and
analyze systems whose outputs change over time. Such systems are often
referred to as dynamic systems. Simulink can be used to explore the behavior
of a wide range of real-world dynamic systems, including electrical circuits,
shock absorbers, braking systems, and many other electrical, mechanical, and
thermodynamic systems. This section explains how Simulink works.

Simulating a dynamic system is a two-step process with Simulink. First,
a user creates a block diagram, using the Simulink model editor, that
graphically depicts time-dependent mathematical relationships among the
system’s inputs, states, and outputs. The user then commands Simulink to
simulate the system represented by the model from a specified start time to
a specified stop time.

2-2

Modeling Dynamic Systems

Modeling Dynamic Systems
A Simulink block diagram model is a graphical representation of a
mathematical model of a dynamic system. A mathematical model of a dynamic
system is described by a set of equations. The mathematical equations
described by a block diagram model are known as algebraic, differential,
and/or difference equations.

Block Diagram Semantics
A classic block diagram model of a dynamic system graphically consists
of blocks and lines (signals). The history of these block diagram model is
derived from engineering areas such as Feedback Control Theory and Signal
Processing. A block within a block diagram defines a dynamic system in
itself. The relationships between each elementary dynamic system in a
block diagram are illustrated by the use of signals connecting the blocks.
Collectively the blocks and lines in a block diagram describe an overall
dynamic system.

Simulink extends these classic block diagram models by introducing the
notion of two classes of blocks, nonvirtual block and virtual blocks. Nonvirtual
blocks represent elementary systems. A virtual block is provided for graphical
organizational convenience and plays no role in the definition of the system of
equations described by the block diagram model. Examples of virtual blocks
are the Bus Creator and Bus Selector which are used to reduce block diagram
clutter by managing groups of signals as a "bundle." You can use virtual
blocks to improve the readability of your models.

In general, block and lines can be used to describe many "models of
computations." One example would be a flow chart. A flow chart consists of
blocks and lines, but one cannot describe general dynamic systems using
flow chart semantics.

The term "time-based block diagram" is used to distinguish block diagrams
that describe dynamic systems from that of other forms of block diagrams. In
Simulink, we use the term block diagram (or model) to refer to a time-based
block diagram unless the context requires explicit distinction.

To summarize the meaning of time-based block diagrams:

2-3

2 How Simulink Works

• Simulink block diagrams define time-based relationships between signals
and state variables. The solution of a block diagram is obtained by
evaluating these relationships over time, where time starts at a user
specified "start time" and ends at a user specified "stop time." Each
evaluation of these relationships is referred to as a time step.

• Signals represent quantities that change over time and are defined for all
points in time between the block diagram’s start and stop time.

• The relationships between signals and state variables are defined by a set
of equations represented by blocks. Each block consists of a set of equations
(block methods). These equations define a relationship between the input
signals, output signals and the state variables. Inherent in the definition
of a equation is the notion of parameters, which are the coefficients found
within the equation.

Creating Models
Simulink provides a graphical editor that allows you to create and connect
instances of block types (see Chapter 4, “Creating a Model”) selected from
libraries of block types (see “Blocks—Alphabetical List” in the online Simulink
documentation) via a library browser. Simulink provides libraries of blocks
representing elementary systems that can be used as building blocks. The
blocks supplied with Simulink are called built-in blocks. Simulink users
can also create their own block types and use the Simulink editor to create
instances of them in a diagram. User-defined blocks are called custom blocks.

Time
Time is an inherent component of block diagrams in that the results of a block
diagram simulation change with time. Put another way, a block diagram
represents the instantaneous behavior of a dynamic system. Determining
a system’s behavior over time thus entails repeatedly solving the model at
intervals, called time steps, from the start of the time span to the end of the
time span. Simulink refers to the process of solving a model at successive time
steps as simulating the system that the model represents.

States
Typically the current values of some system, and hence model, outputs are
functions of the previous values of temporal variables. Such variables are

2-4

Modeling Dynamic Systems

called states. Computing a model’s outputs from a block diagram hence
entails saving the value of states at the current time step for use in computing
the outputs at a subsequent time step. Simulink performs this task during
simulation for models that define states.

Two types of states can occur in a Simulink model: discrete and continuous
states. A continuous state changes continuously. Examples of continuous
states are the position and speed of a car. A discrete state is an approximation
of a continuous state where the state is updated (recomputed) using finite
(periodic or aperiodic) intervals. An example of a discrete state would be the
position of a car shown on a digital odometer where it is updated every second
as opposed to continuously. In the limit, as the discrete state time interval
approaches zero, a discrete state becomes equivalent to a continuous state.

Blocks implicitly define a model’s states. In particular, a block that needs
some or all of its previous outputs to compute its current outputs implicitly
defines a set of states that need to be saved between time steps. Such a block
is said to have states.

The following is a graphical representation of a block that has states:

Blocks that define continuous states include the following standard Simulink
blocks:

• Integrator

• State-Space

• Transfer Fcn

• Zero-Pole

The total number of a model’s states is the sum of all the states defined
by all its blocks. Determining the number of states in a diagram requires
parsing the diagram to determine the types of blocks that it contains and
then aggregating the number of states defined by each instance of a block

2-5

2 How Simulink Works

type that defines states. Simulink performs this task during the Compilation
phase of a simulation.

Working with States
Simulink provides the following facilities for determining, initializing, and
logging a model’s states during simulation:

• The model command displays information about the states defined by a
model, including the total number of states defined by the model, the block
that defines each state, and the initial value of each state.

• The Simulink debugger displays the value of a state at each time step
during a simulation, and the Simulink debugger’s states command
displays information about the model’s current states (see Chapter 10,
“Simulink Debugger”).

• The Data Import/Export pane of a model’s Configuration Parameters
dialog box (see “Importing and Exporting States” on page 7-24) allows you
to specify initial values for a model’s states and instruct Simulink to record
the values of the states at each time step during simulation as an array or
structure variable in the MATLAB® workspace.

Continuous States
Computing a continuous state entails knowing its rate of change, or
derivative. Since the rate of change of a continuous state typically itself
changes continuously (i.e., is itself a state), computing the value of a
continuous state at the current time step entails integration of its derivative
from the start of a simulation. Thus modeling a continuous state entails
representing the operation of integration and the process of computing
the state’s derivative at each point in time. Simulink block diagrams use
Integrator blocks to indicate integration and a chain of blocks connected to
an integrator block’s input to represent the method for computing the state’s
derivative. The chain of blocks connected to the integrator block’s input is the
graphical counterpart to an ordinary differential equation (ODE).

In general, excluding simple dynamic systems, analytical methods do not
exist for integrating the states of real-world dynamic systems represented
by ordinary differential equations. Integrating the states requires the use
of numerical methods called ODE solvers. These various methods trade

2-6

Modeling Dynamic Systems

computational accuracy for computational workload. Simulink comes with
computerized implementations of the most common ODE integration methods
and allows a user to determine which it uses to integrate states represented
by Integrator blocks when simulating a system.

Computing the value of a continuous state at the current time step entails
integrating its values from the start of the simulation. The accuracy of
numerical integration in turn depends on the size of the intervals between
time steps. In general, the smaller the time step, the more accurate the
simulation. Some ODE solvers, called variable time step solvers, can
automatically vary the size of the time step, based on the rate of change
of the state, to achieve a specified level of accuracy over the course of a
simulation. Simulink allows the user to specify the size of the time step in
the case of fixed-step solvers or allow the solver to determine the step size in
the case of variable-step solvers. To minimize the computation workload, the
variable-step solver chooses the largest step size consistent with achieving an
overall level of precision specified by the user for the most rapidly changing
model state. This ensures that all model states are computed to the accuracy
specified by the user.

Discrete States
Computing a discrete state requires knowing the relationship between its
value at the current time step and its value at the previous time step.
Simulink refers to this relationship as the state’s update function. A discrete
state depends not only on its value at the previous time step but also on the
values of a model’s inputs. Modeling a discrete state thus entails modeling the
state’s dependency on the systems’ inputs at the previous time step. Simulink
block diagrams use specific types of blocks, called discrete blocks, to specify
update functions and chains of blocks connected to the inputs of discrete
blocks to model the dependency of a system’s discrete states on its inputs.

As with continuous states, discrete states set a constraint on the simulation
time step size. Specifically, the step size must ensure that all the sample times
of the model’s states are hit. Simulink assigns this task to a component of
the Simulink system called a discrete solver. Simulink provides two discrete
solvers: a fixed-step discrete solver and a variable-step discrete solver. The
fixed-step discrete solver determines a fixed step size that hits all the sample
times of all the model’s discrete states, regardless of whether the states
actually change value at the sample time hits. By contrast, the variable-step

2-7

2 How Simulink Works

discrete solver varies the step size to ensure that sample time hits occur only
at times when the states change value.

Modeling Hybrid Systems
A hybrid system is a system that has both discrete and continuous states.
Strictly speaking, Simulink treats any model that has both continuous and
discrete sample times as a hybrid model, presuming that the model has
both continuous and discrete states. Solving such a model entails choosing
a step size that satisfies both the precision constraint on the continuous
state integration and the sample time hit constraint on the discrete states.
Simulink meets this requirement by passing the next sample time hit,
as determined by the discrete solver, as an additional constraint on the
continuous solver. The continuous solver must choose a step size that
advances the simulation up to but not beyond the time of the next sample
time hit. The continuous solver can take a time step short of the next sample
time hit to meet its accuracy constraint but it cannot take a step beyond the
next sample time hit even if its accuracy constraint allows it to.

Block Parameters
Key properties of many standard blocks are parameterized. For example,
the Constant value of the Simulink Constant block is a parameter. Each
parameterized block has a block dialog that lets you set the values of the
parameters. You can use MATLAB expressions to specify parameter values.
Simulink evaluates the expressions before running a simulation. You can
change the values of parameters during a simulation. This allows you to
determine interactively the most suitable value for a parameter.

A parameterized block effectively represents a family of similar blocks. For
example, when creating a model, you can set the Constant value parameter of
each instance of the Constant block separately so that each instance behaves
differently. Because it allows each standard block to represent a family of
blocks, block parameterization greatly increases the modeling power of the
standard Simulink libraries.

Tunable Parameters
Many block parameters are tunable. A tunable parameter is a parameter
whose value can be changed without recompiling the model (see “Model

2-8

Modeling Dynamic Systems

Compilation” on page 2-14 for more information on compiling a Simulink
model). For example, the gain parameter of the Gain block is tunable. You
can alter the block’s gain while a simulation is running. If a parameter is
not tunable and the simulation is running, Simulink disables the dialog box
control that sets the parameter.

Note Simulink does not allow you to change the values of source block
parameters through either a dialog box or the Model Explorer while a
simulation is running. Opening the dialog box of a source block with tunable
parameters causes a running simulation to pause. While the simulation
is paused, you can edit the parameter values displayed on the dialog box.
However, you must close the dialog box to have the changes take effect and
allow the simulation to continue.

It should be pointed out that parameter changes do not immediately occur,
but are queued up and then applied at the start of the next time step during
model execution. Returning to our example of the constant block, the function
it defines is signal(t) = ConstantValue for all time. If we were to allow the
constant value to be changed immediately, then the solution at the point in
time at which the change occurred would be invalid. Thus we must queue the
change for processing at the next time step.

You can use the Inline parameters option on the Optimization pane of the
Configuration Parameters dialog box to specify that all parameters in
your model are nontunable except for those that you specify. This can speed
up execution of large models and enable generation of faster code from your
model. See “Configuration Parameters Dialog Box” on page 7-36 for more
information.

Block Sample Times
Every Simulink block is considered to have a sample time, even continuous
blocks (e.g., blocks that define continuous states, such as the Integrator block)
and blocks that do not define states, such as the Gain block. Most blocks allow
you to specify their sample times via a Sample Time parameter. Continuous
blocks are considered to have an infinitesimal sample time called a continuous
sample time. A block that does not specify its sample time is said to have an
implicit sample time that it inherits from its inputs. The implicit sample

2-9

2 How Simulink Works

time is continuous if any of the block’s inputs are continuous. Otherwise, the
implicit sample time is discrete. An implicit discrete sample time is equal
to the shortest input sample time if all the input sample times are integer
multiples of the shortest time. Otherwise, the implicit sample time is equal to
the fundamental sample time of the inputs, where the fundamental sample
time of a set of sample times is defined as the greatest integer divisor of the
set of sample times. See also “Sample Time Propagation” on page 2-37 for a
description of how Simulink uses a process called sample time propagation to
determine the sample times of blocks that inherit their sample times.

Simulink can optionally color code a block diagram to indicate the sample
times of the blocks it contains, e.g., black (continuous), magenta (constant),
yellow (hybrid), red (fastest discrete), and so on. See “Displaying Sample Time
Colors” on page 4-8 for more information.

Custom Blocks
Simulink allows you to create libraries of custom blocks that you can
then use in your models. You can create a custom block either graphically
or programmatically. To create a custom block graphically, you draw a
block diagram representing the block’s behavior, wrap this diagram in an
instance of the Simulink Subsystem block, and provide the block with a
parameter dialog, using the Simulink block mask facility. To create a block
programmatically, you create an M-file or a MEX-file that contains the
block’s system functions (see “Writing S-Functions” in the online Simulink
documentation). The resulting file is called an S-function. You then associate
the S-function with instances of the Simulink S-Function block in your model.
You can add a parameter dialog to your S-Function block by wrapping it in a
Subsystem block and adding the parameter dialog to the Subsystem block.

Systems and Subsystems
A Simulink block diagram can consist of layers. Each layer is defined by a
subsystem. A subsystem is part of the overall block diagram and ideally has
no impact on the meaning of the block diagram. Subsystems are provided
primarily to help in the organization aspects a block diagram. Subsystems do
not define a separate block diagram.

2-10

Modeling Dynamic Systems

Simulink differentiates between two different types of subsystems: virtual
and nonvirtual. The main difference is that nonvirtual subsystems provide
the ability to control when the contents of the subsystem are evaluated.

Flattening the Model Hierarchy
While preparing a model for execution, Simulink generates internal "systems"
that are collections of block methods (equations) that are evaluated together.
The semantics of time-based block diagrams doesn’t require creation of these
systems. Simulink creates these internal systems as a means to manage the
execution of the model. Roughly speaking, there will be one system for the
top-level block diagram which is referred to as the root system, and several
lower-level systems derived from nonvirtual subsystems and other elements
in the block diagram. You will see these systems in the Simulink Debugger.
The act of creating these internal systems is often referred to as flattening
the model hierarchy.

Conditionally Executed Subsystems
You can create conditionally executed subsystems that are executed only
when a transition occurs on a triggering, function-call, action, or enabling
input (see “Creating Conditionally Executed Subsystems” on page 4-29).
Conditionally executed subsystems are atomic, i.e., the equations that they
define are evaluated as a unit.

Atomic Subsystems
Unconditionally executed subsystems are virtual by default. You can,
however, designate an unconditionally executed subsystem as atomic (see the
Atomic Subsystem block for more information). This is useful if you need to
ensure that the equations defined by a subsystem are evaluated as a unit.

Signals
Simulink uses the term signal to refer to a time varying quantity that has
values at all points in time. Simulink allows you to specify a wide range of
signal attributes, including signal name, data type (e.g., 8-bit, 16-bit, or 32-bit
integer), numeric type (real or complex), and dimensionality (one-dimensional
or two-dimensional array). Many blocks can accept or output signals of any
data or numeric type and dimensionality. Others impose restrictions on the
attributes of the signals they can handle.

2-11

2 How Simulink Works

On the block diagram, you will find that the signals are represented with lines
that have an arrowhead. The source of the signal corresponds to the block
that writes to the signal during evaluation of its block methods (equations).
The destinations of the signal are blocks that read the signal during the
evaluation of its block methods (equations). A good analogy of the meaning
of a signal is to consider a classroom. The teacher is the one responsible for
writing on the white board and the students read what is written on the white
board when they choose to. This is also true of Simulink signals, a reader of
the signal (a block method) can choose to read the signal as frequently or
infrequently as so desired.

Block Methods
Blocks represent multiple equations. These equations are represented
as block methods within Simulink. These block methods are evaluated
(executed) during the execution of a block diagram. The evaluation of these
block methods is performed within a simulation loop, where each cycle
through the simulation loop represent evaluation of the block diagram at
a given point in time.

Method Types
Simulink assigns names to the types of functions performed by block methods.
Common method types include:

• Outputs

Computes the outputs of a block given its inputs at the current time step
and its states at the previous time step.

• Update

Computes the value of the block’s discrete states at the current time step,
given its inputs at the current time step and its discrete states at the
previous time step.

• Derivatives

Computes the derivatives of the block’s continuous states at the current
time step, given the block’s inputs and the values of the states at the
previous time step.

2-12

Modeling Dynamic Systems

Method Naming Convention
Block methods perform the same types of operations in different ways for
different types of blocks. The Simulink user interface and documentation uses
dot notation to indicate the specific function performed by a block method:

BlockType.MethodType

For example, Simulink refers to the method that computes the outputs of
a Gain block as

Gain.Outputs

The Simulink debugger takes the naming convention one step further and
uses the instance name of a block to specify both the method type and the
block instance on which the method is being invoked during simulation, e.g.,

g1.Outputs

Model Methods
In addition to block methods, Simulink also provides a set of methods that
compute the model’s properties and its outputs. Simulink similarly invokes
these methods during simulation to determine a model’s properties and its
outputs. The model methods generally perform their tasks by invoking block
methods of the same type. For example, the model Outputs method invokes
the Outputs methods of the blocks that it contains in the order specified by
the model to compute its outputs. The model Derivatives method similarly
invokes the Derivatives methods of the blocks that it contains to determine
the derivatives of its states.

2-13

2 How Simulink Works

Simulating Dynamic Systems
Simulating a dynamic system refers to the process of computing a system’s
states and outputs over a span of time, using information provided by the
system’s model. Simulink simulates a system when you choose Start from
the Model Editor’s Simulation menu, with the system’s model open.

A Simulink component called the Simulink Engine responds to a Start
command, performing the following steps.

Model Compilation
First, the Simulink engine invokes the model compiler. The model compiler
converts the model to an executable form, a process called compilation. In
particular, the compiler

• Evaluates the model’s block parameter expressions to determine their
values.

• Determines signal attributes, e.g., name, data type, numeric type, and
dimensionality, not explicitly specified by the model and checks that each
block can accept the signals connected to its inputs.

• Simulink uses a process called attribute propagation to determine
unspecified attributes. This process entails propagating the attributes of a
source signal to the inputs of the blocks that it drives.

• Performs block reduction optimizations.

• Flattens the model hierarchy by replacing virtual subsystems with the
blocks that they contain (see “Solvers” on page 2-17).

• Determines the block sorted order (see “Controlling and Displaying the
Sorted Order” in the online Simulink documentation for more information).

• Determines the sample times of all blocks in the model whose sample times
you did not explicitly specify (see “Sample Time Propagation” on page 2-37).

Link Phase
In this phase, the Simulink Engine allocates memory needed for working
areas (signals, states, and run-time parameters) for execution of the block
diagram. It also allocates and initializes memory for data structures that

2-14

Simulating Dynamic Systems

store run-time information for each block. For built-in blocks, the principal
run-time data structure for a block is called the SimBlock. It stores pointers
to a block’s input and output buffers and state and work vectors.

Method Execution Lists
In the Link phase, the Simulink engine also creates method execution lists.
These lists list the most efficient order in which to invoke a model’s block
methods to compute its outputs. Simulink uses the block sorted order lists
generated during the model compilation phase to construct the method
execution lists.

Block Priorities
Simulink allows you to assign update priorities to blocks (see “Assigning
Block Priorities” in the online Simulink documentation). Simulink executes
the output methods of higher priority blocks before those of lower priority
blocks. Simulink honors the priorities only if they are consistent with its
block sorting rules.

Simulation Loop Phase
The simulation now enters the simulation loop phase. In this phase, the
Simulink engine successively computes the states and outputs of the
system at intervals from the simulation start time to the finish time, using
information provided by the model. The successive time points at which the
states and outputs are computed are called time steps. The length of time
between steps is called the step size. The step size depends on the type of
solver (see “Solvers” on page 2-17) used to compute the system’s continuous
states, the system’s fundamental sample time (see “Modeling and Simulating
Discrete Systems” on page 2-31), and whether the system’s continuous states
have discontinuities (see “Zero-Crossing Detection” on page 2-19).

The Simulation Loop phase has two subphases: the Loop Initialization phase
and the Loop Iteration phase. The initialization phase occurs once, at the
start of the loop. The iteration phase is repeated once per time step from the
simulation start time to the simulation stop time.

At the start of the simulation, the model specifies the initial states and
outputs of the system to be simulated. At each step, Simulink computes new

2-15

2 How Simulink Works

values for the system’s inputs, states, and outputs and updates the model to
reflect the computed values. At the end of the simulation, the model reflects
the final values of the system’s inputs, states, and outputs. Simulink provides
data display and logging blocks. You can display and/or log intermediate
results by including these blocks in your model.

Loop Iteration
At each time step, the Simulink Engine

1 Computes the model’s outputs.

The Simulink Engine initiates this step by invoking the Simulink model
Outputs method. The model Outputs method in turn invokes the model
system Outputs method, which invokes the Outputs methods of the blocks
that the model contains in the order specified by the Outputs method
execution lists generated in the Link phase of the simulation (see “Solvers”
on page 2-17).

The system Outputs method passes the following arguments to each
block Outputs method: a pointer to the block’s data structure and to its
SimBlock structure. The SimBlock data structures point to information
that the Outputs method needs to compute the block’s outputs, including
the location of its input buffers and its output buffers.

2 Computes the model’s states.

The Simulink Engine computes a model’s states by invoking a solver. Which
solver it invokes depends on whether the model has no states, only discrete
states, only continuous states, or both continuous and discrete states.

If the model has only discrete states, the Simulink Engine invokes the
discrete solver selected by the user. The solver computes the size of the
time step needed to hit the model’s sample times. It then invokes the
Update method of the model. The model Update method invokes the
Update method of its system, which invokes the Update methods of each of
the blocks that the system contains in the order specified by the Update
method lists generated in the Link phase.

If the model has only continuous states, the Simulink Engine invokes the
continuous solver specified by the model. Depending on the solver, the

2-16

Simulating Dynamic Systems

solver either in turn calls the Derivatives method of the model once or
enters a subcycle of minor time steps where the solver repeatedly calls
the model’s Outputs methods and Derivatives methods to compute the
model’s outputs and derivatives at successive intervals within the major
time step. This is done to increase the accuracy of the state computation.
The model Outputs method and Derivatives methods in turn invoke their
corresponding system methods, which invoke the block Outputs and
Derivatives in the order specified by the Outputs and Derivatives methods
execution lists generated in the Link phase.

3 Optionally checks for discontinuities in the continuous states of blocks.

Simulink uses a technique called zero-crossing detection to detect
discontinuities in continuous states. See “Zero-Crossing Detection” on page
2-19 for more information.

4 Computes the time for the next time step.

Simulink repeats steps 1 through 4 until the simulation stop time is reached.

Solvers
Simulink simulates a dynamic system by computing its states at successive
time steps over a specified time span, using information provided by the
model. The process of computing the successive states of a system from its
model is known as solving the model. No single method of solving a model
suffices for all systems. Accordingly, Simulink provides a set of programs,
known as solvers, that each embody a particular approach to solving a model.
The Configuration Parameters dialog box allows you to choose the solver
most suitable for your model (see “Choosing a Solver Type” on page 7-7).

Fixed-Step Solvers Versus Variable-Step Solvers
Simulink solvers fall into two basic categories: fixed-step and variable-step.

Fixed-step solvers solve the model at regular time intervals from the beginning
to the end of the simulation. The size of the interval is known as the step size.
You can specify the step size or let the solver choose the step size. Generally,
decreasing the step size increases the accuracy of the results while increasing
the time required to simulate the system.

2-17

2 How Simulink Works

Variable-step solvers vary the step size during the simulation, reducing the
step size to increase accuracy when a model’s states are changing rapidly and
increasing the step size to avoid taking unnecessary steps when the model’s
states are changing slowly. Computing the step size adds to the computational
overhead at each step but can reduce the total number of steps, and hence
simulation time, required to maintain a specified level of accuracy for models
with rapidly changing or piecewise continuous states.

Continuous Versus Discrete Solvers
Simulink provides both continuous and discrete solvers.

Continuous solvers use numerical integration to compute a model’s continuous
states at the current time step from the states at previous time steps and the
state derivatives. Continuous solvers rely on the model’s blocks to compute
the values of the model’s discrete states at each time step.

Mathematicians have developed a wide variety of numerical integration
techniques for solving the ordinary differential equations (ODEs) that
represent the continuous states of dynamic systems. Simulink provides
an extensive set of fixed-step and variable-step continuous solvers, each
implementing a specific ODE solution method (see “Choosing a Solver Type”
on page 7-7).

Discrete solvers exist primarily to solve purely discrete models. They compute
the next simulation time step for a model and nothing else. They do not
compute continuous states and they rely on the model’s blocks to update the
model’s discrete states.

Note You can use a continuous solver, but not a discrete solver, to solve a
model that contains both continuous and discrete states. This is because a
discrete solver does not handle continuous states. If you select a discrete
solver for a continuous model, Simulink disregards your selection and uses a
continuous solver instead when solving the model.

Simulink provides two discrete solvers, a fixed-step discrete solver and a
variable-step discrete solver. The fixed-step solver by default chooses a step
size and hence simulation rate fast enough to track state changes in the

2-18

Simulating Dynamic Systems

fastest block in your model. The variable-step solver adjusts the simulation
step size to keep pace with the actual rate of discrete state changes in your
model. This can avoid unnecessary steps and hence shorten simulation time
for multirate models (see “Determining Step Size for Discrete Systems” on
page 2-36 for more information).

Minor Time Steps
Some continuous solvers subdivide the simulation time span into major and
minor time steps, where a minor time step represents a subdivision of the
major time step. The solver produces a result at each major time step. It
uses results at the minor time steps to improve the accuracy of the result at
the major time step.

Zero-Crossing Detection
When simulating a dynamic system, Simulink checks for discontinuities in
the system’s state variables at each time step, using a technique known as
zero-crossing detection. If Simulink detects a discontinuity within the current
time step, it determines the precise time at which the discontinuity occurs and
takes additional time steps before and after the discontinuity. This section
explains why zero-crossing detection is important and how it works.

Discontinuities in state variables often coincide with significant events in the
evolution of a dynamic system. For example, the instant when a bouncing
ball hits the floor coincides with a discontinuity in its velocity. Because
discontinuities often indicate a significant change in a dynamic system, it
is important to simulate points of discontinuity precisely. Otherwise, a
simulation could lead to false conclusions about the behavior of the system
under investigation. Consider, for example, a simulation of a bouncing ball.
If the point at which the ball hits the floor occurs between simulation steps,
the simulated ball appears to reverse position in midair. This might lead an
investigator to false conclusions about the physics of the bouncing ball.

To avoid such misleading conclusions, it is important that simulation steps
occur at points of discontinuity. A simulator that relies purely on solvers
to determine simulation times cannot efficiently meet this requirement.
Consider, for example, a fixed-step solver. A fixed-step solver computes the
values of state variables at integral multiples of a fixed step size. However,
there is no guarantee that a point of discontinuity will occur at an integral

2-19

2 How Simulink Works

multiple of the step size. You could reduce the step size to increase the
probability of hitting a discontinuity, but this would greatly increase the
execution time.

A variable-step solver appears to offer a solution. A variable-step solver
adjusts the step size dynamically, increasing the step size when a variable
is changing slowly and decreasing the step size when the variable changes
rapidly. Around a discontinuity, a variable changes extremely rapidly. Thus,
in theory, a variable-step solver should be able to hit a discontinuity precisely.
The problem is that to locate a discontinuity accurately, a variable-step solver
must again take many small steps, greatly slowing down the simulation.

How Zero-Crossing Detection Works
Simulink uses a technique known as zero-crossing detection to address this
problem. With this technique, a block can register a set of zero-crossing
variables with Simulink, each of which is a function of a state variable that
can have a discontinuity. The zero-crossing function passes through zero from
a positive or negative value when the corresponding discontinuity occurs. At
the end of each simulation step, Simulink asks each block that has registered
zero-crossing variables to update the variables. Simulink then checks whether
any variable has changed sign since the last step. Such a change indicates
that a discontinuity occurred in the current time step.

If any zero crossings are detected, Simulink interpolates between the previous
and current values of each variable that changed sign to estimate the times of
the zero crossings (e.g., discontinuities). Simulink then steps up to and over
each zero crossing in turn. In this way, Simulink avoids simulating exactly at
the discontinuity, where the value of the state variable might be undefined.

Zero-crossing detection enables Simulink to simulate discontinuities
accurately without resorting to excessively small step sizes. Many Simulink
blocks support zero-crossing detection. The result is fast and accurate
simulation of all systems, including systems with discontinuities.

2-20

Simulating Dynamic Systems

Implementation Details
An example of a Simulink block that uses zero crossings is the Saturation
block. Zero crossings detect these state events in the Saturation block:

• The input signal reaches the upper limit.

• The input signal leaves the upper limit.

• The input signal reaches the lower limit.

• The input signal leaves the lower limit.

Simulink blocks that define their own state events are considered to have
intrinsic zero crossings. If you need explicit notification of a zero-crossing
event, use the Hit Crossing block. See “Blocks with Zero Crossings” on page
2-23 for a list of blocks that incorporate zero crossings.

The detection of a state event depends on the construction of an internal
zero-crossing signal. This signal is not accessible by the block diagram. For
the Saturation block, the signal that is used to detect zero crossings for the
upper limit is zcSignal = UpperLimit - u, where u is the input signal.

Zero-crossing signals have a direction attribute, which can have these values:

• rising - A zero crossing occurs when a signal rises to or through zero, or
when a signal leaves zero and becomes positive.

• falling - A zero crossing occurs when a signal falls to or through zero, or
when a signal leaves zero and becomes negative.

• either - A zero crossing occurs if either a rising or falling condition occurs.

For the Saturation block’s upper limit, the direction of the zero crossing is
either. This enables the entering and leaving saturation events to be detected
using the same zero-crossing signal.

If the error tolerances are too large, it is possible for Simulink to fail to detect
a zero crossing. For example, if a zero crossing occurs within a time step, but
the values at the beginning and end of the step do not indicate a sign change,
the solver steps over the crossing without detecting it.

2-21

2 How Simulink Works

The following figure shows a signal that crosses zero. In the first instance, the
integrator steps over the event. In the second, the solver detects the event.

If you suspect this is happening, tighten the error tolerances to ensure that
the solver takes small enough steps. For more information, see “Maximum
Order” in the online Simulink documentation.

Note Using the Refine output option (see “Output options” in the online
Simulink documentation) does not help locate the missed zero crossings. You
should alter the maximum step size or output times.

Caveat
It is possible to create models that exhibit high-frequency fluctuations about
a discontinuity (chattering). Such systems typically are not physically
realizable; a massless spring, for example. Because chattering causes
repeated detection of zero crossings, the step sizes of the simulation become
very small, essentially halting the simulation.

If you suspect that this behavior applies to your model, you can use the
Zero crossing control option on the Solver pane of the Configuration
Parameters dialog box (see “Zero crossing control” in the online Simulink
documentation) to disable zero-crossing detection. Although disabling
zero-crossing detection can alleviate the symptoms of this problem, you
no longer benefit from the increased accuracy that zero-crossing detection
provides. A better solution is to try to identify the source of the underlying
problem in the model.

2-22

Simulating Dynamic Systems

Blocks with Zero Crossings
The following table lists blocks that use zero crossings and explains how the
blocks use the zero crossings:

Block Description of Zero Crossing

Abs One: to detect when the input signal crosses zero in
either the rising or falling direction.

Backlash Two: one to detect when the upper threshold is engaged,
and one to detect when the lower threshold is engaged.

Dead Zone Two: one to detect when the dead zone is entered (the
input signal minus the lower limit), and one to detect
when the dead zone is exited (the input signal minus
the upper limit).

From Workspace One: to detect when the input signal has a discontinuity
in either the rising or falling direction

Hit Crossing One: to detect when the input crosses the threshold.

If One: to detect when the If condition is met.

Integrator If the reset port is present, to detect when a reset
occurs. If the output is limited, there are three zero
crossings: one to detect when the upper saturation limit
is reached, one to detect when the lower saturation
limit is reached, and one to detect when saturation is
left.

MinMax One: for each element of the output vector, to detect
when an input signal is the new minimum or maximum.

Relay One: if the relay is off, to detect the switch on point. If
the relay is on, to detect the switch off point.

Relational
Operator

One: to detect when the output changes.

Saturation Two: one to detect when the upper limit is reached or
left, and one to detect when the lower limit is reached
or left.

Sign One: to detect when the input crosses through zero.

2-23

2 How Simulink Works

Block Description of Zero Crossing

Signal Builder One: to detect when the input signal has a discontinuity
in either the rising or falling direction

Step One: to detect the step time.

Subsystem For conditionally executed subsystems: one for the
enable port if present, and one for the trigger port, if
present.

Switch One: to detect when the switch condition occurs.

Switch Case One: to detect when the case condition is met.

Algebraic Loops
Some Simulink blocks have input ports with direct feedthrough. This means
that the output of these blocks cannot be computed without knowing the
values of the signals entering the blocks at these input ports. Some examples
of blocks with direct feedthrough inputs are as follows:

• The Math Function block

• The Gain block

• The Integrator block’s initial condition ports

• The Product block

• The State-Space block when there is a nonzero D matrix

• The Sum block

• The Transfer Fcn block when the numerator and denominator are of the
same order

• The Zero-Pole block when there are as many zeros as poles

An algebraic loop generally occurs when an input port with direct feedthrough
is driven by the output of the same block, either directly, or by a feedback path
through other blocks with direct feedthrough. An example of an algebraic
loop is this simple scalar loop.

2-24

Simulating Dynamic Systems

Mathematically, this loop implies that the output of the Sum block is an
algebraic state z constrained to equal the first input u minus z (i.e. z = u - z).
The solution of this simple loop is z = u/2, but most algebraic loops cannot be
solved by inspection.

It is easy to create vector algebraic loops with multiple algebraic state
variables z1, z2, etc., as shown in this model.

The Algebraic Constraint block is a convenient way to model algebraic
equations and specify initial guesses. The Algebraic Constraint block
constrains its input signal F(z) to zero and outputs an algebraic state z.
This block outputs the value necessary to produce a zero at the input. The
output must affect the input through some feedback path. You can provide an
initial guess of the algebraic state value in the block’s dialog box to improve
algebraic loop solver efficiency.

A scalar algebraic loop represents a scalar algebraic equation or constraint of
the form F(z) = 0, where z is the output of one of the blocks in the loop and
the function F consists of the feedback path through the other blocks in the
loop to the input of the block. In the simple one-block example shown on the
previous page, F(z) = z - (u - z). In the vector loop example shown above,
the equations are

z2 + z1 - 1 = 0

2-25

2 How Simulink Works

z2 - z1 - 1 = 0

Algebraic loops arise when a model includes an algebraic constraint F(z) = 0.
This constraint might arise as a consequence of the physical interconnectivity
of the system you are modeling, or it might arise because you are specifically
trying to model a differential/algebraic system (DAE).

When a model contains an algebraic loop, Simulink calls a loop solving
routine at each time step. The loop solver performs iterations to determine
the solution to the problem (if it can). As a result, models with algebraic loops
run slower than models without them.

To solve F(z) = 0, the Simulink loop solver uses Newton’s method with weak
line search and rank-one updates to a Jacobian matrix of partial derivatives.
Although the method is robust, it is possible to create loops for which the loop
solver will not converge without a good initial guess for the algebraic states z.
You can specify an initial guess for a line in an algebraic loop by placing an IC
block (which is normally used to specify an initial condition for a signal) on
that line. As shown above, another way to specify an initial guess for a line in
an algebraic loop is to use an Algebraic Constraint block.

Whenever possible, use an IC block or an Algebraic Constraint block to specify
an initial guess for the algebraic state variables in a loop.

Highlighting Algebraic Loops
You can cause Simulink to highlight algebraic loops when you update,
simulate, or debug a model. Use the ashow command to highlight algebraic
loops when debugging a model.

To cause Simulink to highlight algebraic loops that it detects when
updating or simulating a model, set the Algebraic loop diagnostic on
the Diagnostics pane of the Configuration Parameters dialog box to
Error (see “Configuration Parameters Dialog Box” on page 7-36 for more
information). This causes Simulink to display an error dialog (the Diagnostics
Viewer) and recolor portions of the diagram that represent the algebraic loops
that it detects. Simulink uses red to color the blocks and lines that constitute
the loops. Closing the error dialog restores the diagram to its original colors.

2-26

Simulating Dynamic Systems

For example, the following figure shows the block diagram of the hydcyl demo
model in its original colors.

The following figure shows the diagram after updating when the Algebraic
loop diagnostic is set to Error.

In this example, Simulink has colored the algebraic loop red, making it stand
out from the rest of the diagram.

Eliminating Algebraic Loops
Simulink can eliminate some algebraic loops that include any of the following
types of blocks:

• Atomic Subsystem

• Enabled Subsystem

• Model

To enable automatic algebraic loop elimination for a loop involving a
particular instance of an Atomic Subsystem or Enabled Subsystem block,
select the Minimize algebraic loop occurrences parameter on the block’s

2-27

2 How Simulink Works

parameters dialog box. To enable algebraic loop elimination for a loop
involving a Model block, check the Minimize algebraic loop occurrences
parameter on the Model Referencing Pane of the Configuration
Parameters dialog box (see “The Model Referencing Pane” in the online
Simulink documentation) of the model referenced by the Model block. If a loop
includes more than one instance of these blocks, you should enable algebraic
loop elimination for all of them, including nested blocks.

The Simulink Minimize algebraic loop solver diagnostic allows you to
specify the action Simulink should take, for example, display a warning
message, if it is unable to eliminate an algebraic loop involving a block for
which algebraic loop elimination is enabled. See “The Diagnostics Pane” in
the online Simulink documentation for more information.

Algebraic loop minimization is off by default because it is incompatible
with conditional input branch optimization in Simulink (see “The
Optimization Pane” in the online Simulink documentation) and with single
output/update function optimization in Real-Time Workshop®. If you need
these optimizations for an atomic or enabled subsystem or referenced model
involved in an algebraic loop, you must eliminate the algebraic loop yourself.

As an example of the ability of Simulink to eliminate algebraic loops, consider
the following model.

2-28

Simulating Dynamic Systems

Simulating this model with the solver’s Algebraic Loop diagnostic set to error
(see “The Diagnostics Pane” in the online Simulink documentation for more
information) reveals that this model contains an algebraic loop involving
its atomic subsystem.

Checking the atomic subsystem’s Minimize algebraic loop occurrences
parameter causes Simulink to eliminate the algebraic loop from the compiled
version of the model.

2-29

2 How Simulink Works

As a result, the model now simulates without error.

Note that Simulink is able to eliminate the algebraic loop involving this
model’s atomic subsystem because the atomic subsystem contains a block with
a port that does not have direct feed through, i.e., the Integrator block.

If you remove the Integrator block from the atomic subsystem, Simulink is
unable to eliminate the algebraic loop. Hence, attempting to simulate the
model results in an error.

2-30

Modeling and Simulating Discrete Systems

Modeling and Simulating Discrete Systems
Simulink has the ability to simulate discrete (sampled data) systems,
including systems whose components operate at different rates (multirate
systems) and systems that mix discrete and continuous components (hybrid
systems). This capability stems from two key Simulink features:

• SampleTime block parameter

Some Simulink blocks have a SampleTime parameter that you can use to
specify the block’s sample time, i.e., the rate at which it executes during
simulation. All blocks have either an explicit or implicit sample time
parameter. Continuous blocks are examples of blocks that have an implicit
(continuous) sample time. It is possible for a block to have multiple sample
times as provided with blocksets such as the Signal Processing Blockset
or created by a user using the S-Function block.

• Sample-time inheritance

Most standard Simulink blocks can inherit their sample time from
the blocks connected to their inputs. Exceptions include blocks in the
Continuous library and blocks that do not have inputs (e.g., blocks from the
Sources library). In some cases, source blocks can inherit the sample time
of the block connected to their output.

The ability to specify sample times on a block-by-block basis, either directly
through the SampleTime parameter or indirectly through inheritance, enables
you to model systems containing discrete components operating at different
rates and hybrid systems containing discrete and continuous components.

Specifying Sample Time
Simulink allows you to specify the sample time of any block that has a
SampleTime parameter. You can use the block’s parameter dialog box to set
this parameter. You do this by entering the sample time in the Sample time
field on the dialog box. You can enter either the sample time alone or a vector
whose first element is the sample time and whose second element is an offset:
[Ts, To]. Various values of the sample time and offset have special meanings.

The following table summarizes valid values for this parameter and how
Simulink interprets them to determine a block’s sample time.

2-31

2 How Simulink Works

Sample Time Usage

[Ts, To]
0 > Ts < Tsim
|To| < Tp

Specifies that updates occur at simulation times

tn = n * Ts + |To|

where n is an integer in the range 1..Tsim/Ts and Tsim
is the length of the simulation. Blocks that have a
sample time greater than 0 are said to have a discrete
sample time.

The offset allows you to specify that Simulink update
the block later in the sample interval than other
blocks operating at the same rate.

[0, 0], 0 Specifies that updates occur at every major and minor
time step. A block that has a sample time of 0 is said
to have a continuous sample time.

[0, 1] Specifies that updates occur only at major time
steps, skipping minor time steps (see “Minor Time
Steps” on page 2-19). This setting avoids unnecessary
computations for blocks whose sample time cannot
change between major time steps. The sample time of
a block that executes only at major time steps is said
to be fixed in minor time step.

[-1, 0], -1 If the block is not in a triggered subsystem,
this setting specifies that the block inherits its
sample time from the block connected to its input
(inheritance) or, in some cases, from the block
connected to its output (back inheritance). If the
block is in a triggered subsystem, you must set the
SampleTime parameter to this setting.

Note that specifying sample-time inheritance for
a source block can cause Simulink to assign an
inappropriate sample time to the block if the source
drives more than one block. For this reason, you
should avoid specifying sample-time inheritance for
source blocks. If you do, Simulink displays a warning
message when you update or simulate the model.

2-32

Modeling and Simulating Discrete Systems

Sample Time Usage

[-2, Tvo] Specifies that a block has a variable sample time, i.e.,
computes its output only at times when the output
changes. Every block with variable sample time has a
unique Tvo determined by Simulink. The only built-in
Simulink block that can have variable sample time
is the Pulse Generator block. The sample time color
(see “Displaying Sample Time Colors” on page 4-8)
for variable sample time is yellow.

inf The meaning of this sample time depends on whether
the active model configuration’s inline parameters
optimization (see “Inline parameters” in the online
Simulink documentation) is enabled.

If the inline parameters optimization is enabled, inf
signifies that the block’s output can never change (see
“Constant Sample Time” on page 2-39). This speeds
up simulation and the generated code by eliminating
the need to recompute the block’s output at each
time step. If the inline parameters optimization is
disabled or the block with inf sample time drives an
output port of a conditionally executed subsystem,
Simulink treats inf as -1, i.e., as inherited sample
time. This allows you to tune the block’s parameters
during simulation.

Changing a Block’s Sample Time
You cannot change the SampleTime parameter of a block while a simulation
is running. If you want to change a block’s sample time, you must stop and
restart the simulation for the change to take effect.

Compiled Sample Time
During the compilation phase of a simulation, Simulink determines the
sample time of the block from its SampleTime parameter (if it has a
SampleTime parameter), sample-time inheritance, or block type (Continuous
blocks always have a continuous sample time). It is this compiled sample
time that determines the sample rate of a block during simulation. You can

2-33

2 How Simulink Works

determine the compiled sample time of any block in a model by first updating
the model and then getting the block’s CompiledSampleTime parameter,
using the get_param command.

Purely Discrete Systems
Purely discrete systems can be simulated using any of the solvers; there is
no difference in the solutions. To generate output points only at the sample
hits, choose one of the discrete solvers.

Multirate Systems
Multirate systems contain blocks that are sampled at different rates. These
systems can be modeled with discrete blocks or with both discrete and
continuous blocks. For example, consider this simple multirate discrete model.

For this example the DTF1 Discrete Transfer Fcn block’s Sample time is set
to [1 0.1], which gives it an offset of 0.1. The DTF2 Discrete Transfer Fcn
block’s Sample time is set to 0.7, with no offset.

2-34

Modeling and Simulating Discrete Systems

Starting the simulation and plotting the outputs using the stairs function

[t,x,y] = sim('multirate', 3);
stairs(t,y)

produces this plot

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

����

����

See “Running a Simulation Programmatically” in the online Simulink
documentation for information on the sim command.

For the DTF1 block, which has an offset of 0.1, there is no output until t =
0.1. Because the initial conditions of the transfer functions are zero, the
output of DTF1, y(1), is zero before this time.

2-35

2 How Simulink Works

Determining Step Size for Discrete Systems
Simulating a discrete system requires that the simulator take a simulation
step at every sample time hit, that is, at integer multiples of the system’s
shortest sample time. Otherwise, the simulator might miss key transitions in
the system’s states. Simulink avoids this by choosing a simulation step size to
ensure that steps coincide with sample time hits. The step size that Simulink
chooses depends on the system’s fundamental sample time and the type of
solver used to simulate the system.

The fundamental sample time of a discrete system is the greatest integer
divisor of the system’s actual sample times. For example, suppose that a
system has sample times of 0.25 and 0.5 second. The fundamental sample
time in this case is 0.25 second. Suppose, instead, the sample times are 0.5
and 0.75 second. In this case, the fundamental sample time is again 0.25
second.

You can direct Simulink to use either a fixed-step or a variable-step discrete
solver to solve a discrete system. A fixed-step solver sets the simulation step
size equal to the discrete system’s fundamental sample time. A variable-step
solver varies the step size to equal the distance between actual sample time
hits.

The following diagram illustrates the difference between a fixed-step and
a variable-size solver.

2-36

Modeling and Simulating Discrete Systems

In the diagram, arrows indicate simulation steps and circles represent sample
time hits. As the diagram illustrates, a variable-step solver requires fewer
simulation steps to simulate a system, if the fundamental sample time is
less than any of the actual sample times of the system being simulated. On
the other hand, a fixed-step solver requires less memory to implement and
is faster if one of the system’s sample times is fundamental. This can be an
advantage in applications that entail generating code from a Simulink model
(using Real-Time Workshop®).

Sample Time Propagation
When updating a model’s diagram, for example, at the beginning of a
simulation, Simulink uses a process called sample time propagation to
determine the sample times of blocks that inherit their sample times. The
figure below illustrates a Discrete Filter block with a sample time of Ts
driving a Gain block.

Because the Gain block’s output is simply the input multiplied by a constant,
its output changes at the same rate as the filter. In other words, the Gain
block has an effective sample rate equal to that of the filter’s sample rate. This
is the fundamental mechanism behind sample time propagation in Simulink.

Simulink assigns an inherited sample time to a block based on the sample
times of the blocks connected to its inputs, using the following rules.

• If all the inputs have the same sample time, Simulink assigns that sample
time to the block.

• If the inputs have different sample times and if all the input sample times
are integer multiples of the fastest input sample time, the block is assigned
the sample time of the fastest input.

• If the inputs have different sample times and some of the input sample
times are not integer multiples of the fastest sample time and a
variable-step solver is being used, the block is assigned continuous sample
time.

2-37

2 How Simulink Works

• If the inputs have different sample times and some of the input sample
times are not integer multiples of the fastest sample time and a fixed-step
solver is being used, and the greatest common divisor of the sample times
(the fundamental sample time) can be computed, the block is assigned the
fundamental sample time; otherwise, in this case, the block is assigned
continuous sample time.

Under some circumstances, Simulink also back propagates sample times to
source blocks if it can do so without affecting the output of a simulation. For
instance, in the model below, Simulink recognizes that the Sine Wave block is
driving a Discrete-Time Integrator block, so it assigns the Sine Wave block and
the Gain block the same sample time as the Discrete-Time Integrator block.

1

Out1
Ts = −1Sine Wave

Ts = −1

1

Gain
Ts = −1

K Ts

z−1

Discrete−Time
Integrator

You can verify this by selecting Sample Time Colors from the Simulink
Format menu and noting that all blocks are colored red. Because the
Discrete-Time Integrator block only looks at its input at its sample times, this
change does not affect the outcome of the simulation but does result in a
performance improvement.

Replacing the Discrete-Time Integrator block with a continuous Integrator
block, as shown below, and recoloring the model by choosing Update
diagram from the Edit menu cause the Sine Wave and Gain blocks to change
to continuous blocks, as indicated by their being colored black.

1

Out1
Ts = −1Sine Wave

Ts = −1

1
s

Integrator

1

Gain
Ts = −1

2-38

Modeling and Simulating Discrete Systems

Constant Sample Time
A block whose output cannot change from its initial value during a simulation
is said to have constant sample time. A block has constant sample time if it
satisfies both of the following conditions:

• All of its parameters are nontunable, either because they are inherently
nontunable or because they have been inlined (see “Inline parameters” in
the online Simulink documentation).

• The block’s sample time has been declared infinite (inf) or its sample time
is declared to be inherited and it inherits a constant sample time from
another block to which it is connected.

When Simulink updates a model, for example, at the beginning of a
simulation, Simulink determines which blocks, if any, have constant
sample time, and computes the initial values of the output ports. During
the simulation, Simulink uses the initial values whenever the outputs of
blocks with constant sample time are required, thus avoiding unnecessary
computations.

You can determine which blocks have constant sample time by selecting
Sample Time Colors from the Format menu and updating the model.
Blocks with constant sample time are colored magenta.

For example, in this model, as sample time colors show, both the Constant
and Gain blocks have constant sample time.

The Gain block has constant sample time because it inherits its sample time
from the Constant block and all of the model’s parameters are inlined, i.e.,
nontunable.

2-39

2 How Simulink Works

Note The Simulink block library includes a few blocks, e.g., the S-Function,
Level-2 M-File S-Function, Rate Transition, and Model block, whose ports can
produce outputs at different sample rates. It is possible for some of the ports
of such blocks to inherit a constant sample time. The ports with constant
sample time produce output only once, at the beginning of the simulation. The
other ports produce outputs at their sample rates.

How Simulink Treats Blocks with Infinite Sample Times and
Tunable Parameters
A block that has tunable parameters cannot have constant sample time even if
its sample time is specified to be infinite. This is because the fact that a block
has one or more tunable parameters means that you can change the values of
its parameters during simulation and hence the value of its outputs. In this
case, Simulink uses sample time propagation (see “Sample Time Propagation”
on page 2-37) to determine the block’s actual sample time.

For example, consider the following model.

2-40

Modeling and Simulating Discrete Systems

In this example, although the Constant block’s sample time is specified to be
infinite, it cannot have constant sample time because the inlined parameters
option is off for this model and therefore the block’s Constant value
parameter is tunable. Since the Constant block’s output can change during
the simulation, Simulink has to determine a sample time for the block that
ensures accurate simulation results. It does this by treating the Constant
block’s sample time as inherited and using sample time propagation to
determine its sample time. The first nonvirtual block in the diagram branch to
which the Constant block is connected is the Discrete-Time Integrator block.
As a result, the block inherits its sample time (1 sec) via back propagation
from the Discrete-Time Integrator block.

Mixed Continuous and Discrete Systems
Mixed continuous and discrete systems are composed of both sampled and
continuous blocks. Such systems can be simulated using any of the integration
methods, although certain methods are more efficient and accurate than
others. For most mixed continuous and discrete systems, the Runge-Kutta
variable-step methods, ode23 and ode45, are superior to the other methods in
terms of efficiency and accuracy. Because of discontinuities associated with
the sample and hold of the discrete blocks, the ode15s and ode113 methods
are not recommended for mixed continuous and discrete systems.

2-41

2 How Simulink Works

2-42

3

Simulink Basics

The following sections explain how to perform basic Simulink tasks.

Starting Simulink (p. 3-2) How to start Simulink.

Opening Models (p. 3-3) How to open a Simulink model.

Model Editor (p. 3-5) Overview of the Model Editor.

Updating a Block Diagram (p. 3-9) How to update a diagram to reflect
changes that you have made.

Saving a Model (p. 3-11) How to save a Simulink model to
disk.

Printing a Block Diagram (p. 3-15) How to print a Simulink block
diagram.

Generating a Model Report (p. 3-20) How to generate an HTML report on
a model’s structure and content.

Summary of Mouse and Keyboard
Actions (p. 3-23)

Lists key combinations and mouse
actions that you can use to execute
Simulink commands.

Ending a Simulink Session (p. 3-27) How to end a Simulink session.

3 Simulink Basics

Starting Simulink
To start Simulink, you must first start MATLAB. Consult your MATLAB
documentation for more information. You can then start Simulink in two
ways:

• Click the Simulink icon on the MATLAB toolbar.

• Enter the simulink command at the MATLAB prompt.

On Microsoft Windows platforms, starting Simulink displays the Simulink
Library Browser.

The Library Browser displays a tree-structured view of the Simulink block
libraries installed on your system. You can build models by copying blocks
from the Library Browser into a model window (see “Editing Blocks” on page
5-4).

3-2

Opening Models

On Macintosh or Linux platforms, starting Simulink displays the Simulink
block library window.

The Simulink library window displays icons representing the block libraries
that come with Simulink. You can create models by copying blocks from the
library into a model window.

Note On Windows, you can display the Simulink library window by
right-clicking the Simulink node in the Library Browser window.

Opening Models
To edit an existing model diagram, either

• Click the Open button on the Library Browser’s toolbar (Windows only)
or select Open from the Simulink library window’s File menu and then
choose or enter the file name for the model to edit.

• Enter the name of the model (without the .mdl extension) in the MATLAB
Command Window. The model must be in the current directory or on the
path.

Opening Models with Different Character Encodings
If you open a model created in a MATLAB session configured to support
one character set encoding, for example, Shift_JIS, in a MATLAB session

3-3

3 Simulink Basics

configured to support another character encoding, for example, US_ASCII,
Simulink displays a warning or an error message, depending on whether
it can or cannot encode the model, using the current character encoding,
respectively. The warning or error message specifies the encoding of the
current session and the encoding used to create the model. To avoid corrupting
the model (see “Saving Models with Different Character Encodings” on page
3-12) and ensure correct display of the model’s text, you should:

1 Close all models open in the current session.

2 Use the slCharacterEncoding command to change the character encoding
of the current MATLAB session to that of the model as specified in the
warning message.

3 Reopen the model.

You can now safely edit and save the model.

Avoiding Initial Model Open Delay
You may notice that the first model that you open in a MATLAB session
takes longer to open than do subsequent models. This is because to reduce
its own startup time and to avoid unnecessary consumption of your system’s
memory, MATLAB does not load Simulink into memory until the first time
you open a Simulink model. You can cause MATLAB to load Simulink at
MATLAB startup, and thus avoid the initial model opening delay, using either
the -r MATLAB command line option or your MATLAB startup.m file to run
either load_simulink (loads Simulink) or simulink (loads Simulink and
opens the Simulink Library browser) at MATLAB startup. For example, to
load Simulink at MATLAB startup on Microsoft Windows systems, create a
desktop shortcut with the following target:

<matlabroot>\bin\win32\matlab.exe -r load_simulink

Similarly, the following command loads Simulink at MATLAB startup on
Macintosh or Linux systems:

matlab -r load_simulink

3-4

Model Editor

Model Editor
When you open a Simulink model or library, Simulink displays the model or
library in an instance of the Model Editor.

Editor Components
The Model Editor includes the following components.

Menu Bar
The Simulink menu bar contains commands for creating, editing, viewing,
printing, and simulating models. The menu commands apply to the model
displayed in the editor. See Chapter 4, “Creating a Model” and Chapter 7,
“Running Simulations” for more information.

Toolbar
The toolbar allows you to execute Simulink’s most frequently used Simulink
commands with a click of a mouse button. For example, to open a Simulink
model, click the open folder icon on the toolbar. Letting the mouse cursor
hover over a toolbar button or control causes a tooltip to appear. The tooltip
describes the purpose of the button or control. You can hide the toolbar by
clearing the Toolbar option on the Simulink View menu.

3-5

3 Simulink Basics

Canvas
The canvas displays the model’s block diagram. The canvas allows you to
edit the block diagram. You can use your system’s mouse and keyboard to
create and connect blocks, select and move blocks, edit block labels, display
block dialog boxes, and so on. See Chapter 5, “Working with Blocks” for more
information.

Context Menus
Simulink displays a context-sensitive menu when you click the right mouse
button over the canvas. The contents of the menu depend on whether a block
is selected. If a block is selected, the menu displays commands that apply only
to the selected block. If no block is selected, the menu displays commands that
apply to a model or library as a whole.

Status Bar
The status bar appears only in the Windows version of the Model Editor.
When a simulation is running, the status bar displays the status of the
simulation, including the current simulation time and the name of the current
solver. Regardless of the simulation state, the status bar also displays the
zoom factor of the model editor window expressed as a percentage of normal
(100%). You can display or hide the status bar by selecting or clearing the
Status Bar option on the Simulink View menu.

Undoing a Command
You can cancel the effects of up to 101 consecutive operations by choosing
Undo from the Edit menu. You can undo these operations:

• Adding, deleting, or moving a block

• Adding, deleting, or moving a line

• Adding, deleting, or moving a model annotation

• Editing a block name

• Creating a subsystem (see “Undoing Subsystem Creation” on page 4-26
for more information)

3-6

Model Editor

You can reverse the effects of an Undo command by choosing Redo from
the Edit menu.

Zooming Block Diagrams
Simulink allows you to enlarge or shrink the view of the block diagram in the
current Simulink window. To zoom a view:

• Select Zoom In from the View menu (or type r) to enlarge the view.

• Select Zoom Out from the View menu (or type v) to shrink the view.

• Select Fit System To View from the View menu (or press the space bar)
to fit the diagram to the view.

• Select Normal from the View menu (or type 1) to view the diagram at
actual size.

By default, Simulink fits a block diagram to view when you open the diagram
either in the model browser’s content pane or in a separate window. If you
change a diagram’s zoom setting, Simulink saves the setting when you close
the diagram and restores the setting the next time you open the diagram. If
you want to restore the default behavior, choose Fit System to View from
the View menu the next time you open the diagram.

Panning Block Diagrams
You can use the mouse to pan model diagrams that are too large to fit in the
Model Editor’s window. To do this, position the mouse over the diagram, hold
down the p or q key on the keyboard, then hold down the left mouse button.
Moving the mouse now pans the model diagram in the editor window.

View Command History
Simulink maintains a history of the modeling viewing commands, i.e., pan
and zoom, that you execute for each model window. The history allows you to
quickly return to a previous view in a window, using the following commands,
accessible from the Model Editor’s View menu and tool bar:

• Back ()—Displays the previous view in the view history.

• Forward ()—Displays the next view in the view history.

3-7

3 Simulink Basics

• Go To Parent ()—Opens, if necessary, the parent of the current
subsystem and brings its window to the top of the desktop.

Note Simulink maintains a separate view history for each model
window opened in the current session. As a result, the View > Back and
View > Forward commands cannot cross window boundaries. For example,
if window reuse is not on and you open a subsystem in another window, you
cannot use the View > Back command to go to the window displaying the
parent system. You must use the View > Go To Parent command in this
case. On the other hand, if you enable window reuse and open a subsystem in
the current window, you can use View > Back to restore the parent view.

3-8

Updating a Block Diagram

Updating a Block Diagram
Simulink allows you to leave many attributes of a block diagram, such as
signal data types and sample times, unspecified. Simulink then infers the
values of block diagram attributes based on block connectivity and attributes
that you do specify, a process known as updating the diagram. Simulink tries
to infer the most appropriate value for an attribute that you do not specify.
If Simulink cannot infer an attribute, it halts the update and displays an
error dialog box.

Simulink updates a model’s block diagram at the start of every simulation of
a model. This assures that the simulation reflects the latest changes that you
have made to a model. In addition, you can command Simulink to update a
diagram at any time by selecting Edit > Update Diagram from the Model
Editor’s menu bar or context menu or by pressing Ctrl+D. This allows you
to determine the values of block diagram attributes inferred by Simulink
immediately after opening or editing a model.

For example:

1 Create the following model.

1

Out1

1

Gain

1

Constant

2 Select Format > Port/Signal Displays > Port Data Types from the
Model Editor’s menu bar.

Simulink displays the data types of the output ports of the Constant and
Gain blocks. Note that the data type of both ports is double, the default
value.

1

Out1

1

Gain

1

Constant

double double

3 Set the Signal Data Type parameter of the Constant block (see the
Constant block in the online Simulink reference documentation) to single.

3-9

3 Simulink Basics

Note that the output port data type displays on the block diagram do not
reflect this change.

4 Select Edit > Update Diagram from the Model Editor’s menu bar or
press Ctrl-D.

Simulink updates the block diagram to reflect the change that you made
previously.

1

Out1

1

Gain

1

Constant

single single

Note that Simulink has inferred a data type for the output of the Gain
block. This is because you did not specify a data type for the block. The
data type inferred by Simulink is single because single precision is all that
is necessary to simulate the model accurately, given that the precision of
the block’s input is single.

3-10

Saving a Model

Saving a Model
You can save a model by choosing either the Save or Save As command from
the File menu. Simulink saves the model by generating a specially formatted
file called the model file (with the .mdl extension) that contains the block
diagram and block properties.

If you are saving a model for the first time, use the Save command to provide
a name and location for the model file. Model file names must start with a
letter and can contain no more than 63 letters, numbers, and underscores.
The file name must not be the same as that of a MATLAB command.

If you are saving a model whose model file was previously saved, use the Save
command to replace the file’s contents or the Save As command to save the
model with a new name or location. You can also use the Save As command
to save the model in a format compatible with previous releases of Simulink
(see “Saving a Model in Earlier Formats” on page 3-12).

Simulink follows this procedure while saving a model:

1 If the mdl file for the model already exists, it is renamed as a temporary file.

2 Simulink executes all block PreSaveFcn callback routines, then executes
the block diagram’s PreSaveFcn callback routine.

3 Simulink writes the model file to a new file using the same name and an
extension of mdl.

4 Simulink executes all block PostSaveFcn callback routines, then executes
the block diagram’s PostSaveFcn callback routine.

5 Simulink deletes the temporary file.

If an error occurs during this process, Simulink renames the temporary file to
the name of the original model file, writes the current version of the model to
a file with an .err extension, and issues an error message. Simulink performs
steps 2 through 4 even if an error occurs in an earlier step.

3-11

3 Simulink Basics

Saving Models with Different Character Encodings
When Simulink saves a model, it uses the character encoding in effect when
the model was created (the original encoding) to encode the text stored in the
model’s .mdl file, regardless of the character encoding in effect when the model
is saved. This can lead to model corruption if you save a model whose original
encoding differs from encoding currently in effect in the MATLAB session.

For example, it’s possible you could have introduced characters that cannot
be represented in the model’s original encoding. If this is the case, Simulink
saves the model as model.err where model is the model’s name, leaving the
original model file unchanged. Simulink also displays an error message that
specifies the line and column number of the first unrepresentable character.
To recover from this error without losing all the changes you’ve made to
the model in the current session, use the following procedure. First, use a
text editor to find the character in the .err file at the position specified by
the save error message. Then, returning to Simulink, find and delete the
corresponding character in the open model and resave the model . Repeat this
process until you are able to save the model without error.

It’s possible that your model’s original encoding can represent all the text
changes that you’ve made in the current session, albeit incorrectly. For
example, suppose you open a model whose original encoding is A in a
MATLAB session whose current encoding is B. Further, suppose you edit the
model to include a character that has different encodings in A and B and then
save the model. For example, suppose that the encoding for x in B is the same
as the coding for y in A and you insert x in the model while B is in effect,
save the model, and then reopen the model with A in effect. In this scenario,
Simulink will display x as y. To alert you to the possibility of such corruptions,
Simulink displays a warning message when you save a model and the current
and original encoding differ but the original encoding can encode, possibly
incorrectly, all the characters to be saved in the model file.

Saving a Model in Earlier Formats
The Save As command allows you to save a model created with the latest
version of Simulink in formats used by earlier versions of Simulink, including
Simulink 4 (Release 12), Simulink 4.1 (Release 12.1), Simulink 5 (Release 13),
Simulink 5.1 (Release 13SP1), and Simulink 6 (Release 14, compatible with
Release 14, Release 14SP1, and Release 14SP2). You might want to do this,

3-12

Saving a Model

for example, if you need to make a model available to colleagues who have
access only to one of these earlier versions of Simulink.

To save a model in earlier format:

1 Select Save As from the Simulink File menu.

Simulink displays the Save As dialog box.

2 Select a format from the Save as type list on the dialog box.

3 Click the Save button.

When saving a model in an earlier version’s format, Simulink saves the model
in that format regardless of whether the model contains blocks and features
that were introduced after that version. If the model does contain blocks
or use features that postdate the earlier version, the model might not give
correct results when run by the earlier version. For example, matrix and
frame signals do not work in Release 11, because Release 11 does not have
matrix and frame support. Similarly, models that contain unconditionally
executed subsystems marked Treat as atomic unit might produce different
results in Release 11, because Release 11 does not support unconditionally
executed atomic subsystems.

3-13

3 Simulink Basics

The command converts blocks that postdate the earlier version into empty
masked subsystem blocks colored yellow. For example, post-Release 11 blocks
include

• Lookup Table (n-D)

• Assertion

• Rate Transition

• PreLookup Index Search

• Interpolation (n-D)

• Direct Lookup Table (n-D)

• Polynomial

• Matrix Concatenation

• Signal Specification

• Bus Creator

• If, WhileIterator, ForIterator, Assignment

• SwitchCase

• Bitwise Logical Operator

Post-Release 11 blocks from Simulink blocksets appear as unlinked blocks.

3-14

Printing a Block Diagram

Printing a Block Diagram
You can print a block diagram by selecting Print from the File menu (on a
Microsoft Windows system) or by using the print command in the MATLAB
Command Window (on all platforms).

On a Microsoft Windows system, the Print menu item prints the block
diagram in the current window.

Print Dialog Box
When you select the Print menu item, the Print dialog box appears. The
Print dialog box enables you to selectively print systems within your model.
Using the dialog box, you can print

• The current system only

• The current system and all systems above it in the model hierarchy

• The current system and all systems below it in the model hierarchy, with
the option of looking into the contents of masked and library blocks

• All systems in the model, with the option of looking into the contents of
masked and library blocks

• An overlay frame on each diagram

3-15

3 Simulink Basics

The portion of the Print dialog box that supports selective printing is similar
on supported platforms. This figure shows how it looks on a Microsoft
Windows system. In this figure, only the current system is to be printed.

When you select either the Current system and below or All systems
option, two check boxes become enabled. In this figure, All systems is
selected.

Selecting the Look under mask dialog check box prints the contents of
masked subsystems when encountered at or below the level of the current
block. When you are printing all systems, the top-level system is considered
the current block, so Simulink looks under any masked blocks encountered.

3-16

Printing a Block Diagram

Selecting the Expand unique library links check box prints the contents
of library blocks when those blocks are systems. Only one copy is printed
regardless of how many copies of the block are contained in the model. For
more information about libraries, see “Working with Block Libraries” on page
5-21.

The print log lists the blocks and systems printed. To print the print log,
select the Include Print Log check box.

Selecting the Frame check box prints a title block frame on each diagram.
Enter the path to the title block frame in the adjacent edit box. You can
create a customized title block frame, using the MATLAB frame editor. See
frameedit in the MATLAB reference for information on using the frame
editor to create title block frames.

Print Command
The format of the print command is

print -ssys -device filename

sys is the name of the system to be printed. The system name must be
preceded by the s switch identifier and is the only required argument. sys
must be open or must have been open during the current session. If the
system name contains spaces or takes more than one line, you need to specify
the name as a string. See the examples below.

device specifies a device type. For a list and description of device types, see
the documentation for the MATLAB print function.

filename is the PostScript file to which the output is saved. If filename
exists, it is replaced. If filename does not include an extension, an
appropriate one is appended.

For example, this command prints a system named untitled.

print -suntitled

3-17

3 Simulink Basics

This command prints the contents of a subsystem named Sub1 in the current
system.

print -sSub1

This command prints the contents of a subsystem named Requisite
Friction.

print (['-sRequisite Friction'])

The next example prints a system named Friction Model, a subsystem
whose name appears on two lines. The first command assigns the newline
character to a variable; the second prints the system.

cr = sprintf('\n');
print (['-sFriction' cr 'Model'])

To print the currently selected subsystem, enter

print(['-s', gcb])

Specifying Paper Size and Orientation
Simulink lets you specify the type and orientation of the paper used to print
a model diagram. You can do this on all platforms by setting the model’s
PaperType and PaperOrientation properties, respectively (see “Model and
Block Properties” in the online Simulink reference), using the set_param
command. You can set the paper orientation alone, using the MATLAB
orient command. On Windows, the Print and Printer Setup dialog boxes
let you set the page type and orientation properties as well.

Positioning and Sizing a Diagram
You can use a model’s PaperPositionMode and PaperPosition parameters to
position and size the model’s diagram on the printed page. The value of the
PaperPosition parameter is a vector of form [left bottom width height].
The first two elements specify the bottom-left corner of a rectangular area
on the page, measured from the page’s bottom-left corner. The last two
elements specify the width and height of the rectangle. When the model’s
PaperPositionMode is manual, Simulink positions (and scales, if necessary)

3-18

Printing a Block Diagram

the model’s diagram to fit inside the specified print rectangle. For example,
the following commands

vdp
set_param('vdp', 'PaperType', 'usletter')
set_param('vdp', 'PaperOrientation', 'landscape')
set_param('vdp', 'PaperPositionMode', 'manual')
set_param('vdp', 'PaperPosition', [0.5 0.5 4 4])
print -svdp

print the block diagram of the vdp sample model in the lower-left corner of a
U.S. letter-size page in landscape orientation.

If PaperPositionMode is auto, Simulink centers the model diagram on the
printed page, scaling the diagram, if necessary, to fit the page.

3-19

3 Simulink Basics

Generating a Model Report
A Simulink model report is an HTML document that describes a model’s
structure and content. The report includes block diagrams of the model and
its subsystems and the settings of its block parameters.

To generate a report for the current model:

1 Select Print details from the model’s File menu.

The Print Details dialog box appears.

The dialog box allows you to select various report options (see “Model
Report Options” on page 3-21).

2 Select the desired report options on the dialog box.

3 Select Print.

Simulink generates the HTML report and displays the in your system’s
default HTML browser.

3-20

Generating a Model Report

While generating the report, Simulink displays status messages on a
messages pane that replaces the options pane on the Print Details dialog box.

You can select the detail level of the messages from the list at the top of the
messages pane. When the report generation process begins, the Print button
on the Print Details dialog box changes to a Stop button. Clicking this
button terminates the report generation. When the report generation process
finishes, the Stop button changes to an Options button. Clicking this button
redisplays the report generation options, allowing you to generate another
report without having to reopen the Print Details dialog box.

Model Report Options
The Print Details dialog box allows you to select the following report options.

Directory
The directory where Simulink stores the HTML report that it generates.
The options include your system’s temporary directory (the default), your
system’s current directory, or another directory whose path you specify in
the adjacent edit field.

Increment filename to prevent overwriting old files
Creates a unique report file name each time you generate a report for the
same model in the current session. This preserves each report.

3-21

3 Simulink Basics

Current object
Include only the currently selected object in the report.

Current and above
Include the current object and all levels of the model above the current object
in the report.

Current and below
Include the current object and all levels below the current object in the report.

Entire model
Include the entire model in the report.

Look under mask dialog
Include the contents of masked subsystems in the report.

Expand unique library links
Include the contents of library blocks that are subsystems. The report
includes a library subsystem only once even if it occurs in more than one
place in the model.

3-22

Summary of Mouse and Keyboard Actions

Summary of Mouse and Keyboard Actions
Simulink provides mouse and keyboard shortcuts for many of its commands.
The following tables summarize these shortcuts.

“Model Viewing Shortcuts” on page 3-23
“Block Editing Shortcuts” on page 3-24
“Line Editing Shortcuts” on page 3-25
“Signal Label Editing Shortcuts” on page 3-25
“Annotation Editing Shortcuts” on page 3-26

LMB means press the left mouse button; CMB, the center mouse button;
and RMB, the right mouse button.

Model Viewing Shortcuts
The following table lists keyboard shortcuts for viewing models.

Task Microsoft Windows Macintosh or Linux

Zoom in r r

Zoom out v v

Zoom to normal (100%) 1 1

Pan left d or Ctrl+Left Arrow d or Ctrl+Left Arrow

Pan right g or Ctrl+Right
Arrow

g or Ctrl+Right
Arrow

Pan up e or Ctrl+Up Arrow e or Ctrl+Up Arrow

Pan down c or Ctrl+Down
Arrow

c or Ctrl+Down
Arrow

Fit selection to screen f f

Fit diagram to screen Space Space

Pan with mouse Hold down p or q and
drag mouse

Hold down p or q and
drag mouse

Go back in pan/zoom
history

b or Shift+Left Arrow b or Shift+Left Arrow

3-23

3 Simulink Basics

Task Microsoft Windows Macintosh or Linux

Go forward in pan/zoom
history

t or Shift+Right
Arrow

t or Shift+Right
Arrow

Delete selection Delete or Back Space Delete or Back Space

Move selection Use arrow keys Use arrow keys

Block Editing Shortcuts
The following table lists mouse and keyboard actions that apply to blocks.

Task Microsoft Windows Macintosh or Linux

Select one block LMB LMB

Select multiple blocks Shift + LMB Shift + LMB; or CMB
alone

Copy block from
another window

Drag block Drag block

Move block Drag block Drag block

Duplicate block Ctrl + LMB and drag;
or RMB and drag

Ctrl + LMB and drag;
or RMB and drag

Connect blocks LMB LMB

Disconnect block Shift + drag block Shift + drag block; or
CMB and drag

Open selected
subsystem

Enter Return

Go to parent of selected
subsystem

Esc Esc

3-24

Summary of Mouse and Keyboard Actions

Line Editing Shortcuts
The following table lists mouse and keyboard actions that apply to lines.

Task Microsoft Windows Macintosh or Linux

Select one line LMB LMB

Select multiple lines Shift + LMB Shift + LMB; or CMB
alone

Draw branch line Ctrl + drag line; or RMB
and drag line

Ctrl + drag line; or RMB
+ drag line

Route lines around
blocks

Shift + draw line
segments

Shift + draw line
segments; or CMB and
draw segments

Move line segment Drag segment Drag segment

Move vertex Drag vertex Drag vertex

Create line
segments

Shift + drag line Shift + drag line; or CMB
+ drag line

Signal Label Editing Shortcuts
The next table lists mouse and keyboard actions that apply to signal labels.

Action Microsoft Windows Macintosh or Linux

Create signal
label

Double-click line, then
enter label

Double-click line, then
enter label

Copy signal label Ctrl + drag label Ctrl + drag label

Move signal label Drag label Drag label

Edit signal label Click in label, then edit Click in label, then edit

Delete signal
label

Shift + click label, then
press Delete

Shift + click label, then
press Delete

3-25

3 Simulink Basics

Annotation Editing Shortcuts
The next table lists mouse and keyboard actions that apply to annotations.

Action Microsoft Windows Macintosh or Linux

Create
annotation

Double-click in diagram,
then enter text

Double-click in diagram,
then enter text

Copy annotation Ctrl + drag label Ctrl + drag label

Move annotation Drag label Drag label

Edit annotation Click in text, then edit Click in text, then edit

Delete
annotation

Shift + select annotation,
then press Delete

Shift + select annotation,
then press Delete

3-26

Ending a Simulink Session

Ending a Simulink Session
Terminate a Simulink session by closing all Simulink windows.

Terminate a MATLAB session by choosing one of these commands from the
File menu:

• On a Microsoft Windows system: Exit MATLAB

• On a Macintosh or Linux system: Quit MATLAB

3-27

3 Simulink Basics

3-28

4

Creating a Model

The following sections explain how to perform tasks required to create
Simulink models.

Creating an Empty Model (p. 4-2) How to create a new model.

Selecting Objects (p. 4-4) How to select objects in a model.

Specifying Block Diagram Colors
(p. 4-6)

How to specify the colors of blocks,
lines, and annotations and the
background of the diagram.

Connecting Blocks (p. 4-10) How to draw connections between
blocks.

Annotating Diagrams (p. 4-19) How to add annotations to a block
diagram.

Creating Subsystems (p. 4-24) How to create subsystems.

Creating Conditionally Executed
Subsystems (p. 4-29)

How to create subsystems that are
executed only when specified events
occur or conditions are satisfied.

Using Callback Functions (p. 4-41) How to use callback routines to
customize a model.

4 Creating a Model

Creating an Empty Model
To create an empty model, click the New button on the Library Browser’s
toolbar (Windows only) or choose New from the library window’s File menu
and select Model. Simulink creates an empty model in memory and displays
it in a new model editor window.

Creating a Model Template
When you create a new model, Simulink configures it with default settings.
For instance, by default, new models have a white canvas, the ode45 solver,
and a visible toolbar. You can change these settings to your liking after
creating the new model.

Alternatively, you can write a function that creates a model that has settings
you prefer, using the commands listed in “Model Construction Commands”

4-2

Creating an Empty Model

in the online Simulink Reference. Executing this function generates a new
model with your customized parameter settings.

For example, the following function creates a Simulink model featuring a
green canvas, the ode3 solver, and a hidden toolbar:

function new_model(modelname)
% NEW_MODEL Create a new, empty Simulink model
% NEW_MODEL('MODELNAME') creates a new model with
% the name 'MODELNAME'. Without the 'MODELNAME'
% argument, the new model is named 'my_untitled'.

if nargin == 0
modelname = 'my_untitled';

end

% create and open the model
open_system(new_system(modelname));

% set default screen color
set_param(modelname, 'ScreenColor', 'green');

% set default solver
set_param(modelname, 'Solver', 'ode3');

% set default toolbar visibility
set_param(modelname, 'Toolbar', 'off');

% save the model
save_system(modelname);

4-3

4 Creating a Model

Selecting Objects
Many model building actions, such as copying a block or deleting a line,
require that you first select one or more blocks and lines (objects).

Selecting an Object
To select an object, click it. Small black square handles appear at the corners
of a selected block and near the end points of a selected line. For example, the
figure below shows a selected Sine Wave block and a selected line.

When you select an object by clicking it, any other selected objects are
deselected.

Selecting Multiple Objects
You can select more than one object either by selecting objects one at a time,
by selecting objects located near each other using a bounding box, or by
selecting the entire model.

Selecting Multiple Objects One at a Time
To select more than one object by selecting each object individually, hold down
the Shift key and click each object to be selected. To deselect a selected object,
click the object again while holding down the Shift key.

Selecting Multiple Objects Using a Bounding Box
An easy way to select more than one object in the same area of the window is
to draw a bounding box around the objects:

1 Define the starting corner of a bounding box by positioning the pointer at
one corner of the box, then pressing and holding down the mouse button.
Notice the shape of the cursor.

4-4

Selecting Objects

2 Drag the pointer to the opposite corner of the box. A dotted rectangle
encloses the selected blocks and lines.

3 Release the mouse button. All blocks and lines at least partially enclosed
by the bounding box are selected.

Selecting All Objects
To select all objects in the active window, select Select All from the Edit
menu. You cannot create a subsystem by selecting blocks and lines in this
way. For more information, see “Creating Subsystems” on page 4-24.

4-5

4 Creating a Model

Specifying Block Diagram Colors
Simulink allows you to specify the foreground and background colors of
any block or annotation in a diagram, as well as the diagram’s background
color. To set the background color of a block diagram, select Screen color
from the Simulink Format menu. To set the background color of a block or
annotation or group of such items, first select the item or items. Then select
Background color from the Simulink Format menu. To set the foreground
color of a block or annotation, first select the item. Then select Foreground
color from the Simulink Format menu.

In all cases, Simulink displays a menu of color choices. Choose the desired
color from the menu. If you select a color other than Custom, Simulink
changes the background or foreground color of the diagram or diagram
element to the selected color.

Choosing a Custom Color
If you choose Custom, Simulink displays the Simulink Choose Custom
Color dialog box.

The dialog box displays a palette of basic colors and a palette of custom colors
that you previously defined. If you have not previously created any custom
colors, the custom color palette is all white. To choose a color from either
palette, click the color, and then click the OK button.

4-6

Specifying Block Diagram Colors

Defining a Custom Color
To define a custom color, click the Define Custom Colors button on the
Choose Custom Color dialog box. The dialog box expands to display a
custom color definer.

The color definer allows you to specify a custom color by

• Entering the red, green, and blue components of the color as values
between 0 (darkest) and 255 (brightest)

• Entering hue, saturation, and luminescence components of the color as
values in the range 0 to 255

• Moving the hue-saturation cursor to select the hue and saturation of the
desired color and the luminescence cursor to select the luminescence of
the desired color

The color that you have defined in any of these ways appears in the
Color|Solid box. To redefine a color in the Custom colors palette, select the
color and define a new color, using the color definer. Then click the Add to
Custom Colors button on the color definer.

Specifying Colors Programmatically
You can use the set_param command at the MATLAB command line or in an
M-file program to set parameters that determine the background color of a
diagram and the background color and foreground color of diagram elements.

4-7

4 Creating a Model

The following table summarizes the parameters that control block diagram
colors.

Parameter Determines

ScreenColor Background color of block diagram

BackgroundColor Background color of blocks and annotations

ForegroundColor Foreground color of blocks and annotations

You can set these parameters to any of the following values:

• 'black', 'white', 'red', 'green', 'blue', 'cyan', 'magenta', 'yellow',
'gray', 'lightBlue', 'orange', 'darkGreen'

• '[r,g,b]'

where r, g, and b are the red, green, and blue components of the color
normalized to the range 0.0 to 1.0.

For example, the following command sets the background color of the
currently selected system or subsystem to a light green color:

set_param(gcs, 'ScreenColor', '[0.3, 0.9, 0.5]')

Displaying Sample Time Colors
Simulink can color code the blocks and lines in your model to indicate the
sample rates at which the blocks operate.

Color Use

Black Continuous sample time

Magenta Constant sample time

Red Fastest discrete sample time

Green Second fastest discrete sample time

Blue Third fastest discrete sample time

Light Blue Fourth fastest discrete sample time

Dark Green Fifth fastest discrete sample time

4-8

Specifying Block Diagram Colors

Color Use

Orange Sixth fastest discrete sample time

Yellow Can indicate one of the following:

• A block with hybrid sample time, e.g., subsystems
grouping blocks and Mux or Demux blocks grouping
signals with different sample times, Data Store
Memory blocks updated and read by different tasks.

• Variable sample time. See the Pulse Generator
block and “Specifying Sample Time” on page 2-31
for more information.

• A block with the seventh, eighth, etc., sample time.

Cyan Blocks in triggered subsystems

Gray Fixed in minor step

To enable the sample time colors feature, select Sample Time Colors from
the Format menu.

Simulink does not automatically recolor the model with each change you
make to it, so you must select Update Diagram from the Edit menu to
explicitly update the model coloration. To return to your original coloring,
disable sample time coloration by again choosing Sample Time Colors.

It is important to note that Mux and Demux blocks are simply grouping
operators; signals passing through them retain their timing information. For
this reason, the lines emanating from a Demux block can have different colors
if they are driven by sources having different sample times. In this case, the
Mux and Demux blocks are color coded as hybrids (yellow) to indicate that
they handle signals with multiple rates.

Similarly, Subsystem blocks that contain blocks with differing sample times
are also colored as hybrids, because there is no single rate associated with
them. If all the blocks within a subsystem run at a single rate, the Subsystem
block is colored according to that rate.

4-9

4 Creating a Model

Connecting Blocks
Simulink block diagrams use lines to represent pathways for signals among
blocks in a model (see Chapter 6, “Working with Signals” for information on
signals). Simulink can connect blocks for you or you can connect the blocks
yourself by drawing lines from their output ports to their input ports.

Automatically Connecting Blocks
You can command Simulink to connect blocks automatically. This eliminates
the need for you to draw the connecting lines yourself. When connecting
blocks, Simulink routes lines around intervening blocks to avoid cluttering
the diagram.

Connecting Two Blocks
To autoconnect two blocks:

1 Select the source block.

4-10

Connecting Blocks

2 Hold down Ctrl and left-click the destination block.

Simulink connects the source block to the destination block, routing the
line around intervening blocks if necessary.

When connecting two blocks, Simulink draws as many connections as possible
between the two blocks as illustrated in the following example.

Connecting Groups of Blocks
Simulink can connect a group of source blocks to a destination block or a
source block to a group of destination blocks.

To connect a group of source blocks to a destination block:

4-11

4 Creating a Model

1 Select the source blocks.

2 Hold down Ctrl and left-click the destination block.

To connect a source block to a group of destination blocks:

1 Select the destination blocks.

2 Hold down Ctrl and left-click the source block.

4-12

Connecting Blocks

Manually Connecting Blocks
Simulink allows you to draw lines manually between blocks or between lines
and blocks. You might want to do this if you need to control the path of the
line or to create a branch line.

Drawing a Line Between Blocks
To connect the output port of one block to the input port of another block:

1 Position the cursor over the first block’s output port. It is not necessary
to position the cursor precisely on the port. The cursor shape changes to
crosshairs.

2 Press and hold down the mouse button.

3 Drag the pointer to the second block’s input port. You can position the
cursor on or near the port or in the block. If you position the cursor in the
block, the line is connected to the closest input port. The cursor shape
changes to double crosshairs.

4 Release the mouse button. Simulink replaces the port symbols by a
connecting line with an arrow showing the direction of the signal flow. You
can create lines either from output to input, or from input to output. The
arrow is drawn at the appropriate input port, and the signal is the same.

Simulink draws connecting lines using horizontal and vertical line segments.
To draw a diagonal line, hold down the Shift key while drawing the line.

4-13

4 Creating a Model

Drawing a Branch Line
A branch line is a line that starts from an existing line and carries its signal
to the input port of a block. Both the existing line and the branch line carry
the same signal. Using branch lines enables you to cause one signal to be
carried to more than one block.

In this example, the output of the Product block goes to both the Scope block
and the To Workspace block.

To add a branch line:

1 Position the pointer on the line where you want the branch line to start.

2 While holding down the Ctrl key, press and hold down the left mouse
button.

3 Drag the pointer to the input port of the target block, then release the
mouse button and the Ctrl key.

You can also use the right mouse button instead of holding down the left
mouse button and the Ctrl key.

Drawing a Line Segment
You might want to draw a line with segments exactly where you want them
instead of where Simulink draws them. Or you might want to draw a line
before you copy the block to which the line is connected. You can do either by
drawing line segments.

To draw a line segment, you draw a line that ends in an unoccupied area
of the diagram. An arrow appears on the unconnected end of the line. To
add another line segment, position the cursor over the end of the segment
and draw another segment. Simulink draws the segments as horizontal and

4-14

Connecting Blocks

vertical lines. To draw diagonal line segments, hold down the Shift key while
you draw the lines.

Moving a Line Segment
To move a line segment:

1 Position the pointer on the segment you want to move.

2 Press and hold down the left mouse button.

3 Drag the pointer to the desired location.

4-15

4 Creating a Model

4 Release the mouse button.

To move the segment connected to an input port, position the pointer over the
port and drag the end of the segment to the new location. You cannot move
the segment connected to an output port.

Moving a Line Vertex
To move a vertex of a line:

1 Position the pointer on the vertex, then press and hold down the mouse
button. The cursor changes to a circle that encloses the vertex.

2 Drag the pointer to the desired location.

3 Release the mouse button.

4-16

Connecting Blocks

Inserting Blocks in a Line
You can insert a block in a line by dropping the block on the line. Simulink
inserts the block for you at the point where you drop the block. The block that
you insert can have only one input and one output.

To insert a block in a line:

1 Position the pointer over the block and press the left mouse button.

2 Drag the block over the line in which you want to insert the block.

3 Release the mouse button to drop the block on the line. Simulink inserts
the block where you dropped it.

4-17

4 Creating a Model

Disconnecting Blocks
To disconnect a block from its connecting lines, hold down the Shift key, then
drag the block to a new location.

4-18

Annotating Diagrams

Annotating Diagrams
Annotations provide textual information about a model. You can add an
annotation to any unoccupied area of your block diagram.

To create a model annotation, double-click an unoccupied area of the block
diagram. A small rectangle appears and the cursor changes to an insertion
point. Start typing the annotation contents. Each line is centered within the
rectangle that surrounds the annotation.

To move an annotation, drag it to a new location.

To edit an annotation, select it:

• To replace the annotation, click the annotation, then double-click or drag
the cursor to select it. Then, enter the new annotation.

• To insert characters, click between two characters to position the insertion
point, then insert text.

• To replace characters, drag the mouse to select a range of text to replace,
then enter the new text.

To delete an annotation, hold down the Shift key while you select the
annotation, then press the Delete or Backspace key.

4-19

4 Creating a Model

To change the font of all or part of an annotation, select the text in the
annotation you want to change, then choose Font from the Format menu.
Select a font and size from the dialog box.

To change the text alignment (e.g., left, center, or right) of the annotation,
select the annotation and choose Text Alignment from the model window’s
Format or context menu. Then choose one of the alignment options (e.g.,
Center) from the Text Alignment submenu.

4-20

Annotating Diagrams

Annotations Properties Dialog Box
The Annotation Properties dialog box allows you to specify the contents and
format of the currently selected annotation and to associate a click function
with the annotation. To display the Annotation Properties dialog box for
an annotation, select the annotation and then select Annotation Properties
from the model editor’s Edit or context menu. The dialog box appears.

The dialog box includes the following controls.

Text
Displays the current text of the annotation. Edit this field to change the
annotation text.

4-21

4 Creating a Model

Drop shadow
Checking this option causes Simulink to display a drop shadow around the
annotation, giving it a 3-D appearance.

Enable TeX commands
Checking this option enables use of TeX formatting commands in this
annotation. See “Using TeX Formatting Commands in Annotations” in the
online Simulink documentation for more information.

Font
Clicking this button displays a font chooser dialog box. Use the font chooser to
change the font used to render the annotation’s text.

Foreground color
Specifies the color of the annotation text.

Background color
Specifies the color of the background of the annotation’s bounding box.

Alignment
Specifies the alignment of the annotation’s text relative to its bounding box.

ClickFcn
Specifies MATLAB code to be executed when a user single-clicks this
annotation. Simulink stores the code entered in this field with the model.
See “Associating Click Functions with Annotations” in the online Simulink
documentation for more information.

Use display text as click callback
Checking this option causes Simulink to treat the text in the Text field as
the annotation’s click function. The specified text must be a valid MATLAB
expression comprising symbols that are defined in the MATLAB workspace
when the user clicks this annotation. See “Associating Click Functions with

4-22

Annotating Diagrams

Annotations” for more information. Note that selecting this option disables
the ClickFcn edit field.

Annotations API
Simulink provides an application program interface (API) that enables you
to use M programs to get and set the properties of annotations. The API
comprises the following elements:

• Simulink.Annotation class

Allows M-code, e.g., annotation load functions (see “Load Function” in the
online Simulink documentation), to set the properties of annotations

• getCallbackAnnotation function

Gets the Simulink.Annotation object for the annotation associated with
the currently executing annotation callback function

4-23

4 Creating a Model

Creating Subsystems
As your model increases in size and complexity, you can simplify it by
grouping blocks into subsystems. Using subsystems has these advantages:

• It helps reduce the number of blocks displayed in your model window.

• It allows you to keep functionally related blocks together.

• It enables you to establish a hierarchical block diagram, where a Subsystem
block is on one layer and the blocks that make up the subsystem are on
another.

You can create a subsystem in two ways:

• Add a Subsystem block to your model, then open that block and add the
blocks it contains to the subsystem window.

• Add the blocks that make up the subsystem, then group those blocks into a
subsystem.

Creating a Subsystem by Adding the Subsystem
Block
To create a subsystem before adding the blocks it contains, add a Subsystem
block to the model, then add the blocks that make up the subsystem:

1 Copy the Subsystem block from the Ports & Subsystems library into your
model.

2 Open the Subsystem block by double-clicking it.

Simulink opens the subsystem in the current or a new model window,
depending on the model window reuse mode that you selected (see “Window
Reuse” on page 4-27).

3 In the empty Subsystem window, create the subsystem. Use Inport blocks
to represent input from outside the subsystem and Outport blocks to
represent external output.

4-24

Creating Subsystems

For example, the subsystem shown includes a Sum block and Inport and
Outport blocks to represent input to and output from the subsystem.

Creating a Subsystem by Grouping Existing Blocks
If your model already contains the blocks you want to convert to a subsystem,
you can create the subsystem by grouping those blocks:

1 Enclose the blocks and connecting lines that you want to include in
the subsystem within a bounding box. You cannot specify the blocks to
be grouped by selecting them individually or by using the Select All
command. For more information, see “Selecting Multiple Objects Using a
Bounding Box” on page 4-4.

For example, this figure shows a model that represents a counter. The Sum
and Unit Delay blocks are selected within a bounding box.

When you release the mouse button, the two blocks and all the connecting
lines are selected.

2 Choose Create Subsystem from the Edit menu. Simulink replaces the
selected blocks with a Subsystem block.

This figure shows the model after you choose the Create Subsystem
command (and resize the Subsystem block so the port labels are readable).

4-25

4 Creating a Model

If you open the Subsystem block, Simulink displays the underlying system,
as shown below. Notice that Simulink adds Inport and Outport blocks to
represent input from and output to blocks outside the subsystem.

As with all blocks, you can change the name of the Subsystem block. You can
also use the masking feature to customize the block’s appearance and dialog
box. See Chapter 9, “Creating Masked Subsystems”.

Undoing Subsystem Creation
To undo creation of a subsystem by grouping blocks, select Undo from the
Edit menu. You can undo creation of a subsystem that you have subsequently
edited. However, the Undo command does not undo any nongraphical changes
that you made to the blocks, such as changing the value of a block parameter
or the name of a block. Simulink alerts you to this limitation by displaying a
warning dialog box before undoing creation of a modified subsystem.

Model Navigation Commands
Subsystems allow you to create a hierarchical model comprising many layers.
You can navigate this hierarchy using the Simulink Model Browser (see
“The Model Browser” on page 8-22) and/or the following model navigation
commands:

• Open Block

The Open Block command opens the currently selected subsystem. To
execute the command, select Open Block from either the Simulink Edit
menu or the subsystem’s context (right-click) menu, press Enter, or
double-click the subsystem.

• Open Block In New Window

Opens the currently selected subsystem regardless of the Simulink
window reuse settings (see “Window Reuse” on page 4-27). To execute the
command, select Open Block In New Window from the subsystem’s
context (right-click) menu.

4-26

Creating Subsystems

• Go To Parent

The Go To Parent command displays the parent of the subsystem
displayed in the current window. To execute the command, press Esc or
select Go To Parent from the Simulink View menu.

Window Reuse
You can specify whether Simulink model navigation commands use the
current window or a new window to display a subsystem or its parent.
Reusing windows avoids cluttering your screen with windows. Creating a
window for each subsystem allows you to view subsystems side by side with
their parents or siblings. To specify your preference regarding window reuse,
select Preferences from the Simulink File menu and then select one of the
following Window reuse type options listed in the Simulink Preferences
dialog box.

Reuse Type Open Action Go to Parent (Esc) Action

none Subsystem appears in a
new window.

Parent window moves to the
front.

reuse Subsystem replaces the
parent in the current
window.

Parent window replaces
subsystem in current window

replace Subsystem appears in
a new window. Parent
window disappears.

Parent window appears.
Subsystem window disappears.

mixed Subsystem appears in its
own window.

Parent window rises to front.
Subsystem window disappears.

Labeling Subsystem Ports
Simulink labels ports on a Subsystem block. The labels are the names of
Inport and Outport blocks that connect the subsystem to blocks outside the
subsystem through these ports.

You can hide (or show) the port labels by

• Selecting the Subsystem block, then choosing Hide Port Labels (or Show
Port Labels) from the Format menu

4-27

4 Creating a Model

• Selecting an Inport or Outport block in the subsystem and choosing Hide
Name (or Show Name) from the Format menu

• Selecting the Show port labels option in the Subsystem block’s parameter
dialog

This figure shows two models. The subsystem on the left contains two Inport
blocks and one Outport block. The Subsystem block on the right shows the
labeled ports.

4-28

Creating Conditionally Executed Subsystems

Creating Conditionally Executed Subsystems
A conditionally executed subsystem is a subsystem whose execution depends
on the value of an input signal. The signal that controls whether a subsystem
executes is called the control signal. The signal enters the Subsystem block
at the control input.

Conditionally executed subsystems can be very useful when you are building
complex models that contain components whose execution depends on other
components.

Simulink supports the following types of conditionally executed subsystems:

• An enabled subsystem executes while the control signal is positive. It starts
execution at the time step where the control signal crosses zero (from the
negative to the positive direction) and continues execution while the control
signal remains positive. Enabled subsystems are described in more detail
in “Enabled Subsystems” on page 4-30.

• A triggered subsystem executes once each time a trigger event occurs. A
trigger event can occur on the rising or falling edge of a trigger signal,
which can be continuous or discrete. Triggered subsystems are described in
more detail in “Triggered Subsystems” on page 4-34.

• A triggered and enabled subsystem executes once on the time step when
a trigger event occurs if the enable control signal has a positive value at
that step. See “Triggered and Enabled Subsystems” on page 4-37 for more
information.

• A control flow subsystem executes one or more times at the current time
step when enabled by a control flow block that implements control logic
similar to that expressed by programming language control flow statements
(e.g., if-then, while, do, and for. See “Modeling with Control Flow
Blocks” in the online documentation for more information.

4-29

4 Creating a Model

Note Simulink displays an error if you connect a Constant, Model, or
S-Function block with constant sample time (see “Constant Sample Time”
on page 2-39) to the output port of a conditionally executed subsystem. To
avoid the error, either change the sample time of the block to a nonconstant
sample time or insert a Signal Conversion block between the block with
constant sample time and the output port.

Enabled Subsystems
Enabled subsystems are subsystems that execute at each simulation step
where the control signal has a positive value.

An enabled subsystem has a single control input, which can be scalar or
vector valued.

• If the input is a scalar, the subsystem executes if the input value is greater
than zero.

• If the input is a vector, the subsystem executes if any of the vector elements
is greater than zero.

For example, if the control input signal is a sine wave, the subsystem is
alternately enabled and disabled, as shown in this figure. An up arrow
signifies enable, a down arrow disable.

Simulink uses the zero-crossing slope method to determine whether an enable
is to occur. If the signal crosses zero and the slope is positive, the subsystem

4-30

Creating Conditionally Executed Subsystems

is enabled. If the slope is negative at the zero crossing, the subsystem is
disabled.

Creating an Enabled Subsystem
You create an enabled subsystem by copying an Enable block from the Ports &
Subsystems library into a subsystem. Simulink adds an enable symbol and an
enable control input port to the Subsystem block.

Setting Output Values While the Subsystem Is Disabled. Although an
enabled subsystem does not execute while it is disabled, the output signal is
still available to other blocks. While an enabled subsystem is disabled, you
can choose to hold the subsystem outputs at their previous values or reset
them to their initial conditions.

Open each Outport block’s dialog box and select one of the choices for the
Output when disabled parameter, as shown in the following dialog box:

• Choose held to cause the output to maintain its most recent value.

• Choose reset to cause the output to revert to its initial condition. Set the
Initial output to the initial value of the output.

4-31

4 Creating a Model

Setting States When the Subsystem Becomes Reenabled. When an
enabled subsystem executes, you can choose whether to hold the subsystem
states at their previous values or reset them to their initial conditions.

To do this, open the Enable block dialog box and select one of the choices for
the States when enabling parameter, as shown in the dialog box following:

• Choose held to cause the states to maintain their most recent values.

• Choose reset to cause the states to revert to their initial conditions.

Outputting the Enable Control Signal. An option on the Enable block
dialog box lets you output the enable control signal. To output the control
signal, select the Show output port check box.

This feature allows you to pass the control signal down into the enabled
subsystem, which can be useful where logic within the enabled subsystem is
dependent on the value or values contained in the control signal.

Blocks an Enabled Subsystem Can Contain
An enabled subsystem can contain any block, whether continuous or discrete.
Discrete blocks in an enabled subsystem execute only when the subsystem
executes, and only when their sample times are synchronized with the

4-32

Creating Conditionally Executed Subsystems

simulation sample time. Enabled subsystems and the model use a common
clock.

Note Enabled subsystems can contain Goto blocks. However, only state
ports can connect to Goto blocks in an enabled subsystem. See the Simulink
demo model, clutch, for an example of how to use Goto blocks in an enabled
subsystem.

For example, this system contains four discrete blocks and a control signal.
The discrete blocks are

• Block A, which has a sample time of 0.25 second

• Block B, which has a sample time of 0.5 second

• Block C, within the enabled subsystem, which has a sample time of 0.125
second

• Block D, also within the enabled subsystem, which has a sample time of
0.25 second

The enable control signal is generated by a Pulse Generator block, labeled
Signal E, which changes from 0 to 1 at 0.375 second and returns to 0 at 0.875
second.

4-33

4 Creating a Model

The chart below indicates when the discrete blocks execute.

Blocks A and B execute independently of the enable control signal because
they are not part of the enabled subsystem. When the enable control signal
becomes positive, blocks C and D execute at their assigned sample rates until
the enable control signal becomes zero again. Note that block C does not
execute at 0.875 second when the enable control signal changes to zero.

Triggered Subsystems
Triggered subsystems are subsystems that execute each time a trigger event
occurs.

A triggered subsystem has a single control input, called the trigger input, that
determines whether the subsystem executes. You can choose from three types
of trigger events to force a triggered subsystem to begin execution:

• rising triggers execution of the subsystem when the control signal rises
from a negative or zero value to a positive value (or zero if the initial value
is negative).

• falling triggers execution of the subsystem when the control signal falls
from a positive or a zero value to a negative value (or zero if the initial
value is positive).

• either triggers execution of the subsystem when the signal is either rising
or falling.

4-34

Creating Conditionally Executed Subsystems

Note In the case of discrete systems, a signal’s rising or falling from zero is
considered a trigger event only if the signal has remained at zero for more
than one time step preceding the rise or fall. This eliminates false triggers
caused by control signal sampling.

For example, in the following timing diagram for a discrete system, a rising
trigger (R) does not occur at time step 3 because the signal has remained at
zero for only one time step when the rise occurs.

A simple example of a triggered subsystem is illustrated.

In this example, the subsystem is triggered on the rising edge of the square
wave trigger control signal.

4-35

4 Creating a Model

Creating a Triggered Subsystem
You create a triggered subsystem by copying the Trigger block from the Ports
& Subsystems library into a subsystem. Simulink adds a trigger symbol and a
trigger control input port to the Subsystem block.

To select the trigger type, open the Trigger block dialog box and select one of
the choices for the Trigger type parameter, as shown in the following dialog
box:

Simulink uses different symbols on the Trigger and Subsystem blocks to
indicate rising and falling triggers (or either). This figure shows the trigger
symbols on Subsystem blocks.

Outputs and States Between Trigger Events. Unlike enabled subsystems,
triggered subsystems always hold their outputs at the last value between
triggering events. Also, triggered subsystems cannot reset their states when
triggered; states of any discrete blocks are held between trigger events.

4-36

Creating Conditionally Executed Subsystems

Outputting the Trigger Control Signal. An option on the Trigger block
dialog box lets you output the trigger control signal. To output the control
signal, select the Show output port check box.

The Output data type field allows you to specify the data type of the output
signal as auto, int8, or double. The auto option causes the data type of the
output signal to be set to the data type (either int8 or double) of the port to
which the signal is connected.

Function-Call Subsystems
You can use a Trigger block to create a subsystem whose execution is
determined by logic internal to an S-function instead of by the value of a
signal. These subsystems are called function-call subsystems. For more
information about function-call subsystems, see “Function-Call Subsystems”
in “Writing S-Functions” in the online Simulink documentation.

Blocks That a Triggered Subsystem Can Contain
All blocks in a triggered systems must have either inherited (-1) or constant
(inf) sample time. This is to indicate that the blocks in the triggered
subsystem run only when the triggered subsystem itself runs, i.e., when it is
triggered. This requirement means that a triggered subsystem cannot contain
continuous blocks, such as the Integrator block.

Triggered and Enabled Subsystems
A third kind of conditionally executed subsystem combines both types of
conditional execution. The behavior of this type of subsystem, called a

4-37

4 Creating a Model

triggered and enabled subsystem, is a combination of the enabled subsystem
and the triggered subsystem, as shown by this flow diagram.

A triggered and enabled subsystem contains both an enable input port and
a trigger input port. When the trigger event occurs, Simulink checks the
enable input port to evaluate the enable control signal. If its value is greater
than zero, Simulink executes the subsystem. If both inputs are vectors, the
subsystem executes if at least one element of each vector is nonzero.

The subsystem executes once at the time step at which the trigger event
occurs.

Creating a Triggered and Enabled Subsystem
You create a triggered and enabled subsystem by dragging both the Enable
and Trigger blocks from the Ports & Subsystems library into an existing
subsystem. Simulink adds enable and trigger symbols and enable and trigger
and enable control inputs to the Subsystem block.

4-38

Creating Conditionally Executed Subsystems

You can set output values when a triggered and enabled subsystem is disabled
as you would for an enabled subsystem. For more information, see “Setting
Output Values While the Subsystem Is Disabled” on page 4-31. Also, you can
specify what the values of the states are when the subsystem is reenabled.
See “Setting States When the Subsystem Becomes Reenabled” on page 4-32.

Set the parameters for the Enable and Trigger blocks separately. The
procedures are the same as those described for the individual blocks.

A Sample Triggered and Enabled Subsystem
A simple example of a triggered and enabled subsystem is illustrated in the
model below.

4-39

4 Creating a Model

Creating Alternately Executing Subsystems
You can use conditionally executed subsystems in combination with Merge
blocks to create sets of subsystems that execute alternately, depending on the
current state of the model. The following figure shows a model that uses two
enabled blocks and a Merge block to model a full-wave rectifier – a device that
converts AC current to pulsating DC current.

The block labeled “pos” is enabled when the AC waveform is positive; it passes
the waveform unchanged to its output. The block labeled “neg” is enabled
when the waveform is negative; it inverts the waveform. The Merge block
passes the output of the currently enabled block to the Mux block, which
passes the output, along with the original waveform, to the Scope block. The
Scope creates the following display.

4-40

Using Callback Functions

Using Callback Functions
You can define MATLAB expressions that execute when the block diagram or
a block is acted upon in a particular way. These expressions, called callback
functions, are specified by block, port, or model parameters. For example,
the function specified by a block’s OpenFcn parameter is executed when you
double-click that block’s name or its path changes.

Tracing Callbacks
Callback tracing allows you to determine the callbacks Simulink invokes and
in what order Simulink invokes them when you open or simulate a model. To
enable callback tracing, select the Callback tracing option on the Simulink
Preferences dialog box or execute set_param(0, 'CallbackTracing',
'on'). This option causes Simulink to list callbacks in the MATLAB
Command Window as they are invoked.

Creating Model Callback Functions
You can create model callback functions interactively or programmatically.
Use the Callbacks pane of the model’s Model Properties dialog box (see
“Callbacks Pane” in the online Simulink documentation) to create model
callbacks interactively. To create a callback programmatically, use the
set_param command to assign a MATLAB expression that implements the
function to the model parameter corresponding to the callback (see “Model
Callback Functions” on page 4-41).

For example, this command evaluates the variable testvar when the user
double-clicks the Test block in mymodel:

set_param('mymodel/Test', 'OpenFcn', testvar)

You can examine the clutch system (clutch.mdl) for routines associated
with many model callbacks.

Model Callback Functions
The following table describes callback functions associated with models.

4-41

4 Creating a Model

Parameter When Executed

CloseFcn Before the block diagram is closed.

PostLoadFcn After the model is loaded. Defining a callback routine
for this parameter might be useful for generating an
interface that requires that the model has already
been loaded.

InitFcn Called at start of model simulation.

PostSaveFcn After the model is saved.

PreLoadFcn Before the model is loaded. Defining a callback
routine for this parameter might be useful for
loading variables used by the model.

PreSaveFcn Before the model is saved.

StartFcn Before the simulation starts.

StopFcn After the simulation stops. Output is written to
workspace variables and files before the StopFcn is
executed.

Note Beware of adverse interactions between callback functions of models
referenced by other models. For example, suppose that model A references
model B and that model A’s OpenFcn creates variables in the MATLAB
workspace and model B’s CloseFcn clears the MATLAB workspace. Now
suppose that simulating model A requires rebuilding model B. Rebuilding B
entails opening and closing model B and hence invoking model B’s CloseFcn,
which clears the MATLAB workspace, including the variables created by
A’s OpenFcn.

Creating Block Callback Functions
You can create model callback functions interactively or programmatically.
Use the Callbacks pane of the model’s Block Properties dialog box (see
“Callbacks Pane” on page 5-13) to create model callbacks interactively. To
create a callback programmatically, use the set_param command to assign
a MATLAB expression that implements the function to the block parameter
corresponding to the callback (see “Block Callback Parameters” on page 4-43).

4-42

Using Callback Functions

Note A callback for a masked subsystem cannot directly reference the
parameters of the masked subsystem (see “About Masks” on page 9-2). The
reason? Simulink evaluates block callbacks in a model’s base workspace
whereas the mask parameters reside in the masked subsystem’s private
workspace. A block callback, however, can use get_param to obtain the value
of a mask parameter, e.g., get_param(gcb, 'gain'), where gain is the
name of a mask parameter of the current block.

Block Callback Parameters
This table lists the parameters for which you can define block callback
routines, and indicates when those callback routines are executed. Routines
that are executed before or after actions take place occur immediately before
or after the action.

Parameter When Executed

ClipboardFcn When the block is copied or cut to the system
clipboard.

CloseFcn When the block is closed using the close_system
command.

CopyFcn After a block is copied. The callback is recursive for
Subsystem blocks (that is, if you copy a Subsystem
block that contains a block for which the CopyFcn
parameter is defined, the routine is also executed).
The routine is also executed if an add_block
command is used to copy the block.

DeleteChildFcn After a block is deleted from a subsystem.

DeleteFcn Before a block is deleted, e.g., when the user deletes
the block or closes the model containing the block.
This callback is recursive for Subsystem blocks.

DestroyFcn When the block has been destroyed.

InitFcn Before the block diagram is compiled and before
block parameters are evaluated.

4-43

4 Creating a Model

Parameter When Executed

ErrorFcn When an error has occurred in a subsystem. The
callback function should have the following form:

errorMsg = errorHandler(subsys, errorType)

where errorHandler is the name of the callback
function, subsys is a handle to the subsystem in
which the error occurred, errorType is a string
that indicates the type of error that occurred, and
errorMsg is a string specifying the text of an error
message to be displayed to the user. Simulink
displays the error message returned by the callback
function.

LoadFcn After the block diagram is loaded. This callback is
recursive for Subsystem blocks.

ModelCloseFcn Before the block diagram is closed. This callback is
recursive for Subsystem blocks.

MoveFcn When the block is moved or resized.

NameChangeFcn After a block’s name and/or path changes. When a
Subsystem block’s path is changed, it recursively
calls this function for all blocks it contains after
calling its own NameChangeFcn routine.

OpenFcn When the block is opened. This parameter is
generally used with Subsystem blocks. The routine
is executed when you double-click the block or when
an open_system command is called with the block as
an argument. The OpenFcn parameter overrides the
normal behavior associated with opening a block,
which is to display the block’s dialog box or to open
the subsystem.

ParentCloseFcn Before closing a subsystem containing the block or
when the block is made part of a new subsystem
using the new_system command (see new_system in
the online Simulink reference).

PreSaveFcn Before the block diagram is saved. This callback is
recursive for Subsystem blocks.

4-44

Using Callback Functions

Parameter When Executed

PostSaveFcn After the block diagram is saved. This callback is
recursive for Subsystem blocks.

StartFcn After the block diagram is compiled and before the
simulation starts. In the case of an S-Function
block, StartFcn executes immediately before the
first execution of the block’s mdlProcessParameters
function. See “S-Function Callback Methods”
in the online Simulink documentation for more
information.

StopFcn At any termination of the simulation. In the
case of an S-Function block, StopFcn executes
after the block’s mdlTerminate function executes.
See “S-Function Callback Methods” in the online
Simulink documentation for more information.

UndoDeleteFcn When a block delete is undone.

Port Callback Parameters
Block input and output ports have a single callback parameter,
ConnectionCallback. This parameter allows you to set callbacks on ports
that are triggered every time the connectivity of those ports changes.
Examples of connectivity changes include deletion of blocks connected to the
port and deletion, disconnection, or connection of branches or lines to the port.

Use get_param to get the port handle of a port and set_param to set the
callback on the port. For example, suppose the currently selected block has
a single input port. The following code fragment sets foo as the connection
callback on the input port.

phs = get_param(gcb, 'PortHandles');
set_param(phs.Inport, 'ConnectionCallback', 'foo');

The first argument of the callback function must be a port handle. The
callback function can have other arguments (and a return value) as well. For
example, the following is a valid callback function signature.

function foo(port, otherArg1, otherArg2)

4-45

4 Creating a Model

4-46

5

Working with Blocks

This section explores the following block-related topics.

About Blocks (p. 5-2) Explains the difference between
virtual and nonvirtual blocks.

Editing Blocks (p. 5-4) How to cut and paste blocks.

Working with Block Parameters
(p. 5-7)

How to set parameters that
determine a block’s behavior.

Changing a Block’s Appearance
(p. 5-15)

How to change the size, orientation,
color, and labeling of a block.

Displaying Block Outputs (p. 5-19) How to display the values of block
outputs on the block diagram during
simulation.

Working with Block Libraries
(p. 5-21)

How to create and use block libraries.

5 Working with Blocks

About Blocks
Blocks are the elements from which Simulink models are built. You can model
virtually any dynamic system by creating and interconnecting blocks in
appropriate ways. This section discusses how to use blocks to build models
of dynamic systems.

Block Data Tips
On Microsoft Windows, Simulink displays information about a block in a
pop-up window when you allow the pointer to hover over the block in the
diagram view. To disable this feature or control what information a data tip
includes, select Block data tips options from the Simulink View menu.

Virtual Blocks
When creating models, you need to be aware that Simulink blocks fall into
two basic categories: nonvirtual and virtual blocks. Nonvirtual blocks play an
active role in the simulation of a system. If you add or remove a nonvirtual
block, you change the model’s behavior. Virtual blocks, by contrast, play no
active role in the simulation; they help organize a model graphically. Some
Simulink blocks are virtual in some circumstances and nonvirtual in others.
Such blocks are called conditionally virtual blocks. The following table lists
Simulink virtual and conditionally virtual blocks.

Block Name Condition Under Which Block Is Virtual

Bus Selector Virtual if input bus is virtual.

Demux Always virtual.

Enable Virtual unless connected directly to an Outport
block.

From Always virtual.

Goto Always virtual.

Goto Tag Visibility Always virtual.

Ground Always virtual.

5-2

About Blocks

Block Name Condition Under Which Block Is Virtual

Inport Virtual unless the block resides in a conditionally
executed or atomic subsystem and has a direct
connection to an Outport block.

Mux Always virtual.

Outport Virtual when the block resides within any
subsystem block (conditional or not), and does not
reside in the root (top-level) Simulink window.

Selector Virtual except in matrix mode.

Signal Specification Always virtual.

Subsystem Virtual unless the block is conditionally executed
and/or the block’s Treat as Atomic Unit option
is selected.

Terminator Always virtual.

Trigger Virtual when the Outport port is not present.

5-3

5 Working with Blocks

Editing Blocks
The Simulink Editor allows you to cut and paste blocks in and between models.

Copying and Moving Blocks from One Window to
Another
As you build your model, you often copy blocks from Simulink block libraries
or other libraries or models into your model window. To do this:

1 Open the appropriate block library or model window.

2 Drag the block to copy into the target model window. To drag a block,
position the cursor over the block, then press and hold down the mouse
button. Move the cursor into the target window, then release the mouse
button.

You can also drag blocks from the Simulink Library Browser into a model
window. See “Browsing Block Libraries” on page 5-28 for more information.

Note Simulink hides the names of Sum, Mux, Demux, Bus Creator, and Bus
Selector blocks when you copy them from the Simulink block library to a
model. This is done to avoid unnecessarily cluttering the model diagram. (The
shapes of these blocks clearly indicate their respective functions.)

You can also copy blocks by using the Copy and Paste commands from the
Edit menu:

1 Select the block you want to copy.

2 Choose Copy from the Edit menu.

3 Make the target model window the active window.

4 Choose Paste from the Edit menu.

Simulink assigns a name to each copied block. If it is the first block of its type
in the model, its name is the same as its name in the source window. For

5-4

Editing Blocks

example, if you copy the Gain block from the Math library into your model
window, the name of the new block is Gain. If your model already contains a
block named Gain, Simulink adds a sequence number to the block name (for
example, Gain1, Gain2). You can rename blocks; see “Manipulating Block
Names” on page 5-17.

When you copy a block, the new block inherits all the original block’s
parameter values.

Simulink uses an invisible five-pixel grid to simplify the alignment of blocks.
All blocks within a model snap to a line on the grid. You can move a block
slightly up, down, left, or right by selecting the block and pressing the arrow
keys.

You can display the grid in the model window by typing the following
command in the MATLAB window.

set_param('<model name>','showgrid','on')

To change the grid spacing, enter

set_param('<model name>','gridspacing',<number of pixels>)

For example, to change the grid spacing to 20 pixels, enter

set_param('<model name>','gridspacing',20)

For either of the above commands, you can also select the model, then enter
gcs instead of <model name>.

You can copy or move blocks to compatible applications (such as word
processing programs) using the Copy, Cut, and Paste commands. These
commands copy only the graphic representation of the blocks, not their
parameters.

Moving blocks from one window to another is similar to copying blocks, except
that you hold down the Shift key while you select the blocks.

You can use the Undo command from the Edit menu to remove an added
block.

5-5

5 Working with Blocks

Moving Blocks in a Model
To move a single block from one place to another in a model window, drag the
block to a new location. Simulink automatically repositions lines connected to
the moved block.

To move more than one block, including connecting lines:

1 Select the blocks and lines. If you need information about how to select
more than one block, see “Selecting Multiple Objects” on page 4-4.

2 Drag the objects to their new location and release the mouse button.

Copying Blocks in a Model
You can copy blocks in a model as follows. While holding down the Ctrl key,
select the block with the left mouse button, then drag it to a new location.
You can also do this by dragging the block using the right mouse button.
Duplicated blocks have the same parameter values as the original blocks.
Sequence numbers are added to the new block names.

Deleting Blocks
To delete one or more blocks, select the blocks to be deleted and press the
Delete or Backspace key. You can also choose Clear or Cut from the Edit
menu. The Cut command writes the blocks into the clipboard, which enables
you to paste them into a model. Using the Delete or Backspace key or the
Clear command does not enable you to paste the block later.

You can use the Undo command from the Edit menu to replace a deleted
block.

5-6

Working with Block Parameters

Working with Block Parameters
Every Simulink block has a set of attributes, called parameters or properties,
that govern its appearance and its behavior during simulation. Some types
of attributes are common to all blocks. For example, all blocks have a block
name attribute. Other attributes are specific to a particular type of block. For
example, only Gain blocks have a Gain parameter. Simulink allows you to
specify values for many of a block’s attributes, thus enabling you to customize
the block’s appearance or behavior to fit the requirements of a particular
application.

Simulink provides the following means for specifying block parameters:

• Format menu

The Model Editor’s Format menu allows you to specify attributes of the
currently selected block that are visible on the model’s block diagram, such
as the block’s name and color (see “Changing a Block’s Appearance” on page
5-15 for more information).

• Block Properties dialog box

Specifies various attributes that are common to all blocks (see “Block
Properties Dialog Box” on page 5-10 for more information).

• Block Parameter dialog box

Every block has a dialog box that allows you to specify values for attributes
that are specific to that type of block. See “Displaying a Block’s Parameter
Dialog Box” on page 5-8 for information on displaying a block’s parameter
dialog box. For information on the parameter dialog of a specific block, see
“Simulink Blocks” in the online Simulink reference.

• Model Explorer

The Model Explorer allows you to quickly find one or more blocks and set
their properties, thus facilitating global changes to a model, for example,
changing the gain of all of a model’s Gain blocks. See “The Model Explorer”
on page 8-2 for more information.

• set_param command

5-7

5 Working with Blocks

set_param enables you to use M-file programs and scripts to specify block
attributes. See set_param in the online Simulink reference for more
information.

Displaying a Block’s Parameter Dialog Box
You can also display a block’s parameter dialog box by double-clicking it in
the model or library window.

Note This holds true for all blocks with parameter dialog boxes except for
Subsystem blocks. You must use the Model Editor’s Edit menu or context
menu to display a Subsystem block’s parameter dialog box.

You can also display a block’s parameter dialog box by selecting the block
in the model’s block diagram and choosing BLOCK Parameters from the
model window’s Edit menu or from the model window’s context (right-click)
menu, where BLOCK is the name of the block you selected, e.g., Constant
Parameters.

Specifying Parameter Values
You can use a MATLAB constant, model or base workspace variable, or
expression that evaluates to a numerical value to specify the value of a
numeric parameter.

Working with Tunable Parameters
Simulink lets you change the values of many block parameters during
simulation. Such parameters are called tunable parameters. In general,
only parameters that represent mathematical variables, such as the Gain
parameter of the Gain block, are tunable. Parameters that specify the
appearance or structure of a block, e.g., the number of inputs of a Sum block,
or when it is evaluated, e.g., a block’s sample time or priority, are not tunable.
You can tell whether a particular parameter is tunable by examining its edit
control in the block’s dialog box or Model Explorer during simulation. If the
control is disabled, the parameter is nontunable.

5-8

Working with Block Parameters

Tuning Block Parameters
You can use a block’s dialog box or the Model Explorer to modify the tunable
parameters of any block, except a source block (see “Changing Source Block
Parameters” on page 5-9). You can also use the MATLAB Command Line to
tune block parameters.

To use the block’s parameter dialog box, open the block’s parameter dialog box,
change the value displayed in the dialog box, and click the dialog box’s OK
or Apply button. You can use the set_param command to change the value
of a block parameter at the MATLAB Command Line during simulation. Or,
if the model uses a MATLAB workspace variable to specify the parameter’s
value, you can change the parameter’s value by assigning a new value to the
variable. In either case, you must update the model’s block diagram for the
change to take effect (see “Updating a Block Diagram” on page 3-9).

Changing Source Block Parameters
Opening the dialog box of a source block with tunable parameters (see “Source
Blocks with Tunable Parameters” on page 5-10) causes a running simulation
to pause. While the simulation is paused, you can edit the parameter values
displayed on the dialog box. However, you must close the dialog box to have
the changes take effect and allow the simulation to continue. Similarly,
starting a simulation causes any open dialog boxes associated with source
blocks with tunable parameters to close.

Note If you enable the Inline parameters option, Simulink does not pause
the simulation when you open a source block’s dialog box because all of the
parameter fields are disabled and can be viewed but cannot be changed.

The Model Explorer disables the parameter fields that it displays in the list
view and the dialog pane for a source block with tunable parameters while
a simulation is running. As a result, you cannot use the Model Explorer to
change the block’s parameters. However, while the simulation is running, the
Model Explorer displays a Modify button in the dialog view for the block.
Clicking the Modify button opens the block’s dialog box. Note that this
causes the simulation to pause. You can then change the block’s parameters.
You must close the dialog box to have the changes take effect and allow the

5-9

5 Working with Blocks

simulation to continue. Your changes appear in the Model Explorer after you
close the dialog box.

Source Blocks with Tunable Parameters. Source blocks with tunable
parameters include the following blocks.

• Simulink source blocks, including

- Band-Limited White Noise

- Chirp Signal

- Constant

- Pulse Generator

- Ramp

- Random Number

- Repeating Sequence

- Signal Generator

- Sine Wave

- Step

- Uniform Random Number

• User-developed masked subsystem blocks that have one or more tunable
parameters and one or more output ports, but no input ports.

• S-Function and M-file (level 2) S-Function blocks that have one or more
tunable parameters and one or more output ports but no input ports.

Block Properties Dialog Box
This dialog box lets you set a block’s properties. To display this dialog, select
the block in the model window and then select Block Properties from the
Edit menu.

5-10

Working with Block Parameters

The dialog box contains the following tabbed panes.

General Pane
This pane allows you to set the following properties.

Description. Brief description of the block’s purpose.

Priority. Execution priority of this block relative to other blocks in the model.
See “Assigning Block Priorities” in the online Simulink documentation for
more information.

Tag. Text that is assigned to the block’s Tag parameter and saved with the
block in the model. You can use the tag to create your own block-specific
label for a block.

5-11

5 Working with Blocks

Block Annotation Pane
The block annotation pane allows you to display the values of selected
parameters of a block in an annotation that appears beneath the block’s icon.

Enter the text of the annotation in the text field that appears on the right side
of the pane. The text can include block property tokens, for example

%<Name>
Priority = %<priority>

of the form %<param> where param is the name of a parameter of the block.
When displaying the annotation, Simulink replaces the tokens with the
values of the corresponding parameters, e.g.,

5-12

Working with Block Parameters

The block property tag list on the left side of the pane lists all the tags that
are valid for the currently selected block. To include one of the listed tags
in the annotation, select the tag and then click the button between the tag
list and the annotation field.

You can also create block annotations programmatically. See “Creating Block
Annotations Programmatically” on page 5-14.

Callbacks Pane
The Callbacks Pane allows you to specify implementations for a block’s
callbacks (see “Using Callback Functions” on page 4-41).

5-13

5 Working with Blocks

To specify an implementation for a callback, select the callback in the callback
list on the left side of the pane. Then enter MATLAB commands that
implement the callback in the right-hand field. Click OK or Apply to save the
change. Simulink appends an asterisk to the name of the saved callback to
indicate that it has been implemented.

Creating Block Annotations Programmatically
You can use a block’s AttributesFormatString parameter to display selected
parameters of a block beneath the block as an “attributes format string,” i.e., a
string that specifies values of the block’s attributes (parameters). “Model and
Block Parameters” in “Simulink Reference” describes the parameters that a
block can have. Use the Simulink set_param command to set this parameter
to the desired attributes format string.

The attributes format string can be any text string that has embedded
parameter names. An embedded parameter name is a parameter name
preceded by %< and followed by >, for example, %<priority>. Simulink
displays the attributes format string beneath the block’s icon, replacing
each parameter name with the corresponding parameter value. You can use
line-feed characters (\n) to display each parameter on a separate line. For
example, specifying the attributes format string

pri=%<priority>\ngain=%<Gain>

for a Gain block displays

If a parameter’s value is not a string or an integer, Simulink displays N/S
(not supported) for the parameter’s value. If the parameter name is invalid,
Simulink displays "???" as the parameter value.

5-14

Changing a Block’s Appearance

Changing a Block’s Appearance
The Simulink Editor allows you to change the size, orientation, color, and
label location of a block in a block diagram.

Changing the Orientation of a Block
By default, signals flow through a block from left to right. Input ports are on
the left, and output ports are on the right. You can change the orientation of a
block by selecting one of these commands from the Format menu:

• The Flip Block command rotates the block 180 degrees.

• The Rotate Block command rotates a block clockwise 90 degrees.

The following figure shows how Simulink orders ports after changing the
orientation of a block using the Rotate Block and Flip Block menu items.
The text in the blocks shows their orientation.

Resizing a Block
To change the size of a block, select it, then drag any of its selection handles.
While you hold down the mouse button, a dotted rectangle shows the new
block size. When you release the mouse button, the block is resized.

5-15

5 Working with Blocks

For example, the following figure below shows a Signal Generator block
being resized. The lower-right handle was selected and dragged to the cursor
position. When the mouse button is released, the block takes its new size.

This figure shows a block being resized:

Displaying Parameters Beneath a Block
You can cause Simulink to display one or more of a block’s parameters beneath
the block. You specify the parameters to be displayed in the following ways:

• By entering an attributes format string in the Attributes format string
field of the block’s Block Properties dialog box (see “Block Properties
Dialog Box” on page 5-10)

• By setting the value of the block’s AttributesFormatString property to
the format string, using set_param

Using Drop Shadows
You can add a drop shadow to a block by selecting the block, then choosing
Show Drop Shadow from the Format menu. When you select a block with
a drop shadow, the menu item changes to Hide Drop Shadow. The following
figure shows a Subsystem block with a drop shadow:

5-16

Changing a Block’s Appearance

Manipulating Block Names
All block names in a model must be unique and must contain at least one
character. By default, block names appear below blocks whose ports are on
the sides, and to the left of blocks whose ports are on the top and bottom, as
the following figure shows:

Note Simulink commands interprets a forward slash, i.e., /, as a block path
delimiter. For example, the path vdp/Mu designates a block named Mu in the
model named vdp. Therefore, avoid using forward slashes (/) in block names
to avoid causing Simulink to interpret the names as paths.

Changing Block Names
You can edit a block name in one of these ways:

• To replace the block name, click the block name, double-click or drag the
cursor to select the entire name, then enter the new name.

• To insert characters, click between two characters to position the insertion
point, then insert text.

• To replace characters, drag the mouse to select a range of text to replace,
then enter the new text.

When you click the pointer anywhere else in the model or take any other
action, the name is accepted or rejected. If you try to change the name of a
block to a name that already exists or to a name with no characters, Simulink
displays an error message.

You can modify the font used in a block name by selecting the block, then
choosing the Font menu item from the Format menu. Select a font from the
Set Font dialog box. This procedure also changes the font of any text that
appears inside the block.

5-17

5 Working with Blocks

You can cancel edits to a block name by choosing Undo from the Edit menu.

Note If you change the name of a library block, all links to that block become
unresolved.

Changing the Location of a Block Name
You can change the location of the name of a selected block in two ways:

• By dragging the block name to the opposite side of the block.

• By choosing the Flip Name command from the Format menu. This
command changes the location of the block name to the opposite side of
the block.

For more information about block orientation, see “Changing the Orientation
of a Block” on page 5-15.

Changing Whether a Block Name Appears
To change whether the name of a selected block is displayed, choose a menu
item from the Format menu:

• The Hide Name menu item hides a visible block name. When you select
Hide Name, it changes to Show Name when that block is selected.

• The Show Name menu item shows a hidden block name.

Specifying a Block’s Color
See “Specifying Block Diagram Colors” on page 4-6 for information on how to
set the color of a block.

5-18

Displaying Block Outputs

Displaying Block Outputs
Simulink can display block outputs as data tips on the block diagram while a
simulation is running.

You can specify whether and when to display block outputs (see “Enabling
Port Values Display” on page 5-19) and the size and format of the output
displays and the rate at which Simulink updates them during a simulation
(see “Port Values Display Options” on page 5-20).

Enabling Port Values Display
To turn display of port output values on or off, select Port Values from the
Model Editor’s View menu. A menu of display options appears. Select one of
the following display options from the menu:

• Show none

Turns port value displaying off.

• Show when hovering

Displays output port values for the block under the mouse cursor.

• Toggle when selected

5-19

5 Working with Blocks

Selecting a block displays its outputs. Reselecting the block turns the
display off.

When using the Microsoft Windows version of Simulink, you can turn block
output display when hovering on or off from the Model Editor’s toolbar. To do
this, select the block output display button on the toolbar.

Port Values Display Options
To specify other display options, select Port Values > Options from the
Model Editor’s View menu. The Block Output Display Options dialog
box appears.

To increase the size of the output display text, move the Font size slider to
the right. To increase the rate at which Simulink updates the displays, move
the Refresh interval slider to the left.

5-20

Working with Block Libraries

Working with Block Libraries
Libraries are collections of blocks that can be copied into models. Blocks
copied from a library remain linked to their originals such that changes in
the originals automatically propagate to the copies in a model. Libraries
ensure that your models automatically include the most recent versions of
blocks developed by yourself or others.

Terminology
It is important to understand the terminology used with this feature.

Library - A collection of library blocks. A library must be explicitly created
using New Library from the File menu.

Library block - A block in a library.

Reference block - A copy of a library block.

Link - The connection between the reference block and its library block that
allows Simulink to update the reference block when the library block changes.

Copy - The operation that creates a reference block from either a library block
or another reference block.

This figure illustrates this terminology.

Simulink Block Library
Simulink comes with a library of standard blocks called the Simulink block
library. See “Starting Simulink” on page 3-2 for information on displaying
and using this library.

5-21

5 Working with Blocks

Creating a Library Link
To create a link to a library block in a model, copy the block from the library to
the model (see “Copying and Moving Blocks from One Window to Another” on
page 5-4) or by dragging the block from the Library Browser (see “Browsing
Block Libraries” on page 5-28) into the model window.

When you drag a library block into a model or another library, Simulink
creates a copy of the library block, called the reference block, in the model
or the other library. You can change the values of the reference block’s
parameters but you cannot mask the block or, if it is masked, edit the mask.
Also, you cannot set callback parameters for a reference block. If the link is
to a subsystem, you can make nonstructural changes to the contents of the
reference subsystem (see “Modifying a Linked Subsystem” on page 5-23).

The library and reference blocks are linked by name; that is, the reference
block is linked to the specific block and library whose names are in effect at
the time the copy is made.

If Simulink is unable to find either the library block or the source library on
your MATLAB path when it attempts to update the reference block, the link
becomes unresolved. Simulink issues an error message and displays these
blocks using red dashed lines. The error message is

Failed to find block "source-block-name"
in library "source-library-name"
referenced by block
"reference-block-path".

The unresolved reference block is displayed like this (colored red).

To fix a bad link, you must do one of the following:

• Delete the unlinked reference block and copy the library block back into
your model.

5-22

Working with Block Libraries

• Add the directory that contains the required library to the MATLAB path
and select Update Diagram from the Edit menu.

• Double-click the reference block. On the dialog box that appears, correct
the pathname and click Apply or Close.

Disabling Library Links
Simulink allows you to disable linked blocks in a model. Simulink ignores
disabled links when simulating a model. To disable a link, select the link,
choose Link options from the model window’s Edit or context menu, then
choose Disable link. To restore a disabled link, choose Restore link from
the Link Options menu.

Modifying a Linked Subsystem
Simulink allows you to make any change to the local copy of an active
library link that does not alter the structure of the local copy. Examples of
nonstructural changes include changes to parameter values that do not affect
the structure of the subsystem. Examples of structural modifications include
adding or deleting a block or line or changing the number of ports on a block.

Note Simulink displays “parameterized link” on the parameter dialog box
of a masked subsystem whose parameters differ in value from those of the
library version to which it is linked. This allows you to determine whether
the local copy differs from the library version simply by opening the local
copy’s dialog box.

When you save the model containing the modified subsystem, Simulink saves
the changes to the local copy of the subsystem together with the path to the
library copy in the model’s model (.mdl) file. When you reopen the system,
Simulink copies the library subsystem into the loaded model and applies
the saved changes.

5-23

5 Working with Blocks

Note If you attempt to use the Simulink GUI to make a structural change to
the local copy of an active library link, for example, by editing the subsystem’s
diagram, Simulink offers to disable the link to the subsystem. If you accept,
Simulink makes the change. Otherwise, it does not allow you to make the
structural change. Simulink does not prevent you from using set_param to
attempt to make a structural change to an active link. However, the results
of the change are undefined.

Propagating Link Modifications
If you restore a disabled link that has structural changes, Simulink prompts
you to either propagate or discard the changes. If you choose to propagate the
changes, Simulink updates the library version of the subsystem specified
by the restored link with the changes made in the model’s version of that
subsystem. If you choose to discard the changes, Simulink replaces the
version of the subsystem in the model with the version in the library. In either
case, the end result is that the versions of the subsystem in the library and
the model are exactly the same.

If you restore a disabled link to a block with nonstructural changes, Simulink
enables the link without prompting you to propagate or discard the changes.
To see the nonstructural parameter differences between the model’s version of
a library block and the library block itself, choose View changes from the
Link options menu.

If you want to propagate or discard nonstructural changes, select the modified
copy of the library block in the model, choose Link options from the model
window’s Edit or context menu, then choose Propagate/Discard changes.
A dialog box appears that asks whether you want to propagate or discard the
changes. If you elect to propagate the changes, Simulink applies the changes
made to the model’s copy of the library block to the library block itself. If
you elect to discard the changes, Simulink removes the changes from the
model’s copy of the block. In either case, the library and model versions of
the block become the same.

5-24

Working with Block Libraries

Updating a Linked Block
Simulink updates out-of-date reference blocks in a model or library at these
times:

• When the model or library is loaded

• When you select Update Diagram from the Edit menu or run the
simulation

• When you query the LinkStatus parameter of a block, using the get_param
command (see “Library Link Status” on page 5-26)

• When you use the find_system command

Breaking a Link to a Library Block
You can break the link between a reference block and its library block to cause
the reference block to become a simple copy of the library block, unlinked to
the library block. Changes to the library block no longer affect the block.
Breaking links to library blocks may enable you to transport a model as a
stand-alone model, without the libraries.

To break the link between a reference block and its library block, first disable
the block. Then select the block and choose Break Library Link from the
Link options menu. You can also break the link between a reference block
and its library block from the command line by changing the value of the
LinkStatus parameter to 'none' using this command:

set_param('refblock', 'LinkStatus', 'none')

You can save a system and break all links between reference blocks and
library blocks using this command:

save_system('sys', 'newname', 'BreakLinks')

5-25

5 Working with Blocks

Note Breaking library links in a model does not guarantee that you can run
the model stand-alone, especially if the model includes blocks from third-party
libraries or optional Simulink blocksets. It is possible that a library block
invokes functions supplied with the library and hence can run only if the
library is installed on the system running the model. Further, breaking a link
can cause a model to fail when you install a new version of the library on a
system. For example, suppose a block invokes a function that is supplied
with the library. Now suppose that a new version of the library eliminates
the function. Running a model with an unlinked copy of the block results in
invocation of a now nonexistent function, causing the simulation to fail. To
avoid such problems, you should generally avoid breaking links to third-party
libraries and optional Simulink blocksets.

Finding the Library Block for a Reference Block
To find the source library and block linked to a reference block, select the
reference block. Then choose Go To Library Link from the Link options
submenu of the model window’s Edit or context menu. If the library is open,
Simulink selects and highlights the library block and makes the source
library the active window. If the library is not open, Simulink opens it and
selects the library block.

Library Link Status
All blocks have a LinkStatus parameter that indicates whether the block is a
reference block. The parameter can have these values.

Status Description

none Block is not a reference block.

resolved Link is resolved.

unresolved Link is unresolved.

5-26

Working with Block Libraries

Status Description

implicit Block resides in library block and is itself not a link to
a library block. For example, suppose that A is a link
to a subsystem in a library that contains a Gain block.
Further, suppose that you open A and select the Gain
block. Then, get_param(gcb, 'LinkStatus') returns
implicit.

inactive Link is disabled.

restore Restores a broken link to a library block and discards
any changes made to the local copy of the library
block. For example, set_param(gcb, 'LinkStatus',
'restore') replaces the selected block with a link to a
library block of the same type, discarding any changes
in the local copy of the library block. Note that this
parameter is a “write-only “parameter, i.e., it is usable
only with set_param. You cannot use get_param to get
it.

propagate Restores a broken link to a library block and propagates
any changes made to the local copy to the library.

Displaying Library Links
Simulink optionally displays an arrow in the bottom left corner of each block
that represents a library link in a model.

This arrow allows you to tell at a glance whether a block represents a link
to a library block or a local instance of a block. To enable display of library
links, select Library Link Display from the model window’s Format menu

5-27

5 Working with Blocks

and then select either User (displays only links to user libraries) or All
(displays all links).

The color of the link arrow indicates the status of the link.

Color Status

Black Active link

Grey Inactive link

Red Active and modified

Getting Information About Library Blocks
Use the libinfo command to get information about reference blocks in a
system

Browsing Block Libraries
The Library Browser lets you quickly locate and copy library blocks into a
model. To display the Library Browser, click the Library Browser button
in the toolbar of the MATLAB desktop or Simulink model window or enter
simulink at the MATLAB command line.

Note The Library Browser is available only on Microsoft Windows platforms.

5-28

Working with Block Libraries

The Library Browser contains three panes.

The tree pane displays all the block libraries installed on your system. The
contents pane displays the blocks that reside in the library currently selected
in the tree pane. The documentation pane displays documentation for the
block selected in the contents pane.

You can locate blocks either by navigating the Library Browser’s library tree
or by using the Library Browser’s search facility.

5-29

5 Working with Blocks

Navigating the Library Tree
The library tree displays a list of all the block libraries installed on the
system. You can view or hide the contents of libraries by expanding or
collapsing the tree using the mouse or keyboard. To expand/collapse the tree,
click the +/- buttons next to library entries or select an entry and press the
+/- or right/left arrow key on your keyboard. Use the up/down arrow keys
to move up or down the tree.

Searching Libraries
To find a particular block, enter the block’s name in the edit field next to the
Library Browser’s Find button, then click the Find button.

Opening a Library
To open a library, right-click the library’s entry in the browser. Simulink
displays an Open Library button. Select the Open Library button to
open the library.

Creating and Opening Models
To create a model, select the New button on the Library Browser’s toolbar. To
open an existing model, select the Open button on the toolbar.

Copying Blocks
To copy a block from the Library Browser into a model, select the block in the
browser, drag the selected block into the model window, and drop it where
you want to create the copy.

Displaying Help on a Block
To display help on a block, right-click the block in the Library Browser and
select the button that subsequently pops up.

Pinning the Library Browser
To keep the Library Browser above all other windows on your desktop, select
the PushPin button on the browser’s toolbar.

5-30

6

Working with Signals

This section describes how to create and use Simulink signals.

Signal Basics (p. 6-2) Explores key signal concepts,
including signal data types, signal
buses, virtual signals, signal
dimensions, and signal properties.

Determining Output Signal
Dimensions (p. 6-14)

Explains the rules that determine
the dimensions of signals that blocks
output.

Displaying Signal Properties
(p. 6-19)

How to display signal properties on
a block diagram.

6 Working with Signals

Signal Basics
This section provides an overview of Simulink signals and explains how to
specify, display, and check the validity of signal connections.

About Signals
Simulink defines signals as the outputs of dynamic systems represented by
blocks in a Simulink diagram and by the diagram itself. The lines in a block
diagram represent mathematical relationships among the signals defined by
the block diagram. For example, a line connecting the output of block A to
the input of block B indicates that the signal output by B depends on the
signal output by A.

Note It is tempting but misleading to think of Simulink signals as traveling
along the lines that connect blocks the way electrical signals travel along a
telephone wire. This analogy is misleading because it suggests that a block
diagram represents physical connections between blocks, which is not the
case. Simulink signals are mathematical, not physical, entities and the lines
in a block diagram represent mathematical, not physical, relationships among
signals.

Creating Signals
You can create signals by creating source blocks in your model. For example,
you can create a signal that varies sinusoidally with time by dragging an
instance of the Sine block from the Simulink Sources library into the model.
See “Sources” in the online Simulink block reference for information on blocks
that you can use to create signals in a model. You can also use the Signal &
Scope Manager to create signals in your model without using blocks. See
“The Signal & Scope Manager” in the online Simulink documentation for
more information.

Signal Line Styles
Simulink uses a variety of line styles to display different types of signals in the
model window. Assorted line styles help you to differentiate the signal types
in Simulink diagrams. The signal types and their line styles are as follows:

6-2

Signal Basics

Signal Type Line Style Description

Scalar and
Nonscalar

Simulink uses a thin, solid line to represent
the diagram’s scalar and nonscalar signals.

Nonscalar When the Wide nonscalar lines option is
enabled, Simulink uses a thick, solid line to
represent the diagram’s nonscalar signals.

Control Simulink uses a thin, dash-dot line to
represent the diagram’s control signals.

Bus Simulink uses a thick, composite line to
represent the diagram’s signal buses.

Other than using the Wide nonscalar lines option to display nonscalar
signals as thick, solid lines, you cannot customize or control the line style with
which Simulink displays signals. See “Wide nonscalar lines” on page 6-19 for
more information about this option.

Note As you construct a block diagram, Simulink uses a thin, solid line to
represent all signal types. The lines are then redrawn using the specified line
styles only after you update or start simulation of the block diagram.

Signal Labels
A signal label is text that appears next to the line that represents a signal
that has a name. The signal label displays the signal’s name. In addition, if
the signal is a virtual signal (see “Virtual Signals” on page 6-5) and its Show
propagated signals property is on (see “Show propagated signals” in the
online Simulink documentation), the label displays the names of the signals
that make up the virtual signal.

Simulink creates a label for a signal when you assign it a name in the Signal
Properties dialog box (see “Signal Properties Dialog Box” in the online
Simulink documentation). You can change the signal’s name by editing its
label on the block diagram. To edit the label, left-click the label. Simulink
replaces the label with an edit field. Edit the name in the edit field, then click
outside the label to apply the change.

6-3

6 Working with Signals

Displaying Signal Values
As with creating signals, you can use either blocks or the Signal & Scope
Manager to display the values of signals during a simulation. For example,
you can use either the Scope block or the Signal & Scope Manager to graph
time-varying signals on an oscilloscope-like display during simulation. See
“Sinks” in the online Simulink block reference for information on blocks that
you can use to display signals in a model.

Signal Dimensions
Simulink blocks can output one- or two-dimensional signals. A
one-dimensional (1-D) signal consists of a stream of one-dimensional arrays
output at a frequency of one array (vector) per simulation time step. A
two-dimensional (2-D) signal consists of a stream of two-dimensional arrays
emitted at a frequency of one 2-D array (matrix) per block sample time. The
Simulink user interface and documentation generally refer to 1-D signals
as vectors and 2-D signals as matrices. A one-element array is frequently
referred to as a scalar. A row vector is a 2-D array that has one row. A column
vector is a 2-D array that has one column.

Simulink blocks vary in the dimensionality of the signals they can accept or
output. Some blocks can accept or output signals of any dimensions. Some
can accept or output only scalar or vector signals. To determine the signal
dimensionality of a particular block, see the block’s description in “Blocks —
Alphabetical List” in the online Simulink reference. See “Determining Output
Signal Dimensions” on page 6-14 for information on what determines the
dimensions of output signals for blocks that can output nonscalar signals.

Note Simulink does not support dynamic signal dimensions during
simulation. That is, the size of a signal must remain constant while the
simulation executes. You can alter a signal’s size only after terminating the
simulation.

Complex Signals
The values of Simulink signals can be complex numbers. A signal whose
values are complex numbers is called a complex signal. You can introduce a
complex-valued signal into a model in the following ways:

6-4

Signal Basics

• Load complex-valued signal data from the MATLAB workspace into the
model via a root-level Inport block.

• Create a Constant block in your model and set its value to a complex
number.

• Create real signals corresponding to the real and imaginary parts of a
complex signal, then combine the parts into a complex signal, using the
Real-Imag to Complex conversion block.

You can manipulate complex signals via blocks that accept them. If you are
not sure whether a block accepts complex signals, see the documentation for
the block in “Blocks — Alphabetical List” in the online Simulink reference.

Virtual Signals
A virtual signal is a signal that represents another signal graphically. Some
blocks, such as Bus Creator, Inport, and Outport blocks (see “Virtual Blocks”
on page 5-2), generate virtual signals either exclusively or optionally (see
“Virtual Versus Nonvirtual Buses” on page 6-9). Virtual signals are purely
graphical entities. They have no mathematical or physical significance.
Simulink ignores them when simulating a model.

Whenever you update or run a model, Simulink determines the nonvirtual
signal(s) represented by the model’s virtual signal(s), using a procedure
known as signal propagation. When running the model, Simulink uses the
corresponding nonvirtual signal(s), determined via signal propagation, to
drive the blocks to which the virtual signals are connected.

Consider, for example, the following model.

6-5

6 Working with Signals

The signals driving Gain blocks G1 and G2 are virtual signals corresponding
to signals s2 and s1, respectively. Simulink determines this automatically
whenever you update or simulate the model.

Displaying Virtual Signal Sources and Destinations
To display the nonvirtual block whose output is the source of a signal, select
the signal and then select Highlight to Source from the signal’s context
menu. Simulink highlights the path from the signal’s source block to the
signal itself.

To display the nonvirtual block that is the destination of a signal, select the
signal and then select Highlight to Destination from the signal’s context
menu. Simulink highlights the path from the selected signal to the nonvirtual
block that it feeds.

6-6

Signal Basics

To remove the highlighting, select Remove Highlighting from the block
diagram’s context menu.

Note If the path from a source block or to a destination block includes an
unresolved reference to a library block, Simulink highlights the path only
from or to the library block, respectively. This is to avoid time-consuming
library reference resolution while you are editing a model. To permit Simulink
to display the complete path, first update the diagram (e.g., by pressing
Ctrl+D). This causes Simulink to resolve all library references and hence
display the complete path to a destination block or from a source block.

Displaying the Nonvirtual Components of Virtual Signals
The Show propagated signals option (see “Signal Properties Dialog Box”
in the online Simulink documentation) displays the nonvirtual signals
represented by virtual signals in the labels of the virtual signals.

3

Gain1

2

Gain

3

Display1

4

Display

2

C2

1

C1

s2

s1

s3<s1, s2>

<s1>

<s2> s4

s5

6-7

6 Working with Signals

When you change the name of a nonvirtual signal, Simulink immediately
updates the labels of all virtual signals that represent the nonvirtual signal
and whose Show propagated signals is on, except if the path from the
nonvirtual signal to the virtual signal includes an unresolved reference to
a library block. In such cases, to avoid time-consuming library reference
resolutions while you are editing a block diagram, Simulink defers updating
the virtual signal’s label until you update the model’s block diagram either
directly (e.g., by pressing Ctrl+D) or by simulating the model.

Note Virtual signals can represent virtual as well as nonvirtual signals. For
example, you can use a Bus Creator block to combine multiple virtual and
nonvirtual signals into a single virtual signal. If during signal propagation,
Simulink determines that a component of a virtual signal is itself virtual,
Simulink uses signal propagation to determine the nonvirtual components of
the virtual component. This process continues until Simulink has determined
all nonvirtual components of a virtual signal.

Control Signals
A control signal is a signal used by one block to initiate execution of another
block, e.g., a function-call or action subsystem. When you update or start
simulation of a block diagram, Simulink uses a dash-dot pattern to redraw
lines representing the diagram’s control signals as illustrated in the following
example.

6-8

Signal Basics

Signal Buses
A bus is a composite signal comprising a set of signals represented graphically
by a bundle of lines. It is analogous to a bundle of wires held together by
tie wraps. The components of a bus can have different data types and can
themselves be composite signals (i.e., buses or muxed signals). You can use
Bus Creator and Inport blocks to create signal buses and Bus Selector blocks
to access a bus’s components.

Selecting a bus and then Signal Dimensions from the model editor’s
Format menu displays the number of signal components carried by the bus.

Virtual Versus Nonvirtual Buses
Buses may be either virtual or nonvirtual. During simulation, blocks
connected to a virtual bus read their inputs from memory allocated to the
component signals, which may reside in noncontiguous areas of memory. By
contrast, blocks connected to a nonvirtual bus read their inputs from a copy
of the component signals maintained by Simulink in a contiguous area of
memory allocated to the bus.

Some Simulink features, require use of nonvirtual buses. Others require
virtual buses. Nonvirtual buses also facilitate code generation by enabling
buses to be represented as data structures. In general, virtual buses can save
memory where nonvirtual buses are not required.

The Bus Creator and Inport blocks output virtual buses by default. To cause
them to output a nonvirtual bus, select the Output as structure option on
their parameter dialog boxes. You can also use the Signal Conversion block to
convert nonvirtual to virtual buses, and vice versa.

6-9

6 Working with Signals

Note If a bus itself contains buses, the nested buses must all be either virtual
or nonvirtual. A bus cannot contain a mixture of virtual and nonvirtual
nested buses.

Bus-Capable Blocks
A bus-capable block is a block through which both virtual and nonvirtual
buses can pass. All virtual blocks are bus capable. Further, the following
nonvirtual blocks are also bus-capable:

• Memory

• Merge

• Switch

• Multiport Switch

• Rate Transition

• Unit Delay

• Zero-Order Hold

Some bus-capable blocks impose constraints on bus propagation through
them. See the documentation for the blocks in “Blocks-Alphabetical List” in
the online Simulink reference for more information.

Connecting Buses to Subsystem Inports
Generally, an Inport block is a virtual block and hence accepts a bus as input.
However, an Inport block is nonvirtual if it resides in a conditionally executed
or atomic subsystem and it or any of its components is directly connected to
an output of the subsystem. In such a case, the Inport block can accept a
bus only if its components have the same data type. If the components are
of differing data types, attempting to simulate the model causes Simulink
to halt the simulation and display an error message. You can avoid this
problem, without changing the semantics of your model, by inserting a Signal
Conversion block between the Inport block and the Outport block to which
it was originally connected.

6-10

Signal Basics

Consider, for example, the following model:

In this model, the Inport labeled nonvirtual is nonvirtual because it resides
in an atomic subsystem and one of its components (labeled a) is directly
connected to one of the subsystem’s outputs. Further, the bus connected to
the subsystem’s inputs has components of differing data types. As a result,
Simulink cannot simulate this model.

6-11

6 Working with Signals

Inserting a Signal Conversion block with the bus copy option selected breaks
the direct connection to the subsystem’s output and hence enables Simulink
to simulate the model.

Connecting Buses to Model Inports
If you want a root level Inport of a model to be able to accept a bus signal,
you must set the Inport’s bus object parameter to the name of a bus object
that defines the type of bus that the Inport accepts. See “Working with Data
Objects” in the online Simulink documentation and Simulink.Bus class in the
online Simulink reference for more information.

Checking Signal Connections
Many Simulink blocks have limitations on the types of signals they can
accept. Before simulating a model, Simulink checks all blocks to ensure that

6-12

Signal Basics

they can accommodate the types of signals output by the ports to which they
are connected. If any incompatibilities exist, Simulink reports an error and
terminates the simulation. To detect such errors before running a simulation,
choose Update Diagram from the Simulink Edit menu. Simulink reports
any invalid connections found in the process of updating the diagram.

Signal Glossary
The following table summarizes the terminology used to describe signals in
the Simulink user interface and documentation.

Term Meaning

Complex signal Signal whose values are complex numbers.

Data type Format used to represent signal values internally.

Matrix Two-dimensional signal array.

Real signal Signal whose values are real (as opposed to
complex) numbers.

Scalar One-element array, i.e., a one-element, 1-D or 2-D
array.

Signal bus A composite signal made up of other signals,
including other buses. You can use Bus Creator
and Inport blocks to create signal buses.

Signal propagation Process used by Simulink to determine attributes
of signals and blocks, such as data types, labels,
sample time, dimensionality, and so on, that are
determined by connectivity.

Size Number of elements that a signal contains. The
size of a matrix (2-D) signal is generally expressed
as M-by-N, where M is the number of columns and
N is the number of rows making up the signal.

Vector One-dimensional signal array.

Virtual signal Signal that represents another signal or set of
signals.

Width Size of a vector signal.

6-13

6 Working with Signals

Determining Output Signal Dimensions
If a block can emit nonscalar signals, the dimensions of the signals that the
block outputs depend on the block’s parameters, if the block is a source block;
otherwise, the output dimensions depend on the dimensions of the block’s
input and parameters.

Determining the Output Dimensions of Source Blocks
A source block is a block that has no inputs. Examples of source blocks include
the Constant block and the Sine Wave block. See the “Sources Library” table
in the online Simulink block reference for a complete listing of Simulink
source blocks. The output dimensions of a source block are the same as those
of its output value parameters if the block’s Interpret Vector Parameters
as 1-D parameter is off (i.e., not selected in the block’s parameter dialog
box). If the Interpret Vector Parameters as 1-D parameter is on, the
output dimensions equal the output value parameter dimensions unless the
parameter dimensions are N-by-1 or 1-by-N. In the latter case, the block
outputs a vector signal of width N.

As an example of how a source block’s output value parameter(s)
and Interpret Vector Parameters as 1-D parameter determine the
dimensionality of its output, consider the Constant block. This block outputs
a constant signal equal to its Constant value parameter. The following table
illustrates how the dimensionality of the Constant value parameter and the
setting of the Interpret Vector Parameters as 1-D parameter determine
the dimensionality of the block’s output.

Constant Value
Interpret Vector
Parameters as 1-D Output

2-D scalar off 2-D scalar

2-D scalar on 1-D scalar

1-by-N matrix off 1-by-N matrix

1-by-N matrix on N-element vector

N-by-1 matrix off N-by-1 matrix

N-by-1 matrix on N-element vector

6-14

Determining Output Signal Dimensions

Constant Value
Interpret Vector
Parameters as 1-D Output

M-by-N matrix off M-by-N matrix

M-by-N matrix on M-by-N matrix

Simulink source blocks allow you to specify the dimensions of the signals
that they output. You can therefore use them to introduce signals of various
dimensions into your model.

Determining the Output Dimensions of Nonsource
Blocks
If a block has inputs, the dimensions of its outputs are, after scalar expansion,
the same as those of its inputs. (All inputs must have the same dimensions,
as discussed in “Signal and Parameter Dimension Rules” on page 6-15).

Signal and Parameter Dimension Rules
When creating a Simulink model, you must observe the following rules
regarding signal and parameter dimensions.

Input Signal Dimension Rule
All nonscalar inputs to a block must have the same dimensions.

A block can have a mix of scalar and nonscalar inputs as long as all the
nonscalar inputs have the same dimensions. Simulink expands the scalar
inputs to have the same dimensions as the nonscalar inputs (see “Scalar
Expansion of Inputs” on page 6-17) thus preserving the general rule.

Block Parameter Dimension Rule
In general, a block’s parameters must have the same dimensions as the
corresponding inputs.

6-15

6 Working with Signals

Two seeming exceptions exist to this general rule:

• A block can have scalar parameters corresponding to nonscalar inputs.
In this case, Simulink expands a scalar parameter to have the same
dimensions as the corresponding input (see “Scalar Expansion of
Parameters” on page 6-17) thus preserving the general rule.

• If an input is a vector, the corresponding parameter can be either an N-by-1
or a 1-by-N matrix. In this case, Simulink applies the N matrix elements to
the corresponding elements of the input vector. This exception allows use
of MATLAB row or column vectors, which are actually 1-by-N or N-by-1
matrices, respectively, to specify parameters that apply to vector inputs.

Vector or Matrix Input Conversion Rules
Simulink converts vectors to row or column matrices and row or column
matrices to vectors under the following circumstances:

• If a vector signal is connected to an input that requires a matrix, Simulink
converts the vector to a one-row or one-column matrix.

• If a one-column or one-row matrix is connected to an input that requires a
vector, Simulink converts the matrix to a vector.

• If the inputs to a block consist of a mixture of vectors and matrices and
the matrix inputs all have one column or one row, Simulink converts the
vectors to matrices having one column or one row, respectively.

Note You can configure Simulink to display a warning or error message
if a vector or matrix conversion occurs during a simulation. See the
“Vector/matrix block input conversion” diagnostic in the online Simulink
documentation for more information.

Scalar Expansion of Inputs and Parameters
Scalar expansion is the conversion of a scalar value into a nonscalar array
of the same dimensions. Many Simulink blocks support scalar expansion
of inputs and parameters. Block descriptions in the online Simulink block
reference indicate whether Simulink applies scalar expansion to a block’s
inputs and parameters.

6-16

Determining Output Signal Dimensions

Scalar Expansion of Inputs
Scalar expansion of inputs refers to the expansion of scalar inputs to match
the dimensions of other nonscalar inputs or nonscalar parameters. When the
input to a block is a mix of scalar and nonscalar signals, Simulink expands
the scalar inputs into nonscalar signals having the same dimensions as the
other nonscalar inputs. The elements of an expanded signal equal the value of
the scalar from which the signal was expanded.

The following model illustrates scalar expansion of inputs. This model adds
scalar and vector inputs. The input from block Constant1 is scalar expanded
to match the size of the vector input from the Constant block. The input
is expanded to the vector [3 3 3].

When a block’s output is a function of a parameter and the parameter is
nonscalar, Simulink expands a scalar input to match the dimensions of the
parameter. For example, Simulink expands a scalar input to a Gain block to
match the dimensions of a nonscalar gain parameter.

Scalar Expansion of Parameters
If a block has a nonscalar input and a corresponding parameter is a scalar,
Simulink expands the scalar parameter to have the same number of elements
as the input. Each element of the expanded parameter equals the value of
the original scalar. Simulink then applies each element of the expanded
parameter to the corresponding input element.

6-17

6 Working with Signals

This example shows that a scalar parameter (the Gain) is expanded to a
vector of identically valued elements to match the size of the block input, a
three-element vector.

6-18

Displaying Signal Properties

Displaying Signal Properties
A model window’s Format menu and its model context (right-click) menu offer
the following options for displaying signal properties on the block diagram.

Display Options

Wide nonscalar lines
Draws lines that carry vector or matrix signals wider than lines that carry
scalar signals.

6-19

6 Working with Signals

Signal dimensions
Display the dimensions of nonscalar signals next to the line that carries the
signal.

The format of the display depends on whether the line represents a single
signal or a bus. If the line represents a single vector signal, Simulink displays
the width of the signal. If the line represents a single matrix signal, Simulink
displays its dimensions as [N1xN2] where Ni is the size of the ith dimension
of the signal. If the line represents a bus carrying signals of the same data
type, Simulink displays N{M} where N is the number of signals carried by the
bus and M is the total number of signal elements carried by the bus. If the
bus carries signals of different data types, Simulink displays only the total
number of signal elements {M}.

Port data types
Displays the data type of a signal next to the output port that emits the signal.

6-20

Displaying Signal Properties

The notation (c) following the data type of a signal indicates that the signal
is complex.

Signal Names
You can assign names to signals by

• Editing the signal’s label

• Editing the Name field of the signal’s property dialog (see “Signal
Properties Dialog Box” in the online Simulink documentation)

• Setting the name parameter of the port or line that represents the signal,
e.g.,

p = get_param(gcb, 'PortHandles')
l = get_param(p.Inport, 'Line')
set_param(l, 'Name', 's9')

Signal Labels
A signal’s label displays the signal’s name. A virtual signal’s label optionally
displays the signals it represents in angle brackets. You can edit a signal’s
label, thereby changing the signal’s name.

To create a signal label (and thereby name the signal), double-click the line
that represents the signal. The text cursor appears. Enter the name and click
anywhere outside the label to exit label editing mode.

Note When you create a signal label, take care to double-click the line.
If you click in an unoccupied area close to the line, you will create a model
annotation instead.

Labels can appear above or below horizontal lines or line segments, and left or
right of vertical lines or line segments. Labels can appear at either end, at the
center, or in any combination of these locations.

To move a signal label, drag the label to a new location on the line. When you
release the mouse button, the label fixes its position near the line.

6-21

6 Working with Signals

To copy a signal label, hold down the Ctrl key while dragging the label to
another location on the line. When you release the mouse button, the label
appears in both the original and the new locations.

To edit an existing signal label, select it:

• To replace the label, click the label, double-click or drag the cursor to select
the entire label, then enter the new label.

• To insert characters, click between two characters to position the insertion
point, then insert text.

• To replace characters, drag the mouse to select a range of text to replace,
then enter the new text.

To delete all occurrences of a signal label, delete all the characters in the
label. When you click outside the label, the labels are deleted. To delete a
single occurrence of the label, hold down the Shift key while you select the
label, then press the Delete or Backspace key.

To change the font of a signal label, select the signal, choose Font from the
Format menu, then select a font from the Set Font dialog box.

Displaying Signals Represented by Virtual Signals
To display the signal(s) represented by a virtual signal, click the signal’s label
and enter an angle bracket (<) after the signal’s name. (If the signal has no
name, simply enter the angle bracket.) Click anywhere outside the signal’s
label. Simulink exits label editing mode and displays the signals represented
by the virtual signal in brackets in the label.

You can also display the signals represented by a virtual signal by selecting
the Show Propagated Signals option on the signal’s property dialog (see
“Signal Properties Dialog Box” in the online Simulink documentation).

6-22

7

Running Simulations

The following sections explain how to use Simulink to simulate a dynamic
system.

Simulation Basics (p. 7-2) How to start, suspend, stop, interact
with, and diagnose errors in a
simulation.

Specifying a Simulation Start and
Stop Time (p. 7-6)

How to specify the start and stop
time for a simulation.

Choosing a Solver (p. 7-7) How to select the optimal solver for
simulating a model.

Importing and Exporting Simulation
Data (p. 7-17)

How to specify options for importing
and exporting simulation data to the
MATLAB workspace.

Configuration Sets (p. 7-29) How to specify interchangeable
sets of simulation configuration
parameters for a model.

Configuration Parameters Dialog
Box (p. 7-36)

How to use the Configuration
Parameters dialog box to specify a
simulation configuration.

Diagnosing Simulation Errors
(p. 7-38)

How to use the Simulation
Diagnostics Viewer to diagnose
simulation errors.

Improving Simulation Performance
and Accuracy (p. 7-40)

Tips on improving simulation
performance and accuracy.

7 Running Simulations

Simulation Basics
You can simulate a Simulink model at any time simply by clicking the Start
button on the Model Editor displaying the model (see “Starting a Simulation”
on page 7-3). However, before starting the simulation, you may want to
specify various simulation options, such as the simulation’s start and stop
time and the type of solver used to solve the model at each simulation time
step. Specifying simulation options is called configuring the model. Simulink
enables you to create multiple model configurations, called configuration sets,
modify existing configuration sets, and switch configuration sets with a click
of a mouse button (see “Configuration Sets” on page 7-29 for information on
creating and selecting configuration sets).

Once you have defined or selected a model configuration set that meets your
needs, you can start the simulation. Simulink then runs the simulation from
the specified start time to the specified stop time. While the simulation is
running, you can interact with the simulation in various ways, stop or pause
the simulation (see “Pausing or Stopping a Simulation” on page 7-4), and
launch simulations of other models. If an error occurs during a simulation,
Simulink halts the simulation and pops up a diagnostic viewer that helps you
to determine the cause of the error.

Controlling Execution of a Simulation
The Simulink graphical interface includes menu commands and toolbar
buttons that enable you to start, stop, and pause a simulation.

7-2

Simulation Basics

Starting a Simulation
To start execution of a model, select Start from the model editor’s Simulation
menu or click the Start button on the model’s toolbar.

You can also use the keyboard shortcut, Ctrl+T, to start the simulation.

Note A common mistake that new Simulink users make is to start a
simulation while the Simulink block library is the active window. Make sure
your model window is the active window before starting a simulation.

Simulink starts executing the model at the start time specified on the
Configuration Parameters dialog box. Execution continues until the
simulation reaches the final time step specified on the Configuration
Parameters dialog box, an error occurs, or you pause or terminate the
simulation (see “Configuration Parameters Dialog Box” on page 7-36).

7-3

7 Running Simulations

While the simulation is running, a progress bar at the bottom of the model
window shows how far the simulation has progressed. A Stop command
replaces the Start command on the Simulation menu. A Pause command
appears on the menu and replaces the Start button on the model toolbar.

Your computer beeps to signal the completion of the simulation.

Pausing or Stopping a Simulation
Select the Pause command or button to pause the simulation. Simulink
completes execution of the current time step and suspends execution of the
simulation. When you select Pause, the menu item and button change to
Continue. (The button has the same appearance as the Start button).
You can resume a suspended simulation at the next time step by choosing
Continue.

To terminate execution of the model, select the Stop command or button.
The keyboard shortcut for stopping a simulation is Ctrl+T, the same as for
starting a simulation. Simulink completes execution of the current time step
before terminating the model. Subsequently selecting the Start command
or button restarts the simulation at the first time step specified on the
Configuration Parameters dialog box.

7-4

Simulation Basics

If the model includes any blocks that write output to a file or to the workspace,
or if you select output options on the Configuration Parameters dialog box,
Simulink writes the data when the simulation is terminated or suspended.

Interacting with a Running Simulation
You can perform certain operations interactively while a simulation is
running. You can

• Modify some configuration parameters, including the stop time and the
maximum step size

• Click a line to see the signal carried on that line on a floating (unconnected)
Scope or Display block

• Modify the parameters of a block, as long as you do not cause a change in

- Number of states, inputs, or outputs

- Sample time

- Number of zero crossings

- Vector length of any block parameters

- Length of the internal block work vectors

- Dimension of any signals

You cannot make changes to the structure of the model, such as adding or
deleting lines or blocks, during a simulation. If you need to make these kinds
of changes, you need to stop the simulation, make the change, then start the
simulation again to see the results of the change.

7-5

7 Running Simulations

Specifying a Simulation Start and Stop Time
Simulink simulations start by default at 0.0 seconds and end at 10.0 seconds.
The Solver configuration pane allows you to specify other start and stop
times for the currently selected simulation configuration. See “Solver Pane”
in the online Simulink documentation for more information.

Note Simulation time and actual clock time are not the same. For example,
running a simulation for 10 seconds usually does not take 10 seconds. The
amount of time it takes to run a simulation depends on many factors, including
the model’s complexity, the solver’s step sizes, and the computer’s speed.

7-6

Choosing a Solver

Choosing a Solver
A solver is a Simulink software component that determines the next time step
that a simulation needs to take to meet target accuracy requirements that you
specify. Simulink provides an extensive set of solvers, each adept at choosing
the next time step for specific types of applications. The following sections
explain how to choose the solver best suited to your application.

• “Choosing a Solver Type” on page 7-7

• “Choosing a Fixed-Step Solver” on page 7-8

• “Choosing a Variable-Step Solver” on page 7-13

For information on tailoring the selected solver to your model, see “Improving
Simulation Accuracy” on page 7-41.

Choosing a Solver Type
Simulink divides solvers into two types: fixed-step and variable-step. Both
types of solvers compute the next simulation time as the sum of the current
simulation time and a quantity known as the step size. With a fixed-step
solver, the step size remains constant throughout the simulation. By contrast,
with a variable-step solver, the step size can vary from step to step, depending
on the model’s dynamics. In particular, a variable-step solver reduces the step
size when a model’s states are changing rapidly to maintain accuracy and
increases the step size when the system’s states are changing slowly in order
to avoid taking unnecessary steps. The Type control on the Simulink Solver
configuration pane allows you to select either of these two types of solvers (see
“Solver Pane” in the online Simulink documentation).

The choice between the two types depends on how you plan to deploy your
model and the model’s dynamics. If you plan to generate code from your
model and run the code on a real-time computer system, you should choose a
fixed-step solver to simulate the model. This is because real-time computer
systems operate at fixed-size signal sample rates. A variable-step solver may
cause the simulation to miss error conditions that can occur on a real-time
computer system.

If you do not plan to deploy your model as generated code, the choice between
a variable-step and a fixed-step solver depends on the dynamics of your model.

7-7

7 Running Simulations

If your model’s states change rapidly or contain discontinuities, a variable-step
solver can shorten the time required to simulate your model significantly.
This is because, for such a model, a variable-step solver can require fewer
time steps than a fixed-step solver to achieve a comparable level of accuracy.

The following model illustrates how a variable-step solver can shorten
simulation time for a multirate discrete model.

This model generates outputs at two different rates, every 0.5 second and
every 0.75 second. To capture both outputs, the fixed-step solver must take a
time step every 0.25 second (the fundamental sample time for the model).

[0.0 0.25 0.5 0.75 1.0 1.25 ...]

By contrast, the variable-step solver need take a step only when the model
actually generates an output.

[0.0 0.5 0.75 1.0 1.5 2.0 2.25 ...]

This significantly reduces the number of time steps required to simulate the
model.

The variable-step discrete solver uses zero-crossing detection (see
“Zero-Crossing Detection” on page 2-19) to handle continuous signals.
Simulink uses this solver by default if you specify a continuous solver and
your model has no continuous states.

Choosing a Fixed-Step Solver
When the Type control of the Solver configuration pane is set to fixed-step,
the configuration pane’s Solver control allows you to choose one of the set

7-8

Choosing a Solver

of fixed-step solvers that Simulink provides. The set of fixed-step solvers
comprises two types of solvers: discrete and continuous.

About the Fixed-Step Discrete Solver
The fixed-step discrete solver computes the time of the next time step by
adding a fixed step size to the time of the current time. The accuracy and
length of time of the resulting simulation depends on the size of the steps
taken by the simulation: the smaller the step size, the more accurate the
results but the longer the simulation takes. You can allow Simulink to choose
the size of the step size (the default) or you can choose the step size yourself.
If you allow Simulink to choose the step size, Simulink sets the step size to
the fundamental sample time of the model if the model has discrete states
or to the result of dividing the difference between the simulation start and
stop time by 50 if the model has no discrete states. This choice ensures that
the simulation will hit every simulation time required to update the model’s
discrete states at the model’s specified sample times.

The fixed-step discrete solver has a fundamental limitation. It cannot be
used to simulate models that have continuous states. That’s because the
fixed-step discrete solver relies on a model’s blocks to compute the values of
the states that they define. Blocks that define discrete states compute the
values of those states at each time step taken by the solver. Blocks that define
continuous states, on the other hand, rely on the solver to compute the states.
Continuous solvers perform this task. You should thus select a continuous
solver if your model contains continuous states.

Note If you attempt to use the fixed-step discrete solver to update or simulate
a model that has continuous states, Simulink displays an error message.
Thus, updating or simulating a model is a quick way to determine whether it
has continuous states.

About Fixed-Step Continuous Solvers
Simulink provides a set of fixed-step continuous solvers that, like the
fixed-step discrete solver, compute the simulation’s next time by adding a
fixed-size time step to the current time. In addition, the continuous solvers
employ numerical integration to compute the values of a model’s continuous

7-9

7 Running Simulations

states at the current step from the values at the previous step and the values
of the state derivatives. This allows the fixed-step continuous solvers to
handle models that contain both continuous and discrete states.

Note In theory, a fixed-step continuous solver can handle models that
contain no continuous states. However, that would impose an unnecessary
computational burden on the simulation. Consequently, Simulink always
uses the fixed-step discrete solver for a model that contains no states or only
discrete states, even if you specify a fixed-step continuous solver for the model.

Simulink provides two distinct types of fixed-step continuous solvers: explicit
and implicit solvers. Explicit solvers (see “Explicit Fixed-Step Continuous
Solvers” on page 7-10) compute the value of a state at the next time step as an
explicit function of the current value of the state and the state derivative, e.g.,

X(n+1) = X(n) + h * DX(n)

where X is the state, DX is the state derivative, and h is the step size. An
implicit solver (see “Implicit Fixed-Step Continuous Solvers” on page 7-12)
computes the state at the next time step as an implicit function of the state
and the state derivative at the next time step, e.g.,

X(n+1) - X(n) - h*DX(n+1) = 0

This type of solver requires more computation per step than an explicit solver
but is also more accurate for a given step size. This solver thus can be faster
than explicit fixed-step solvers for certain types of stiff systems.

Explicit Fixed-Step Continuous Solvers. Simulink provides a set of explicit
fixed-step continuous solvers. The solvers differ in the specific integration
technique used to compute the model’s state derivatives. The following table
lists the available solvers and the integration techniques they use.

Solver Integration Technique

ode1 Euler’s Method

ode2 Heun’s Method

7-10

Choosing a Solver

Solver Integration Technique

ode3 Bogacki-Shampine Formula

ode4 Fourth-Order Runge-Kutta (RK4) Formula

ode5 Dormand-Prince Formula

The integration techniques used by the fixed-step continuous solvers trade
accuracy for computational effort. The table lists the solvers in order of the
computational complexity of the integration methods they use from least
complex (ode1) to most complex (ode5).

As with the fixed-step discrete solver, the accuracy and length of time of a
simulation driven by a fixed-step continuous solver depends on the size of the
steps taken by the solver: the smaller the step size, the more accurate the
results but the longer the simulation takes. For any given step size, the more
computationally complex the solver, the more accurate the simulation.

If you specify a fixed-step solver type for a model, Simulink sets the solver’s
model to ode3, i.e., it chooses a solver capable of handling both continuous
and discrete states with moderate computational effort. As with the discrete
solver, Simulink by default sets the step size to the fundamental sample time
of the model if the model has discrete states or to the result of dividing the
difference between the simulation start and stop time by 50 if the model has
no discrete states. This assures that the solver will take a step at every
simulation time required to update the model’s discrete states at the model’s
specified sample rates. However, it does not guarantee that the default solver
will accurately compute a model’s continuous states or that the model cannot
be simulated in less time with a less complex solver. Depending on the
dynamics of your model, you may need to choose another solver and/or sample
time to achieve acceptable accuracy or to shorten the simulation time.

7-11

7 Running Simulations

Implicit Fixed-Step Continuous Solvers. Simulink provides one solver in
this category: ode14x. This solver uses a combination of Newton’s method
and extrapolation from the current value to compute the value of a model
state at the next time step. Simulink allows you to specify the number of
Newton’s method iterations and the extrapolation order that the solver uses
to compute the next value of a model state (see “Fixed-Step Solver Options”
in the online Simulink documentation). The more iterations and the higher
the extrapolation order that you select, the greater the accuracy but also the
greater the computational burden per step size.

Choosing a Fixed-Step Continuous Solver
Any of the fixed-step continuous solvers in Simulink can simulate a model
to any desired level of accuracy, given enough time and a small enough step
size. Unfortunately, in general, it is not possible, or at least not practical, to
decide a priori which solver and step size combination will yield acceptable
results for a model’s continuous states in the shortest time. Determining the
best solver for a particular model thus generally requires experimentation.

Here is the most efficient way to choose the best fixed-step solver for your
model experimentally. First, use one of the variable-step solvers to simulate
your model to the level of accuracy that you desire. This will give you an
idea of what the simulation results should be. Next, use ode1 to simulate
your model at the default step size for your model. Compare the results of
simulating your model with ode1 with the results of simulating with the
variable-step solver. If the results are the same within the specified level of
accuracy, you have found the best fixed-step solver for your model, namely
ode1. That’s because ode1 is the simplest of the Simulink fixed-step solvers
and hence yields the shorted simulation time for the current step size.

If ode1 does not give accurate results, repeat the preceding steps with the
other fixed-step solvers until you find the one that gives accurate results with
the least computational effort. The most efficient way to do this is to use a
binary search technique. First, try ode3. If it gives accurate results, try ode2.
If ode2 gives accurate results, it is the best solver for your model; otherwise,
ode3 is the best. If ode3 does not give accurate results, try ode5. If ode5
gives accurate results, try ode4. If ode4 gives accurate results, select it as the
solver for your model; otherwise, select ode5.

7-12

Choosing a Solver

If ode5 does not give accurate results, reduce the simulation step size and
repeat the preceding process. Continue in this way until you find a solver that
solves your model accurately with the least computational effort.

Choosing a Variable-Step Solver
When the Type control of the Solver configuration pane is set to
variable-step, the configuration pane’s Solver control allows you to choose
one of the set of variable-step solvers that Simulink provides. As with
fixed-step solvers in Simulink, the set of variable-step solvers comprises a
discrete solver and a subset of continuous solvers. Both types compute the
time of the next time step by adding a step size to the time of the current
time that varies depending on the rate of change of the model’s states. The
continuous solvers, in addition, use numerical integration to compute the
values of the model’s continuous states at the next time step. Both types of
solvers rely on blocks that define the model’s discrete states to compute the
values of the discrete states that each defines.

The choice between the two types of solvers depends on whether the blocks
in your model defines states and, if so, the kind of states that they define. If
your model defines no states or defines only discrete states, you should select
the discrete solver. In fact, if a model has no states or only discrete states,
Simulink will use the discrete solver to simulate the model even if the model
specifies a continuous solver.

About Variable-Step Continuous Solvers
Simulink variable-step solvers vary the step size during the simulation,
reducing the step size to increase accuracy when a model’s states are changing
rapidly and increasing the step size to avoid taking unnecessary steps when
the model’s states are changing slowly. Computing the step size adds to the
computational overhead at each step but can reduce the total number of steps,
and hence simulation time, required to maintain a specified level of accuracy
for models with rapidly changing or piecewise continuous states.

Simulink provides the following variable-step continuous solvers:

• ode45 is based on an explicit Runge-Kutta (4,5) formula, the
Dormand-Prince pair. It is a one-step solver; that is, in computing y(tn), it
needs only the solution at the immediately preceding time point, y(tn-1). In

7-13

7 Running Simulations

general, ode45 is the best solver to apply as a first try for most problems.
For this reason, ode45 is the default solver used by Simulink for models
with continuous states.

• ode23 is also based on an explicit Runge-Kutta (2,3) pair of Bogacki and
Shampine. It can be more efficient than ode45 at crude tolerances and in
the presence of mild stiffness. ode23 is a one-step solver.

• ode113 is a variable-order Adams-Bashforth-Moulton PECE solver. It can
be more efficient than ode45 at stringent tolerances. ode113 is a multistep
solver; that is, it normally needs the solutions at several preceding time
points to compute the current solution.

• ode15s is a variable-order solver based on the numerical differentiation
formulas (NDFs). These are related to but are more efficient than the
backward differentiation formulas, BDFs (also known as Gear’s method).
Like ode113, ode15s is a multistep method solver. If you suspect that a
problem is stiff, or if ode45 failed or was very inefficient, try ode15s.

• ode23s is based on a modified Rosenbrock formula of order 2. Because it is
a one-step solver, it can be more efficient than ode15s at crude tolerances.
It can solve some kinds of stiff problems for which ode15s is not effective.

• ode23t is an implementation of the trapezoidal rule using a “free”
interpolant. Use this solver if the problem is only moderately stiff and you
need a solution without numerical damping.

• ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta
formula with a first stage that is a trapezoidal rule step and a second stage
that is a backward differentiation formula of order two. By construction,
the same iteration matrix is used in evaluating both stages. Like ode23s,
this solver can be more efficient than ode15s at crude tolerances.

Note For a stiff problem, solutions can change on a time scale that is very
short compared to the interval of integration, but the solution of interest
changes on a much longer time scale. Methods not designed for stiff
problems are ineffective on intervals where the solution changes slowly
because they use time steps small enough to resolve the fastest possible
change. Jacobian matrices are generated numerically for ode15s and
ode23s. For more information, see Shampine, L. F., Numerical Solution of
Ordinary Differential Equations, Chapman & Hall, 1994.

7-14

Choosing a Solver

Specifying Variable-Step Solver Error Tolerances
The solvers use standard local error control techniques to monitor the error at
each time step. During each time step, the solvers compute the state values
at the end of the step and also determine the local error, the estimated error
of these state values. They then compare the local error to the acceptable
error, which is a function of the relative tolerance (rtol) and absolute tolerance
(atol). If the error is greater than the acceptable error for any state, the solver
reduces the step size and tries again:

• Relative tolerance measures the error relative to the size of each state. The
relative tolerance represents a percentage of the state’s value. The default,
1e-3, means that the computed state is accurate to within 0.1%.

• Absolute tolerance is a threshold error value. This tolerance represents the
acceptable error as the value of the measured state approaches zero.

The error for the ith state, ei, is required to satisfy

The following figure shows a plot of a state and the regions in which the
acceptable error is determined by the relative tolerance and the absolute
tolerance.

If you specify auto (the default), Simulink sets the absolute tolerance for
each state initially to 1e-6. As the simulation progresses, Simulink resets the
absolute tolerance for each state to the maximum value that the state has
assumed thus far times the relative tolerance for that state. Thus, if a state
goes from 0 to 1 and reltol is 1e-3, then by the end of the simulation the
abstol is set to 1e-3 also. If a state goes from 0 to 1000, then the abstol is
set to 1.

7-15

7 Running Simulations

If the computed setting is not suitable, you can determine an appropriate
setting yourself. You might have to run a simulation more than once to
determine an appropriate value for the absolute tolerance.

The Integrator, Transfer Fcn, State-Space, and Zero-Pole blocks allow you
to specify absolute tolerance values for solving the model states that they
compute or that determine their output. The absolute tolerance values that
you specify for these blocks override the global settings in the Configuration
Parameters dialog box. You might want to override the global setting in this
way, if the global setting does not provide sufficient error control for all of your
model’s states, for example, because they vary widely in magnitude.

7-16

Importing and Exporting Simulation Data

Importing and Exporting Simulation Data
Simulink allows you to import input signal and initial state data from the
MATLAB workspace and export output signal and state data to the MATLAB
workspace during simulation. This capability allows you to use standard or
custom MATLAB functions to generate a simulated system’s input signals
and to graph, analyze, or otherwise postprocess the system’s outputs. See the
following sections for more information:

• “Importing Data from the MATLAB Workspace” on page 7-17

• “Exporting Data to the MATLAB Workspace” on page 7-22

• “Importing and Exporting States” on page 7-24

Importing Data from the MATLAB Workspace
Simulink can apply input from a model’s base workspace to the model’s
top-level input ports during a simulation run. To specify this option, select the
Input box in the Load from workspace area of the Data Import/Export
pane (see “Data Import/Export Pane” in the online Simulink documentation).
Then, enter an external input specification (see “Importing Data Arrays” on
page 7-17) in the adjacent edit box and click Apply.

The input data can take any of the following forms:

• array—see “Importing Data Arrays” on page 7-17

• time expression—see “Using a MATLAB Time Expression to Import Data”
on page 7-18

• structure—see “Importing Data Structures” on page 7-19

• time series—see “Importing Time-Series Data” on page 7-21

Simulink linearly interpolates or extrapolates input values as necessary if the
Interpolate data option is selected for the corresponding Inport.

Importing Data Arrays
This import format consists of a real (noncomplex) matrix of data type double.
The first column of the matrix must be a vector of times in ascending order.
The remaining columns specify input values. In particular, each column

7-17

7 Running Simulations

represents the input for a different Inport block signal (in sequential order)
and each row is the input value for the corresponding time point.

The total number of columns of the input matrix must equal n + 1, where n is
the total number of signals entering the model’s input ports.

The default input expression for a model is [t,u] and the default input
format is Array. So if you define t and u in the base workspace, you need only
select the Input option to input data from the model’s base workspace. For
example, suppose that a model has two input ports, one of which accepts two
signals and the other of which accepts one signal. Also, suppose that the base
workspace defines u and t as follows:

t = (0:0.1:1)';
u = [sin(t), cos(t), 4*cos(t)];

Note The array input format allows you to load only real (noncomplex) scalar
or vector data of type double. Use the structure format to input complex data,
matrix (2-D) data, and/or data types other than double.

Using a MATLAB Time Expression to Import Data
You can use a MATLAB time expression to import data from the MATLAB
workspace. To use a time expression, enter the expression as a string (i.e.,
enclosed in single quotes) in the Input field of the Data Import/Export
pane. The time expression can be any MATLAB expression that evaluates to a
row vector equal in length to the number of signals entering the model’s input
ports. For example, suppose that a model has one vector Inport that accepts
two signals. Furthermore, suppose that timefcn is a user-defined function
that returns a row vector two elements long. The following are valid input
time expressions for such a model:

'[3*sin(t), cos(2*t)]'

'4*timefcn(w*t)+7'

Simulink evaluates the expression at each step of the simulation, applying the
resulting values to the model’s input ports. Note that Simulink defines the
variable t when it runs the simulation. Also, you can omit the time variable

7-18

Importing and Exporting Simulation Data

in expressions for functions of one variable. For example, Simulink interprets
the expression sin as sin(t).

Importing Data Structures
Simulink can read data from the workspace in the form of a structure whose
name is specified in the Input text field. You can import structures that
include only signal data or both signal and time data.

Importing signal-and-time data structures. To import structures that
include both signal and time data, select the Structure with time option on
from the Format list on the Data Import/Export pane. The input structure
must have two top-level fields: time and signals. The time field contains a
column vector of the simulation times. The signals field contains an array of
substructures, each of which corresponds to a model input port.

Each signals substructure must contain two fields named values and
dimensions, respectively. The values field must contain an array of inputs
for the corresponding input port where each input corresponds to a time point
specified by the time field. The dimensions field specifies the dimensions of
the input. If each input is a scalar or vector (1-D array) value, the dimensions
field must be a scalar value that specifies the length of the vector (1 for a
scalar). If each input is a matrix (2-D array), the dimensions field must be a
two-element vector whose first element specifies the number of rows in the
matrix and whose second element specifies the number of columns.

Note You must set the Port dimensions parameter of the Inport to be the
same value as the dimensions field of the corresponding input structure. If
the values differ, Simulink stops and displays an error message when you try
to simulate the model.

If the inputs for a port are scalar or vector values, the values field must be
an M-by-N array where M is the number of time points specified by the time
field and N is the length of each vector value. For example, the following code
creates an input structure for loading 11 time samples of a two-element signal
vector of type int8 into a model with a single input port:

7-19

7 Running Simulations

a.time = (0:0.1:1)';
c1 = int8([0:1:10]');
c2 = int8([0:10:100]');
a.signals(1).values = [c1 c2];
a.signals(1).dimensions = 2;

To load this data into the model’s input port, you would select the Input option
on the Data Import/Export pane and enter a in the input expression field.

If the inputs for a port are matrices (2-D arrays), the values field must be an
M-by-N-by-T array where M and N are the dimensions of each matrix input
and T is the number of time points. For example, suppose that you want
to input 51 time samples of a 4-by-5 matrix signal into one of your model’s
input ports. Then, the corresponding dimensions field of the workspace
structure must equal [4 5] and the values array must have the dimensions
4-by-5-by-51.

As another example, consider the following model, which has two inputs.

Suppose that you want to input a sine wave into the first port and a cosine
wave into the second port. To do this, define a vector, a, as follows, in the
base workspace:

a.time = (0:0.1:1)';
a.signals(1).values = sin(a.time);
a.signals(1).dimensions = 1;
a.signals(2).values = cos(a.time);
a.signals(2).dimensions = 1;

Select the Input box for this model, enter a in the adjacent text field, and
select StructureWithTime as the I/O format.

7-20

Importing and Exporting Simulation Data

Importing Signal-Only Structures. The Structure format is the same as
the Structure with time format except that the time field is empty. For
example, in the preceding example, you could set the time field as follows:

a.time = []

In this case, Simulink reads the input for the first time step from the first
element of an input port’s value array, the value for the second time step from
the second element of the value array, etc.

Per-Port Structures. This format consists of a separate structure-with-time
or structure-without-time for each port. Each port’s input data structure
has only one signals field. To specify this option, enter the names of the
structures in the Input text field as a comma-separated list, in1, in2,...,
inN, where in1 is the data for your model’s first port, in2 for the second input
port, and so on.

Importing Time-Series Data
Any root-level Inport block can import data specified by a time-series object
(see Simulink.Timeseries in the online Simulink reference) residing in the
MATLAB workspace. In addition, any root-level input port defined by a bus
object (see Simulink.Bus in the online Simulink reference) can import data
from a time-series array object (see Simulink.TSArray in the online Simulink
reference) that has the same structure as the bus object.

This capability allows you to import data logged by a previous simulation
run (see “Logging Signals” in the online Simulink reference). For example,
suppose that you have a model that references several other models. You could
use data logged from the inputs of the referenced models when simulating
the top model as inputs for the referenced models simulated by themselves.
This allows you to test the referenced models independently of the top model
and each other.

To import data from time-series and time-series array objects, enter a
comma-separated list of variables or expressions that evaluate to the objects
in the Input edit field on the Data Import/Export pane of the Configuration
Parameters dialog box (see “Configuration Parameters Dialog Box” on page
7-36). Each item in the Input list corresponds to one of the model’s root-level

7-21

7 Running Simulations

input ports, with the first item corresponding to the first root-level input port,
the second to the second root-level input port, and so on.

Exporting Data to the MATLAB Workspace
You can specify return variables by selecting the Time, States, and/or
Output check boxes in the Save to workspace area of this dialog box pane.
Specifying return variables causes Simulink to write values for the time,
state, and output trajectories (as many as are selected) into the workspace.

To assign values to different variables, specify those variable names in the
fields to the right of the check boxes. To write output to more than one
variable, specify the variable names in a comma-separated list. Simulink
saves the simulation times in the vector specified in the Save to workspace
area.

Note Simulink saves the output to the workspace at the base sample rate of
the model. Use a To Workspace block if you want to save output at a different
sample rate.

The Save options area enables you to specify the format and restrict the
amount of output saved.

Format options for model states and outputs are listed below.

Format Options

Array. If you select this option, Simulink saves a model’s states and outputs
in a state and output array, respectively.

The state matrix has the name specified in the Save to workspace area (for
example, xout). Each row of the state matrix corresponds to a time sample
of the model’s states. Each column corresponds to an element of a state. For
example, suppose that your model has two continuous states, each of which
is a two-element vector. Then the first two elements of each row of the state
matrix contains a time sample of the first state vector. The last two elements
of each row contain a time sample of the second state vector.

7-22

Importing and Exporting Simulation Data

The model output matrix has the name specified in the Save to workspace
area (for example, yout). Each column corresponds to a model output port,
each row to the outputs at a specific time.

Note You can use array format to save your model’s outputs and states only
if the outputs are either all scalars or all vectors (or all matrices for states),
are either all real or all complex, and are all of the same data type. Use the
Structure or StructureWithTime output formats (see “Structure with time”
on page 7-23) if your model’s outputs and states do not meet these conditions.

Structure with time. If you select this format, Simulink saves the model’s
states and outputs in structures having the names specified in the Save to
workspace area (for example, xout and yout).

The structure used to save outputs has two top-level fields: time and signals.
The time field contains a vector of the simulation times. The signals field
contains an array of substructures, each of which corresponds to a model
output port. Each substructure has four fields: values, dimensions, label,
and blockName. The values field contains the outputs for the corresponding
output port. If the outputs are scalars or vectors, the values field is a
matrix each of whose rows represents an output at the time specified by the
corresponding element of the time vector. If the outputs are matrix (2-D)
values, the values field is a 3-D array of dimensions M-by-N-by-T where
M-by-N is the dimensions of the output signal and T is the number of output
samples. If T = 1, MATLAB drops the last dimension. Therefore, the values
field is an M-by-N matrix. The dimensions field specifies the dimensions of
the output signal. The label field specifies the label of the signal connected to
the output port or the type of state (continuous or discrete). The blockName
field specifies the name of the corresponding output port or block with states.

The structure used to save states has a similar organization. The states
structure has two top-level fields: time and signals. The time field contains
a vector of the simulation times. The signals field contains an array
of substructures, each of which corresponds to one of the model’s states.
Each signals structure has four fields: values, dimensions, label, and
blockName. The values field contains time samples of a state of the block
specified by the blockName field. The label field for built-in blocks indicates
the type of state: either CSTATE (continuous state) or DSTATE (discrete state).

7-23

7 Running Simulations

For S-Function blocks, the label contains whatever name is assigned to the
state by the S-Function block.

The time samples of a state are stored in the values field as a matrix of
values. Each row corresponds to a time sample. Each element of a row
corresponds to an element of the state. If the state is a matrix, the matrix is
stored in the values array in column-major order. For example, suppose that
the model includes a 2-by-2 matrix state and that Simulink logs 51 samples
of the state during a simulation run. The values field for this state would
contain a 51-by-4 matrix where each row corresponds to a time sample of the
state and where the first two elements of each row correspond to the first
column of the sample and the last two elements correspond to the second
column of the sample.

Note Simulink can read back simulation data saved to the workspace in the
Structure with time output format. See “Importing signal-and-time data
structures” on page 7-19 for more information.

Structure. This format is the same as the preceding except that Simulink
does not store simulation times in the time field of the saved structure.

Per-Port Structures. This format consists of a separate structure-with-time
or structure-without-time for each output port. Each output data structure
has only one signals field. To specify this option, enter the names of
the structures in the Output text field as a comma-separated list, out1,
out2,..., outN, where out1 is the data for your model’s first port, out2
for the second input port, and so on.

Importing and Exporting States
Simulink allows you to import the initial values of a system’s states, i.e., its
initial conditions, at the beginning of a simulation and save the final values
of the states at the end of the simulation. This feature allows you to save a
steady-state solution and restart the simulation at that known state.

7-24

Importing and Exporting Simulation Data

Saving Final States
To save the final values of a model’s states, checkFinal states in the Save to
workspace area of the Data Import/Export pane and enter a name in the
adjacent edit field. Simulink saves the states in a workspace variable having
the specified name. The saved data has the format that you specify in the
Save options area of the Data Import/Export pane.

When saving states from a referenced model in the structure-with-time
format, Simulink adds a boolean subfield named inReferencedModel to the
signals field of the saved data structure. This field’s value is true (1) if the
signals field records the final state of a block that resides in the submodel,
e.g.,

>> xout.signals(1)

ans =

values: [101x1 double]
dimensions: 1

label: 'DSTATE'
blockName: [1x66 char]

inReferencedModel: 1

If the signals field records a submodel state, its blockName subfield contains a
compound path comprising a top model path and a submodel path. The top
model path is the path from the model root to the Model block that references
the submodel. The submodel path is the path from the submodel root to the
block whose state the signals field records. The compound path uses a |
character to separate the top and submodel paths, e.g.,

>> xout.signals(1).blockName

ans =

sldemo_mdlref_basic/CounterA|sldemo_mdlref_counter/Previous Output

7-25

7 Running Simulations

Loading Initial States
To load states, check Initial state in the Load from workspace area of the
Data Import/Export pane and specify the name of a variable that contains
the initial state values, for example, a variable containing states saved from a
previous simulation. The initial values specified by the workspace variable
override the initial values specified by the model itself, i.e., the values
specified by the initial condition parameters of those blocks in the model
that have states.

Note You must use the structure or structure-with-time format to initialize
the states of a top model and the models that it references.

Limiting Output
Saving data to the workspace can slow down the simulation and consume
memory. To avoid this, you can limit the number of samples saved to the
most recent samples or you can skip samples by applying a decimation
factor. To set a limit on the number of data samples saved, select the check
box labeled Limit data points to last and specify the number of samples
to save. To apply a decimation factor, enter a value in the field to the right
of the Decimation label. For example, a value of 2 saves every other point
generated.

Specifying Output Options
The Output options list on the Data Import/Export configuration pane
() enables you to control how much output the simulation generates. You
can choose from three options:

• Refine output

• Produce additional output

• Produce specified output only

Refining Output
The Refine output choice provides additional output points when the
simulation output is too coarse. This parameter provides an integer number

7-26

Importing and Exporting Simulation Data

of output points between time steps; for example, a refine factor of 2 provides
output midway between the time steps, as well as at the steps. The default
refine factor is 1.

To get smoother output, it is much faster to change the refine factor instead of
reducing the step size. When the refine factor is changed, the solvers generate
additional points by evaluating a continuous extension formula at those
points. Changing the refine factor does not change the steps used by the solver.

The refine factor applies to variable-step solvers and is most useful when you
are using ode45. The ode45 solver is capable of taking large steps; when
graphing simulation output, you might find that output from this solver is not
sufficiently smooth. If this is the case, run the simulation again with a larger
refine factor. A value of 4 should provide much smoother results.

Note This option helps the solver to locate zero crossings (see “Zero-Crossing
Detection” on page 2-19).

Producing Additional Output
The Produce additional output choice enables you to specify directly those
additional times at which the solver generates output. When you select this
option, Simulink displays an Output times field on the Data Import/Export
pane. Enter a MATLAB expression in this field that evaluates to an additional
time or a vector of additional times. The additional output is produced using a
continuous extension formula at the additional times. Unlike the refine factor,
this option changes the simulation step size so that time steps coincide with
the times that you have specified for additional output.

Producing Specified Output Only
The Produce specified output only choice provides simulation output
only at the specified output times. This option changes the simulation step
size so that time steps coincide with the times that you have specified for
producing output. This choice is useful when you are comparing different
simulations to ensure that the simulations produce output at the same times.

7-27

7 Running Simulations

Comparing Output Options
A sample simulation generates output at these times:

0, 2.5, 5, 8.5, 10

Choosing Refine output and specifying a refine factor of 2 generates output
at these times:

0, 1.25, 2.5, 3.75, 5, 6.75, 8.5, 9.25, 10

Choosing the Produce additional output option and specifying [0:10]
generates output at these times

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

and perhaps at additional times, depending on the step size chosen by the
variable-step solver.

Choosing the Produce specified output only option and specifying [0:10]
generates output at these times:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

7-28

Configuration Sets

Configuration Sets
A configuration set is a named set of values for a model’s parameters, such
as solver type and simulation start or stop time. Every new model is created
with a default configuration set, called Configuration, that initially specifies
default values for the model’s parameters. You can subsequently create and
modify additional configuration sets and associate them with the model. The
sets associated with a model can each specify different values for any given
model parameter.

Configuration Set Components
A configuration set comprises groups of related parameters called components.
Every configuration set includes the following components:

• Solver

• Data Import/Export

• Optimization

• Diagnostics

• Hardware Implementation

• Model Referencing

Some Simulink-based products, such as Real-Time Workshop, define
additional components. If such a product is installed on your system, the
configuration set also contains the components that it defines.

The Active Set
Only one of the configuration sets associated with a model is active at any
given time. The active set determines the current values of the model’s model
parameters. Changing the value of a parameter in the Model Explorer
changes its value in the active set. Simulink allows you to change the
active set at any time (except when executing the model). In this way, you
can quickly reconfigure a model for different purposes, e.g., testing and
production, or apply standard configuration settings to new models.

7-29

7 Running Simulations

Displaying Configuration Sets
To display the configuration sets associated with a model, open the Model
Explorer (see “The Model Explorer” on page 8-2). The configuration sets
associated with the model appear as gear-shaped nodes in the Model
Explorer’s Model Hierarchy pane.

The Model Explorer’s Contents pane displays the components of the selected
configuration set. The Model Explorer’s Dialog pane display a dialog for
setting the parameters of the selected group (see “Configuration Parameters
Dialog Box” on page 7-36).

Activating a Configuration Set
To activate a configuration set, right-click the configuration set’s node to
display the node’s context menu, then select Activate from the context menu.

7-30

Configuration Sets

Copying, Deleting, and Moving Configuration Sets
You can use edit commands on the Model Explorer’s Edit or context menus
or object drag-and-drop operations to delete, copy, or move configuration sets
among models displayed in the Model Explorer’s Model Hierarchy pane.

For example, to copy a configuration set, using edit commands:

1 Select the configuration set that you want to copy in the Model Hierarchy
pane.

2 Select Copy from the Model Explorer’s Edit menu or the configuration
set’s context menu or press Ctrl+C.

3 Select the model in which you want to create the copy

Note You can create a copy in the same model as the original.

4 Select Paste from the Model Explorer’s Edit menu or from the model’s
context menu or press Ctrl+V.

To copy the configuration set, using object drag-and-drop, hold the Ctrl key
and the right mouse button down and drag the configuration set’s node
to the node of the model in which you want to create the copy. To move a
configuration set from one model to another, using drag-and-drop, hold the
Ctrl key and the left mouse button down and drag the configuration set’s node
to the node of the destination model.

Note You cannot move or delete a model’s active configuration set.

Copying Configuration Set Components
To copy a configuration set component from one configuration set to another:

1 Select the component in the Model Explorer’s Contents pane.

2 Select Copy from the Model Explorer’s Edit menu or the component’s
context menu or press Ctrl+C.

7-31

7 Running Simulations

3 Select the configuration set into which you want to copy the component.

4 Select Paste from the Model Explorer’s Edit menu or the component’s
context menu or press Ctrl+C.

Note The copy replaces the component of the same name in the destination
configuration set. For example, if you copy the Solver component of
configuration set A and paste it into configuration set B, the copy replaces
B’s existing Solver component.

Creating Configuration Sets
To create a new configuration set, copy an existing configuration set.

Setting Values in Configuration Sets
To set the value of a parameter in a configuration set, select the configuration
set in the Model Explorer and then edit the value of the parameter on the
corresponding dialog in the Model Explorer’s dialog view.

Model Configuration Dialog Box
The Model Configuration dialog box appears when you select a model
configuration in the Model Explorer.

7-32

Configuration Sets

The dialog box has the following fields.

Name
Name of the configuration. You can change the name of the configuration
by editing this field.

Simulation mode
The simulation mode used to simulate the model in this configuration. The
options are normal (see “Simulation Basics” on page 7-2), accelerator
(see “The Simulink Accelerator” in the online Simulink documentation), or
external mode. For information on external mode, see “External Mode” in the
“Real-Time Workshop User’s Guide” (available on the MathWorks Web site if
Real-Time Workshop is not installed on your system).

Description
A description of this configuration. You can use this field to enter information
pertinent to using this configuration.

7-33

7 Running Simulations

Model Configuration Preferences Dialog Box
The Model Configuration Preferences dialog box allows you to specify the
settings for the configuration parameters of newly created models. The dialog
box appears when you select Configuration Preferences under the Simulink
Root node in the Model Hierarchy pane of the Model Explorer.

The dialog box has the following fields.

Name
Name of the model preferences configuration. You can change the name of
the configuration by editing this field.

Simulation mode
The preferred mode used to simulate a model. The options are normal
(“Simulation Basics” on page 7-2), accelerator (see “The Simulink
Accelerator” in the online Simulink documentation), or external mode
(see the “Real-Time Workshop User’s Guide” in the Real-Time Workshop
documentation available on the MathWorks website).

7-34

Configuration Sets

Description
A description of the model configuration preferences. You can use this field
to enter information pertinent to the preferences.

Save Preferences
Select this button to save the current configuration preferences.

Restore to Default Preferences
Select this button to restore the default configuration settings for creating
new models.

Restore to Saved Preferences
Select this button to restore the preferences to the settings in effect the last
the preferences were saved. This option overrides any changes that you have
made to the preferences since the beginning of the session or since the last
time the preferences were restored.

7-35

7 Running Simulations

Configuration Parameters Dialog Box
The Configuration Parameters dialog box allows you to modify settings for
a model’s active configuration set (see “Configuration Sets” on page 7-29).

Note You can also use the Model Explorer to modify settings for the active
configuration set as well as for any other configuration set. See “The Model
Explorer” on page 8-2 for more information.

To display the dialog box, select Configuration Parameters from the model
editor’s Simulation or context menu. The dialog box appears.

The dialog box groups the controls used to set the configuration parameters
into various categories. To display the controls for a specific category, click the
category in the Select tree on the left side of the dialog box.

See “The Configuration Parameters Dialog Box” in the online Simulink
documentation for information on how to set specific configuration parameters:

In most cases, Simulink does not immediately apply a change that you have
made on the dialog box. To apply a change, you must click either the OK or
the Apply button at the bottom of the dialog box. The OK button applies
all the changes you made and dismisses the dialog box. The Apply button
applies the changes but leaves the dialog box open so that you can continue
to make changes.

7-36

Configuration Parameters Dialog Box

Note Each of the controls on the Configuration Parameters dialog box
correspond to a configuration parameter that you can set via the sim and
simset commands. See “Model Parameters” in the online Simulink reference
for descriptions of these parameters. The description for each parameter
specifies the Configuration Parameters dialog box prompt of the control
that sets it. This allows you to determine the model parameter corresponding
to a control on the Configuration Parameters dialog box.

7-37

7 Running Simulations

Diagnosing Simulation Errors
If errors occur during a simulation, Simulink halts the simulation, opens the
subsystems that caused the error (if necessary), and displays the errors in the
Simulation Diagnostics Viewer. The following section explains how to use the
viewer to determine the cause of the errors.

Simulation Diagnostics Viewer
The viewer comprises an Error Summary pane and an Error Message pane.

Error Summary Pane
The upper pane lists the errors that caused Simulink to terminate the
simulation. The pane displays the following information for each error.

Message. Message type (for example, block error, warning, log)

Source. Name of the model element (for example, a block) that caused the
error

7-38

Diagnosing Simulation Errors

Reported by. Component that reported the error (for example, Simulink,
Stateflow, Real-Time Workshop, etc.)

Summary. Error message, abbreviated to fit in the column

You can remove any of these columns of information to make more room for
the others. To remove a column, select the viewer’s View menu and uncheck
the corresponding item.

Error Message Pane
The lower pane initially contains the contents of the first error message listed
in the top pane. You can display the contents of other messages by clicking
their entries in the upper pane.

In addition to displaying the viewer, Simulink opens (if necessary) the
subsystem that contains the first error source and highlights the source.

You can display the sources of other errors by clicking anywhere in the error
message in the upper pane, by clicking the name of the error source in the
error message (highlighted in blue), or by clicking the Open button on the
viewer.

Changing Font Size
To change the size of the font used to display errors, select Font Size from
the viewer’s menu bar. A menu of font sizes appears. Select the desired font
size from the menu.

7-39

7 Running Simulations

Improving Simulation Performance and Accuracy
Simulation performance and accuracy can be affected by many things,
including the model design and choice of configuration parameters.

The solvers handle most model simulations accurately and efficiently with
their default parameter values. However, some models yield better results
if you adjust solver parameters. Also, if you know information about your
model’s behavior, your simulation results can be improved if you provide
this information to the solver.

Speeding Up the Simulation
Slow simulation speed can have many causes. Here are a few:

• Your model includes a MATLAB Fcn block. When a model includes a
MATLAB Fcn block, the MATLAB interpreter is called at each time step,
drastically slowing down the simulation. Use the built-in Fcn block or
Math Function block whenever possible.

• Your model includes an M-file S-function. M-file S-functions also cause
the MATLAB interpreter to be called at each time step. Consider either
converting the S-function to a subsystem or to a C-MEX file S-function.

• Your model includes a Memory block. Using a Memory block causes the
variable-order solvers (ode15s and ode113) to be reset back to order 1 at
each time step.

• The maximum step size is too small. If you changed the maximum step
size, try running the simulation again with the default value (auto).

• Did you ask for too much accuracy? The default relative tolerance (0.1%
accuracy) is usually sufficient. For models with states that go to zero, if
the absolute tolerance parameter is too small, the simulation can take too
many steps around the near-zero state values. See the discussion of error
in “Maximum order” in the online Simulink documentation.

• The time scale might be too long. Reduce the time interval.

• The problem might be stiff, but you are using a nonstiff solver. Try using
ode15s.

7-40

Improving Simulation Performance and Accuracy

• The model uses sample times that are not multiples of each other. Mixing
sample times that are not multiples of each other causes the solver to take
small enough steps to ensure sample time hits for all sample times.

• The model contains an algebraic loop. The solutions to algebraic loops are
iteratively computed at every time step. Therefore, they severely degrade
performance. For more information, see “Algebraic Loops” on page 2-24.

• Your model feeds a Random Number block into an Integrator block. For
continuous systems, use the Band-Limited White Noise block in the
Sources library.

Improving Simulation Accuracy
To check your simulation accuracy, run the simulation over a reasonable time
span. Then, either reduce the relative tolerance to 1e-4 (the default is 1e-3)
or reduce the absolute tolerance and run it again. Compare the results of
both simulations. If the results are not significantly different, you can feel
confident that the solution has converged.

If the simulation misses significant behavior at its start, reduce the initial step
size to ensure that the simulation does not step over the significant behavior.

If the simulation results become unstable over time,

• Your system might be unstable.

• If you are using ode15s, you might need to restrict the maximum order to
2 (the maximum order for which the solver is A-stable) or try using the
ode23s solver.

If the simulation results do not appear to be accurate,

• For a model that has states whose values approach zero, if the absolute
tolerance parameter is too large, the simulation takes too few steps around
areas of near-zero state values. Reduce this parameter value or adjust it
for individual states in the Integrator dialog box.

• If reducing the absolute tolerances does not sufficiently improve the
accuracy, reduce the size of the relative tolerance parameter to reduce the
acceptable error and force smaller step sizes and more steps.

7-41

7 Running Simulations

7-42

8

Exploring, Searching, and
Browsing Models

The following sections describe tools that enable you to quickly navigate to
any point in a model and find and modify objects in a model.

The Model Explorer (p. 8-2) How to use the Model Explorer
to find, display, and modify model
contents.

The Finder (p. 8-16) How to use the Simulink Finder
to locate blocks, states, and other
objects in a model, using search
criteria that you specify.

The Model Browser (p. 8-22) How to navigate quickly to any point
in a model’s block hierarchy.

8 Exploring, Searching, and Browsing Models

The Model Explorer
The Model Explorer allows you to quickly locate, view, and change elements of
a Simulink model or Stateflow chart. To display the Model Explorer, select
Model Explorer from the Simulink View menu or select an object in the
block diagram and select Explore from its context menu. The Model Explorer
appears.

The Model Explorer includes the following components:

• Model Hierarchy pane (see “Model Hierarchy Pane” on page 8-3)

• Contents pane (see “Contents Pane” on page 8-5)

• Dialog pane (see “Dialog Pane” on page 8-9)

• Main toolbar (see “Main Toolbar” on page 8-9)

• Search bar (see “Search Bar” on page 8-12)

8-2

The Model Explorer

You can use the Model Explorer’s View menu to hide the Dialog pane and
the toolbars, thereby making more room for the other panes.

Setting the Model Explorer’s Font Size
To increase the size of the font used by the Model Explorer to display text,
select Increase Font Size from the Model Explorer’s View menu or type
Ctrl+. To decrease the font size, select Decrease Font Size from the menu
or type Ctrl-. The change remains in effect across Simulink sessions.

Note Increasing or decreasing the Model Explorer’s font size also
correspondingly increases or decreases the font size used by Simulink dialog
boxes.

Model Hierarchy Pane
The Model Hierarchy pane displays a tree-structured view of the Simulink
model hierarchy.

8-3

8 Exploring, Searching, and Browsing Models

Simulink Root
The first node in the view represents the Simulink root. Expanding the root
node displays nodes representing the MATLAB workspace (the Simulink base
workspace) and each model and library loaded in the current session.

Base Workspace
This node represents the MATLAB workspace. The MATLAB workspace is
the base workspace for Simulink models. Variables defined in this workspace
are visible to all open Simulink models, i.e., to all models whose nodes appear
beneath the Base Workspace node in the Model Hierarchy pane.

Configuration Preferences
If you check the Show Configuration Preferences option on the Model
Explorer’s View menu, the expanded Simulink Root node also displays a
Configuration Preferences node. Selecting this node displays the preferred
model configuration (see “Configuration Sets” on page 7-29) for new models
in the adjacent panes. You can change the preferred configuration by editing
the displayed settings and using the Model Configuration Preferences
dialog box to save the settings (see “Model Configuration Preferences Dialog
Box” on page 7-34).

Model Nodes
Expanding a model node displays nodes representing the model’s configuration
sets (see “Configuration Sets” on page 7-29), top-level subsystems, model
references, and Stateflow charts. Expanding a node representing a subsystem
displays its subsystems, if any. Expanding a node representing a Stateflow
chart displays the chart’s top-level states. Expanding a node representing
a state shows its substates.

Displaying Node Contents
To display the contents of an object displayed in the Model Hierarchy
pane (e.g., a model or configuration set) in the adjacent Contents pane,
select the object. To open a graphical object (e.g., a model, subsystem, or
chart) in an editor window, right-click the object. A context menu appears.
Select Open from the context menu. To open an object’s properties dialog,
select Properties from the object’s context menu or from the Edit menu.
See “Configuration Sets” on page 7-29 for information on using the Model

8-4

The Model Explorer

Hierarchy pane to delete, move, and copy configuration sets from one model
to another.

Contents Pane
The Contents pane displays either of two tabular views selectable by tabs.
The Contents tab displays the contents of the object selected in the Model
Hierarchy pane. The Search Results tab displays the results of a search
operation (see “Search Bar” on page 8-12) .

In both views, the table rows correspond to objects (e.g., blocks or states);
the table columns, to object properties (e.g., name and type). The table cells
display the values of the properties of the objects contained by the object
selected in the Model Hierarchy pane or found by a search operation.

The objects and properties displayed in the Contents pane depend on the
type of object (e.g., subsystem, chart, or configuration set) selected in the
Model Hierarchy pane. For example, if the object selected in the Model
Hierarchy pane is a model or subsystem, the Contents pane by default
displays the name and type of the top-level blocks contained by that model or
subsystem. If the selected object is a Stateflow chart or state, the Contents
pane by default shows the name, scope, and other properties of the events and
data that make up the chart or state.

8-5

8 Exploring, Searching, and Browsing Models

Customize Contents Pane
The Customize Contents pane allows you to select the properties that the
Contents pane displays for the object selected in the Model Hierarchy
pane. When visible, the pane appears in the lower-left corner of the Model
Explorer window.

A splitter divides the Customize Contents pane from the Model Hierarchy
pane above it. Drag the splitter up or down to adjust the relative size of the
two panes.

The Customize Contents pane contains a tree-structured property list. The
list’s top-level nodes group object properties into the following categories:

• Current Properties

Properties that the Contents pane currently displays.

• All Properties

Properties of the contents of all models displayed in the Model Explorer
thus far in this session.

• Fixed Point Properties

Fixed-point properties of blocks.

8-6

The Model Explorer

By default, the properties currently displayed in the Contents pane are
the suggested properties for the currently selected model. The Customize
Contents pane allows you to perform the following customizations:

• To display additional properties of the selected model, expand the All
Properties node, if necessary, and check the desired properties.

• To delete some but not all properties from the Contents pane, expand the
Current Properties node, if necessary, and uncheck the properties that
you do not want to appear in the Contents pane.

• To delete all properties from the Contents pane (except the selected
object’s name), uncheck Current Properties.

• To add or remove fixed-point block properties from the Contents pane,
check or uncheck Fixed Point Properties.

Customizing the Contents Pane
The Model Explorer’s View menu allows you to control the type of objects and
properties displayed in the Contents pane.

• To display only object names in the Contents pane, uncheck the Show
Properties item on the View menu.

• To customize the set of properties displayed in the Contents pane, select
Customize Contents from the View menu or click the Customize
Contents button on the Model Explorer’s main toolbar (see “Main Toolbar”
on page 8-9). The Customize Contents pane appears. Use the pane to
select the properties you want the Contents pane to display.

• To specify the types of subsystem or chart contents displayed in the
Contents pane, select List View Options from the View menu. A menu
of object types appears. Check the types that you want to be displayed (e.g.,
Blocks and Named Signals/Connections or All Simulink Objects
for models and subsystems).

Reordering the Contents Pane
The Contents pane by default displays its contents in ascending order by
name. To order the contents in ascending order by any other displayed
property, click the head of the column that displays the property. To change

8-7

8 Exploring, Searching, and Browsing Models

the order from ascending to descending, or vice versa, click the head of the
property column that determines the current order.

Marking Nonexistent Properties
Some of the properties that the Contents pane is configured to display may
not apply to all the objects currently listed in the Contents pane. You can
configure the Model Explorer to indicate the inapplicable properties.

To do this, select Mark Nonexistent Properties from the Model Explorer’s
View menu. The Model Explorer now displays dashes for the values of
properties that do not apply to the objects displayed in the Contents pane.

Changing Property Values
You can change modifiable properties displayed in the Contents pane (e.g.,
a block’s name) by editing the displayed value. To edit a displayed value,
first select the row that contains it. Then click the value. An edit control
replaces the displayed value (e.g., an edit field for text values or a pull-down
list for a range of values). Use the edit control to change the value of the
selected property.

8-8

The Model Explorer

To assign the same property value to multiple objects displayed in the
Contents pane, select the objects and then change one of the selected objects
to have the new property value. The Model Explorer assigns the new property
value to the other selected objects as well.

Dialog Pane
The Dialog pane displays the dialog view of the object selected in the
Contents pane, e.g., a block or a configuration subset. You can use the
Dialog pane to view and change the selected object’s properties. To show or
hide this pane, select the Dialog View menu from the Model Explorer’s View
menu or the Dialog View button on the Model Explorer’s main toolbar (see
“Main Toolbar” on page 8-9).

Note Unlike the Contents pane, which allows you to set the properties of
multiple objects at a time, the Dialog pane allows you to set the properties of
only one object at a time. For example, in the Dialog pane, you can edit the
properties of the object currently selected in the Contents pane.

Main Toolbar
The Model Explorer’s main toolbar appears near the top of the Model Explorer
window under the Model Explorer’s menu.

The toolbar contains buttons that select commonly used Model Explorer
commands:

8-9

8 Exploring, Searching, and Browsing Models

Button Usage

Create a new model.

Open an existing model.

Cut the objects (e.g., variables) selected in the Contents pane
from the object (e.g., a workspace) selected in the Model
Hierarchy pane. Save a copy of the object on the system
clipboard.

Copy the objects selected in the Contents pane to the system
clipboard.

Paste objects from the clipboard into the object selected in the
Model Explorer’s Model Hierarchy pane.

Delete the objects selected in the Contents pane from the object
selected in the Model Hierarchy pane.

Add a MATLAB variable to the workspace selected in the Model
Hierarchy pane.

Add a Simulink.Parameter object to the workspace selected in
the Model Hierarchy pane.

Add a Simulink.Signal object to the workspace selected in the
Model Hierarchy pane.

Add a configuration set to the model selected in the Model
Hierarchy pane.

Add a Stateflow datum to the machine or chart selected in the
Model Hierarchy pane.

Add a Stateflow event to the machine or chart selected in the
Model Hierarchy pane or to the state selected in the Model
Explorer.

8-10

The Model Explorer

Button Usage

Add a code generation target to the model selected in the Model
Hierarchy pane.

Turn the Model Explorer’s Dialog pane on or off.

Customize the Model Explorer’s Contents pane.

Bring the MATLAB desktop to the front.

Display the Simulink Library Browser.

To show or hide the main toolbar, select Main Toolbar from the Model
Explorer’s View menu.

8-11

8 Exploring, Searching, and Browsing Models

Search Bar
The Model Explorer’s search bar allows you to select, configure, and initiate
searches of the object selected in the Model Hierarchy pane. It appears at
the top of the Model Explorer window.

To show or hide the search bar, check or uncheck Search Bar in the Model
Explorer’s View > Toolbars menu.

The search bar includes the following controls:

Search Type
Specifies the type of search to be performed. Options include:

• by Block Type

8-12

The Model Explorer

Search for blocks of a specified block type. Selecting this search type
causes the search bar to display a block type list control that allows you
to select the target block type from the types contained by the currently
selected model.

• by Property Name

Searches for objects that have a specified property. Selecting this search
type causes the search bar to display a control that allows you to specify
the target property’s name by selecting from a list of properties that objects
in the search domain can have.

• by Property Value

Searches for objects whose property matches a specified value. Selecting
this search type causes the search bar to display controls that allow you
to specify the name of the property, the value to be matched, and the type
of match (equals, less than, greater than, etc.).

• for Fixed Point

Searches a model for all blocks that support fixed-point computations.

• by Name

Searches a model for all objects that have the specified string in the name
of the object.

• by Stateflow Type

Searches for Stateflow objects of a specified type.

• for Library Links

Searches for library links in the current model.

• by Class

Searches for Simulink objects of a specified class.

• for Model References

Searches a model for references to other models.

• by Dialog Prompt

Searches a model for all objects whose dialogs contain a specified prompt.

• by String

8-13

8 Exploring, Searching, and Browsing Models

Searches a model for all objects in which a specified string occurs.

Search Options
Specifies options that apply to the current search. The options include:

• Search Current System and Below

Search the current system and the subsystems that it includes directly
or indirectly.

• Look Inside Masked Subsystems

Search includes masked subsystems.

• Look Inside Linked Subsystems

Search includes linked subsystems.

• Match Whole String

Do not allow partial string matches, e.g., do not allow sub to match
substring.

• Match Case

Consider case when matching strings, e.g., Gain does not match gain.

• Regular Expression

The Model Explorer considers a string to be matched as a regular
expression.

• Evaluate Property Values During Search

This option applies only for searches by property value. If enabled, the
option causes the Model Explorer to evaluate the value of each property
as a MATLAB expression and compare the result to the search value.
If disabled (the default), the Model Explorer compares the unevaluated
property value to the search value.

• Refine Search

Causes the next search operation to search for objects that meet both the
original and new search criteria (see “Refining a Search” on page 8-15).

8-14

The Model Explorer

Search Button
Initiates the search specified by the current settings of the search bar on the
object selected in the Model Explorer’s Model Hierarchy pane. The Model
Explorer displays the results of the search in the tabbed Search Results
pane.

You can edit the results displayed in the Search Results pane. For example,
to change all objects found by a search to have the same property value, select
the objects in the Search Results pane and change one of them to have the
new property value.

Refining a Search
To refine the previous search, check the Refine Search option on the search
bar’s Search Options menu. A Refine button replaces the Search button
on the search bar. Use the search bar to define new search criteria and then
click the Refine button. The Model Explorer searches for objects that match
the previous search criteria and the new criteria.

8-15

8 Exploring, Searching, and Browsing Models

The Finder
The Finder locates blocks, signals, states, or other objects in a model. To
display the Finder, select Find from the Edit menu. The Find dialog box
appears.

Use the Filter options (see “Filter Options” on page 8-18) and Search
criteria (see “Search Criteria” on page 8-18) panels to specify the
characteristics of the object you want to find. Next, if you have more than
one system or subsystem open, select the system or subsystem where you
want the search to begin from the Start in system list. Finally, click the
Find button. Simulink searches the selected system for objects that meet the
criteria you have specified.

8-16

The Finder

Any objects that satisfy the criteria appear in the results panel at the bottom
of the dialog box.

You can display an object by double-clicking its entry in the search results
list. Simulink opens the system or subsystem that contains the object (if
necessary) and highlights and selects the object. To sort the results list, click
any of the buttons at the top of each column. For example, to sort the results
by object type, click the Type button. Clicking a button once sorts the list in
ascending order, clicking it twice sorts it in descending order. To display an
object’s parameters or properties, select the object in the list. Then press the
right mouse button and select Parameter or Properties from the resulting
context menu.

8-17

8 Exploring, Searching, and Browsing Models

Filter Options
The Filter options panel allows you to specify the kinds of objects to look for
and where to search for them.

Object type list
The object type list lists the types of objects that Simulink can find. By
clearing a type, you can exclude it from the Finder’s search.

Look inside masked subsystem
Selecting this option causes Simulink to look for objects inside masked
subsystems.

Look inside linked systems
Selecting this option causes Simulink to look for objects inside subsystems
linked to libraries.

Search Criteria
The Search criteria panel allows you to specify the criteria that objects must
meet to satisfy your search request.

8-18

The Finder

Basic
The Basic panel allows you to search for an object whose name and,
optionally, dialog parameters match a specified text string. Enter the search
text in the panel’s Find what field. To display previous search text, select the
drop-down list button next to the Find what field. To reenter text, click it
in the drop-down list. Select Search block dialog parameters if you want
dialog parameters to be included in the search.

Advanced
The Advanced panel allows you to specify a set of as many as seven
properties that an object must have to satisfy your search request.

To specify a property, enter its name in one of the cells in the Property
column of the Advanced pane or select the property from the cell’s property
list. To display the list, select the down arrow button next to the cell. Next
enter the value of the property in the Value column next to the property
name. When you enter a property name, the Finder checks the check box next
to the property name in the Select column. This indicates that the property
is to be included in the search. If you want to exclude the property, clear
the check box.

Match case
Select this option if you want Simulink to consider case when matching search
text against the value of an object property.

8-19

8 Exploring, Searching, and Browsing Models

Other match options
Next to the Match case option is a list that specifies other match options
that you can select.

• Match whole word

Specifies a match if the property value and the search text are identical
except possibly for case.

• Contains word

Specifies a match if a property value includes the search text.

• Regular expression

Specifies that the search text should be treated as a regular expression
when matched against property values. The following characters have
special meanings when they appear in a regular expression.

Character Meaning

^ Matches start of string.

$ Matches end of string.

. Matches any character.

\ Escape character. Causes the next character to have its
ordinary meaning. For example, the regular expression
\.. matches .a and .2 and any other two-character
string that begins with a period.

* Matches zero or more instances of the preceding
character. For example, ba* matches b, ba, baa, etc.

+ Matches one or more instances of the preceding
character. For example, ba+ matches ba, baa, etc.

[] Indicates a set of characters that can match the current
character. A hyphen can be used to indicate a range
of characters. For example, [a-zA-Z0-9_]+ matches
foo_bar1 but not foo$bar. A ^ indicates a match
when the current character is not one of the following
characters. For example, [^0-9] matches any character
that is not a digit.

8-20

The Finder

Character Meaning

\w Matches a word character (same as [a-z_A-Z0-9]).

\W Matches a nonword character (same as [^a-z_A-Z0-9]).

\d Matches a digit (same as [0-9]).

\D Matches a nondigit (same as [^0-9]).

\s Matches white space (same as [\t\r\n\f]).

\S Matches nonwhite space (same as [^ \t\r\n\f]).

\<WORD\> Matches WORD where WORD is any string of word
characters surrounded by white space.

8-21

8 Exploring, Searching, and Browsing Models

The Model Browser
The Model Browser enables you to

• Navigate a model hierarchically

• Open systems in a model

• Determine the blocks contained in a model

Note The browser is available only on Microsoft Windows platforms.

To display the Model Browser, select Model Browser Options > Model
Browser from the Simulink View menu.

The model window splits into two panes. The left pane displays the browser, a
tree-structured view of the block diagram displayed in the right pane.

8-22

The Model Browser

Note The Browser initially visible preference causes Simulink to open
models by default in the Model Browser. To set this preference, select
Preferences from the Simulink File menu.

The top entry in the tree view corresponds to your model. A button next to the
model name allows you to expand or contract the tree view. The expanded
view shows the model’s subsystems. A button next to a subsystem indicates
that the subsystem itself contains subsystems. You can use the button to
list the subsystem’s children. To view the block diagram of the model or
any subsystem displayed in the tree view, select the subsystem. You can
use either the mouse or the keyboard to navigate quickly to any subsystem
in the tree view.

Navigating with the Mouse
Click any subsystem visible in the tree view to select it. Click the + button
next to any subsystem to list the subsystems that it contains. Click the button
again to contract the entry.

Navigating with the Keyboard
Use the up/down arrows to move the current selection up or down the tree
view. Use the left/right arrow or +/- keys on your numeric keypad to expand
an entry that contains subsystems.

Showing Library Links
The Model Browser can include or omit library links from the tree view
of a model. Use the Simulink Preferences dialog box to specify whether
to display library links by default. To toggle display of library links, select
Show Library Links from the Model browser Options submenu of the
Simulink View menu.

Showing Masked Subsystems
The Model Browser can include or omit masked subsystems from the tree
view. If the tree view includes masked subsystems, selecting a masked
subsystem in the tree view displays its block diagram in the diagram view.

8-23

8 Exploring, Searching, and Browsing Models

Use the Simulink Preferences dialog box to specify whether to display
masked subsystems by default. To toggle display of masked subsystems,
select Look Under Masks from the Model browser Options submenu
of the Simulink View menu.

8-24

9

Creating Masked
Subsystems

This section explains how to create custom user interfaces (masks) for
Simulink subsystems.

About Masks (p. 9-2) An overview of masked subsystems
that introduces you to key concepts.

Masked Subsystem Example (p. 9-6) Introduces you to masking by
taking you step-by-step through
the creation of a simple masked
subsystem.

Masking a Subsystem (p. 9-12) General procedure for masking
subsystems.

Mask Editor (p. 9-14) Detailed description of the Mask
Editor.

Linking Mask Parameters to Block
Parameters (p. 9-32)

How to link a mask’s parameters to
the parameters of blocks behind the
mask.

9 Creating Masked Subsystems

About Masks
A mask is a custom user interface for a subsystem that hides the subsystem’s
contents, making it appear to the user as an atomic block with its own icon
and parameter dialog box. The Simulink Mask Editor enables you to create a
mask for any subsystem. Masking a subsystem allows you to

• Replace the parameter dialogs of a subsystem and its contents with a
single parameter dialog with its own block description, parameter prompts,
and help text

• Replace a subsystem’s standard icon with a custom icon that depicts its
purpose

• Prevent unintended modification of subsystems by hiding their contents
behind a mask

• Create a custom block by encapsulating a block diagram that defines the
block’s behavior in a masked subsystem and then placing the masked
subsystem in a library

Note You can also mask S-Function and Model blocks. The instructions for
masking Subsystem blocks apply to S-Function and Model blocks as well
except where noted.

Mask Features
Masks can include any of the following features.

Mask Icon
The mask icon replaces a subsystem’s standard icon, i.e., it appears in a block
diagram in place of the standard icon for a subsystem block. Simulink uses
MATLAB code that you supply to draw the custom icon. You can use any
MATLAB drawing command in the icon code. This gives you great flexibility
in designing an icon for a masked subsystem.

9-2

About Masks

Mask Parameters
Simulink allows you to define a set of user-settable parameters for a masked
subsystem. Simulink stores the value of a parameter in the mask workspace
(see “Mask Workspace” on page 9-4) as the value of a variable whose name
you specify. These associated variables allow you to link mask parameters to
specific parameters of blocks inside a masked subsystem (internal parameters)
such that setting a mask parameter sets the associated block parameter (see
“Linking Mask Parameters to Block Parameters” on page 9-32).

Note If you intend to allow the user to specify the model referenced by a
masked Model block or a Model block in a masked subsystem, you must
ensure that the mask requires that the user specify the model name as a
literal value rather than as a workspace variable. This is because Simulink
updates model reference targets before evaluating block parameters. The
recommended way to force the user to specify the model name as a literal is
to use a pop-up control on the mask to specify the model name. See “Pop-Up
Control” on page 9-24 for more information.

Mask Parameter Dialog Box
The mask parameter dialog box contains controls that enable a user to set
the values of the masks parameters and hence the values of any internal
parameters linked to the mask parameters.

The mask parameter dialog box replaces the subsystem’s standard parameter
dialog box, i.e., clicking on the masked subsystem’s icon causes the mask
dialog box to appear instead of the standard parameter dialog box for a
Subsystem block

Note Use the 'mask' option of the open_system command to open a block’s
mask dialog box at the MATLAB command line or in an M program.

You can customize every feature of the mask dialog box, including which
parameters appear on the dialog box, the order in which they appear,
parameter prompts, the controls used to edit the parameters, and the

9-3

9 Creating Masked Subsystems

parameter callbacks (code used to process parameter values entered by the
user).

Mask Initialization Code
The initialization code is MATLAB code that you specify and that Simulink
runs to initialize the masked subsystem at the start of a simulation run.
You can use the initialization code to set the initial values of the masked
subsystem’s mask parameters.

Mask Workspace
Simulink associates a workspace with each masked subsystem that you
create. Simulink stores the current values of the subsystem’s parameters in
the workspace as well as any variables created by the block’s initialization
code and parameter callbacks. You can use model and mask workspace
variables to initialize a masked subsystem and to set the values of blocks
inside the masked subsystem, subject to the following rules.

• The Permit Hierarchical Resolution option of the subsystem is set to
All or ParametersOnly (see “Permit Hierarchical Resolution” in the online
documentation for the Subsystem block).

• A block parameter expression can refer only to variables defined in the
mask workspaces of the subsystem or nested subsystems that contain the
block or in the model’s workspace.

• A valid reference to a variable defined on more than one level in the model
hierarchy resolves to the most local definition.

For example, suppose that model M contains masked subsystem A, which
contains masked subsystem B. Further suppose that B refers to a variable
x that exists in both A’s and M’s workspaces. In this case, the reference
resolves to the value in A’s workspace.

• A masked subsystem’s initialization code can refer only to variables in
its local workspace.

• The mask workspace of a Model block is not visible to the model that
it references. Any variables used by the referenced model must resolve
to workspaces defined in the referenced model or to the base (i.e., the
MATLAB) workspace.

9-4

About Masks

Creating Masks
See “Masking a Subsystem” on page 9-12 for an overview of the process of
creating a masked subsystem. See “Masked Subsystem Example” on page 9-6
for an example of the process.

9-5

9 Creating Masked Subsystems

Masked Subsystem Example
This simple subsystem models the equation for a line, y = mx + b.

Ordinarily, when you double-click a Subsystem block, the Subsystem block
opens, displaying its blocks in a separate window. The mx + b subsystem
contains a Gain block, named Slope, whose Gain parameter is specified as m,
and a Constant block, named Intercept, whose Constant value parameter is
specified as b. These parameters represent the slope and intercept of a line.

This example creates a custom dialog box and icon for the subsystem. One
dialog box contains prompts for both the slope and the intercept. After you
create the mask, double-click the Subsystem block to open the mask dialog
box. The mask dialog box and icon look like this:

A user enters values for Slope and Intercept in the mask dialog box.
Simulink makes these values available to all the blocks in the underlying
subsystem. Masking this subsystem creates a self-contained functional unit
with its own application-specific parameters, Slope and Intercept. The mask
maps these mask parameters to the generic parameters of the underlying

9-6

Masked Subsystem Example

blocks. The complexity of the subsystem is encapsulated by a new interface
that has the look and feel of a built-in Simulink block.

To create a mask for this subsystem, you need to

• Specify the prompts for the mask dialog box parameters. In this example,
the mask dialog box has prompts for the slope and intercept.

• Specify the variable name used to store the value of each parameter.

• Enter the documentation of the block, consisting of the block description
and the block help text.

• Specify the drawing command that creates the block icon.

• Specify the commands that provide the variables needed by the drawing
command (there are none in this example).

Creating Mask Dialog Box Prompts
To create the mask for this subsystem, select the Subsystem block and choose
Mask Subsystem from the Edit menu.

9-7

9 Creating Masked Subsystems

This example primarily uses the Mask Editor’s Parameters pane to create
the masked subsystem’s dialog box.

The Mask Editor enables you to specify these attributes of a mask parameter:

• Prompt, the text label that describes the parameter

• Control type, the style of user interface control that determines how
parameter values are entered or selected

• Variable, the name of the variable that stores the parameter value

Generally, it is convenient to refer to masked parameters by their prompts.
In this example, the parameter associated with slope is referred to as the
Slope parameter, and the parameter associated with intercept is referred to
as the Intercept parameter.

The slope and intercept are defined as edit controls. This means that the user
types values into edit fields in the mask dialog box. These values are stored in
variables in the mask workspace. Masked blocks can access variables only
in the mask workspace. In this example, the value entered for the slope is

9-8

Masked Subsystem Example

assigned to the variable m. The Slope block in the masked subsystem gets the
value for the slope parameter from the mask workspace.

This figure shows how the slope parameter definitions in the Mask Editor
map to the actual mask dialog box parameters.

After you create the mask parameters for slope and intercept, click OK. Then
double-click the Subsystem block to open the newly constructed dialog box.
Enter 3 for the Slope and 2 for the Intercept parameter.

9-9

9 Creating Masked Subsystems

Creating the Block Description and Help Text
The mask type, block description, and help text are defined on the
Documentation pane. For this sample masked block, the pane looks like
this.

Creating the Block Icon
So far, we have created a customized dialog box for the mx + b subsystem.
However, the Subsystem block still displays the generic Simulink subsystem
icon. An appropriate icon for this masked block is a plot that indicates the
slope of the line. For a slope of 3, that icon looks like this.

9-10

Masked Subsystem Example

The block icon is defined on the Icon pane. For this block, the Icon pane
looks like this.

The drawing command

plot([0 1],[0 m]+(m<0))

plots a line from (0,0) to (1,m). If the slope is negative, Simulink shifts the
line up by 1 to keep it within the visible drawing area of the block.

The drawing commands have access to all the variables in the mask
workspace. As you enter different values of slope, the icon updates the slope
of the plotted line.

Select Normalized as the Drawing coordinates parameter, located at the
bottom of the list of icon properties, to specify that the icon be drawn in a
frame whose bottom-left corner is (0,0) and whose top-right corner is (1,1).
See “Icon Pane” on page 9-16 for more information.

9-11

9 Creating Masked Subsystems

Masking a Subsystem
To mask a subsystem:

1 Select the subsystem.

2 Select Edit Mask from the Edit menu of the model window or from the
block’s context menu. (Right-click the subsystem block to display its
context menu.)

The Mask Editor appears.

See “Mask Editor” on page 9-14 for a detailed description of the Mask
Editor.

3 Use the Mask Editor’s tabbed panes to perform any of the following tasks.

• Create a custom icon for the masked subsystem (see “Icon Pane” on
page 9-16).

• Create parameters that allow a user to set subsystem options (see “Mask
Editor” on page 9-14).

9-12

Masking a Subsystem

• Initialize the masked subsystem’s parameters

• Create online user documentation for the subsystem

4 Click Apply to apply the mask to the subsystem or OK to apply the mask
and dismiss the Mask Editor.

9-13

9 Creating Masked Subsystems

Mask Editor
The Mask Editor allows you to create or edit a subsystem’s mask.

• To create a subsystem mask, select the subsystem block icon and then select
Mask Subsystem from the Edit menu of the model window containing
the subsystem’s block.

• To edit an existing subsystem’s mask, select the subsystem’s block icon
and then select Edit Mask from the Edit menu of the model window
containing the subsystem’s block.

A Mask Editor like the following appears in either case.

The Mask Editor contains a set of tabbed panes, each of which enables you to
define a feature of the mask:

• The Icon pane enables you to define the block icon (see “Icon Pane” on
page 9-16).

9-14

Mask Editor

• The Parameters pane enables you to define and describe mask dialog box
parameter prompts and name the variables associated with the parameters
(see “Parameters Pane” on page 9-19).

• The Initialization pane enables you to specify initialization commands
(see “Initialization Pane” on page 9-25).

• The Documentation pane enables you to define the mask type and specify
the block description and the block help (see “Documentation Pane” on
page 9-28).

Five buttons appear along the bottom of the Mask Editor:

• The Unmask button deactivates the mask and closes the Mask Editor.
While the model is still active, Simulink retains the mask information so
that you can reactivate it. To reactivate the mask, select the block and
choose Mask Subsystem. The Mask Editor opens, displaying the previous
settings. When you close the model, Simulink discards the inactive mask
information. If you want the mask information after this, you will need to
recreate it the next time you open the model.

• The OK button applies the mask settings on all panes and closes the Mask
Editor.

• The Cancel button closes the Mask Editor without applying any changes
made since you last clicked the Apply button.

• The Help button displays the contents of this section.

• The Apply button creates or changes the mask using the information that
appears on all masking panes. The Mask Editor remains open.

To see the system under the mask without unmasking it, select the Subsystem
block, then select Look Under Mask from the Edit menu. This command
opens the subsystem. The block’s mask is not affected.

9-15

9 Creating Masked Subsystems

Icon Pane
The Mask Editor’s Icon pane enables you to create icons that can contain
descriptive text, state equations, images, and graphics.

The Icon pane contains the following controls.

Drawing commands
This field allows you to enter commands that draw the block’s icon. Simulink
provides a set of commands that can display text, one or more plots, or show a
transfer function (see “Mask Icon Drawing Commands” in the online Simulink
reference). You must use these commands to draw your icon. Simulink
executes the drawing commands in the order in which they appear in this
field. Drawing commands have access to all variables in the mask workspace.

This example demonstrates how to create an improved icon for the mx + b
sample masked subsystem discussed earlier in this section:

9-16

Mask Editor

pos = get_param(gcb, 'Position');
width = pos(3) - pos(1); height = pos(4) - pos(2);
x = [0, width];
if (m >= 0), y = [0, (m*width)]; end
if (m < 0), y = [height, (height + (m*width))]; end

These initialization commands define the data that enables the drawing
command to produce an accurate icon regardless of the shape of the block.
The drawing command that generates this icon is plot(x,y).

Examples of drawing commands
This panel illustrates the usage of the various icon drawing commands
supported by Simulink. To determine the syntax of a command, select the
command from the Command list. Simulink displays an example of the
selected command at the bottom of the panel and the icon produced by the
command to the right of the list.

Icon options
These controls allow you to specify the following attributes of the block icon.

Frame. The icon frame is the rectangle that encloses the block. You can
choose to show or hide the frame by setting the Frame parameter to Visible
or Invisible. The default is to make the icon frame visible. For example, this
figure shows visible and invisible icon frames for an AND gate block.

Transparency. The icon can be set to Opaque or Transparent, either
hiding or showing what is underneath the icon. Opaque, the default, covers
information Simulink draws, such as port labels. This figure shows opaque
and transparent icons for an AND gate block. Notice the text on the
transparent icon.

9-17

9 Creating Masked Subsystems

Rotation. When the block is rotated or flipped, you can choose whether to
rotate or flip the icon or to have it remain fixed in its original orientation. The
default is not to rotate the icon. The icon rotation is consistent with block port
rotation. This figure shows the results of choosing Fixed and Rotates icon
rotation when the AND gate block is rotated.

Units. This option controls the coordinate system used by the drawing
commands. It applies only to plot and text drawing commands. You can
select from among these choices: Autoscale, Normalized, and Pixel.

• Autoscale scales the icon to fit the block frame. When the block is resized,
the icon is also resized. For example, this figure shows the icon drawn
using these vectors:

X = [0 2 3 4 9]; Y = [4 6 3 5 8];

The lower-left corner of the block frame is (0,3) and the upper-right corner
is (9,8). The range of the x-axis is 9 (from 0 to 9), while the range of the
y-axis is 5 (from 3 to 8).

• Normalized draws the icon within a block frame whose bottom-left corner
is (0,0) and whose top-right corner is (1,1). Only X and Y values between

9-18

Mask Editor

0 and 1 appear. When the block is resized, the icon is also resized. For
example, this figure shows the icon drawn using these vectors:

X = [.0 .2 .3 .4 .9]; Y = [.4 .6 .3 .5 .8];

• Pixel draws the icon with X and Y values expressed in pixels. The icon
is not automatically resized when the block is resized. To force the icon to
resize with the block, define the drawing commands in terms of the block
size.

Parameters Pane
The Parameters pane allows you to create and modify masked subsystem
parameters (mask parameters, for short) that determine the behavior of the
masked subsystem.

The Parameters pane contains the following elements:

9-19

9 Creating Masked Subsystems

• The Dialog parameters panel allows you to select and change the major
properties of the mask’s parameters (see “Dialog Parameters Panel” on
page 9-20).

• The Options for selected parameter panel allows you to set additional
options for the parameter selected in the Dialog parameters panel.

• The buttons on the left side of the Parameters pane allow you to add,
delete, and change the order of appearance of parameters on the mask’s
parameter dialog box (see “Dialog Parameters Panel” on page 9-20).

Dialog Parameters Panel
Lists the mask’s parameters in tabular form. Each row displays the major
attributes of one of the mask’s parameters.

Prompt. Text that identifies the parameter on a masked subsystem’s dialog
box.

Variable. Name of the variable that stores the parameter’s value in the
mask’s workspace (see “Mask Workspace” on page 9-4). You can use this
variable as the value of parameters of blocks inside the masked subsystem,
thereby allowing the user to set the parameters via the mask dialog box.

Note Simulink does not distinguish between uppercase and lowercase letters
in mask variable names. For example, Simulink treats gain, GAIN, and Gain
as the same name. Also, avoid prefacing mask variable names with L_ and M_
to prevent undesirable results. Simulink reserves these specific prefixes for
use with its own internal variable names.

9-20

Mask Editor

Type. Type of control used to edit the value of this parameter. The control
appears on the mask’s parameter dialog box following the parameter prompt.
The button that follows the type name in the Parameters pane pops up a list
of the controls supported by Simulink (see “Control Types” on page 9-23). To
change the current control type, select another type from the list.

Evaluate. If checked, this option causes Simulink to evaluate the expression
entered by the user before it is assigned to the variable. Otherwise, Simulink
treats the expression itself as a string value and assigns it to the variable.
For example, if the user enters the expression gain in an edit field and
the Evaluate option is checked, Simulink evaluates gain and assigns the
result to the variable. Otherwise, Simulink assigns the string 'gain' to the
variable. See “Check Box Control” on page 9-24 and “Pop-Up Control” on page
9-24 for information on how this option affects evaluation of the parameters.

If you need both the string entered and the evaluated value, clear the
Evaluate option. To get the value of a base workspace variable entered as
the literal value of the mask parameter, use the MATLAB evalin command
in the mask initialization code. For example, suppose the user enters the
string 'gain' as the literal value of the mask parameter k where gain is the
name of a base workspace variable. To obtain the value of the base workspace
variable, use the following command in the mask’s initialization code:

value = evalin('base', k)

Tunable. Selecting this option allows a user to change the value of the mask
parameter while a simulation is running.

Note Simulink ignores this setting if the block being masked is a source block,
i.e., the block has outputs but no input ports. In such a case, even if this option
is selected, you cannot tune the parameter while a simulation is running. See
“Changing Source Block Parameters” on page 5-9 for more information.

Options for Selected Parameter Panel
This panel allows you to set additional options for the parameter selected in
the Dialog parameters table.

9-21

9 Creating Masked Subsystems

Show parameter. The selected parameter appears on the masked block’s
parameter dialog box only if this option is checked (the default).

Enable parameter. Clearing this option grays the selected parameter’s
prompt and disables its edit control. This means that the user cannot set
the value of the parameter.

Popups. This field is enabled only if the edit control for the selected
parameter is a pop-up. Enter the values of the pop-up control in this field,
each on a separate line.

Callback. Enter MATLAB code that you want Simulink to execute when a
user applies a change to the selected parameter, i.e., selects the Apply or
OK button on the mask dialog box.

The callback can create and reference variables only in the block’s base
workspace. If the callback needs the value of a mask parameter, it can use
get_param to obtain the value, e.g.,

if str2num(get_param(gcb, 'g'))<0
error('Gain is negative.')

end

Parameter Buttons
The following sections explain the purpose of the buttons that appear on the
Parameters pane in the order of their appearance from the top of the pane.

Add Button. Adds a parameter to the mask’s parameter list. The newly
created parameter appears in the adjacent Dialog parameters table.

9-22

Mask Editor

Delete Button. Deletes the parameter currently selected in the Dialog
parameters table.

Up Button. Moves the currently selected parameter up one row in the Dialog
parameters table. Dialog parameters appear in the mask’s parameter dialog
box (see “Mask Parameter Dialog Box” on page 9-3) in the same order in
which they appear in the Dialog parameters table. This button (and the
next) thus allows you to determine the order in which parameters appear
on the dialog box.

Down Button. Moves the currently selected parameter down one row in
the Dialog parameters table and hence down one position on the mask’s
parameter dialog box.

Control Types
Simulink enables you to choose how parameter values are entered or selected.
You can create three styles of controls: edit fields, check boxes, and pop-up
controls. For example, this figure shows the parameter area of a mask dialog
box that uses all three styles of controls (with the pop-up control open).

Edit Control
An edit field enables the user to enter a parameter value by typing it into
a field. This figure shows how the prompt for the sample edit control was
defined.

9-23

9 Creating Masked Subsystems

The value of the variable associated with the parameter is determined by
the Evaluate option.

Evaluate Value

On The result of evaluating the expression entered in the field

Off The actual string entered in the field

Check Box Control
A check box enables the user to choose between two alternatives by selecting
or deselecting a check box. This figure shows how the sample check box
control is defined.

The value of the variable associated with the parameter depends on whether
the Evaluate option is selected.

Control State
Evaluated
Value Literal Value

Selected 1 'on'

Unselected 0 'off'

Pop-Up Control
A pop-up enables the user to choose a parameter value from a list of possible
values. Specify the values in the Popups field on the Options for selected
parameter pane (see “Popups” on page 9-22). The following example shows
a pop-up parameter.

9-24

Mask Editor

The value of the variable associated with the parameter (Color) depends
on the item selected from the pop-up list and whether the Evaluate option
is checked (on).

Evaluate Value

On Index of the value selected from the list, starting with 1.
For example, if the third item is selected, the parameter
value is 3.

Off String that is the value selected. If the third item is
selected, the parameter value is 'green'.

Initialization Pane
The Initialization pane allows you to enter MATLAB commands that
initialize the masked subsystem.

9-25

9 Creating Masked Subsystems

Simulink executes the initialization commands when you

• Load the model

• Start a simulation or update the model’s block diagram

• Make changes to the block diagram that affect the appearance of the block,
such as rotating the block

• Apply any changes to the block’s dialog that affect the block’s appearance
or behavior, such as changing the value of a mask parameter on which the
block’s icon drawing code depends

The Initialization pane includes the following controls.

Dialog variables
The Dialog variables list displays the names of the variables associated
with the subsystem’s mask parameters, i.e., the parameters defined in the
Parameters pane. You can copy the name of a parameter from this list and
paste it into the adjacent Initialization commands field, using the Simulink
keyboard copy and paste commands. You can also use the list to change the

9-26

Mask Editor

names of mask parameter variables. To change a name, double-click the
name in the list. An edit field containing the existing name appears. Edit
the existing name and press Enter or click outside the edit field to confirm
your changes.

Initialization commands
Enter the initialization commands in this field. You can enter any valid
MATLAB expression, consisting of MATLAB functions, operators, and
variables defined in the mask workspace. Initialization commands cannot
access base workspace variables. Terminate initialization commands with a
semicolon to avoid echoing results to the Command Window.

Note Avoid prefacing variable names in initialization commands with L_ and
M_ to prevent undesirable results. Simulink reserves these specific prefixes
for use with its own internal variable names.

Allow library block to modify its contents
This check box is enabled only if the masked subsystem resides in a library.
Checking this block allows the block’s initialization code to modify the
contents of the masked subsystem, i.e., it lets the code add or delete blocks
and set the parameters of those blocks. Otherwise, Simulink generates an
error when a masked library block tries to modify its contents in any way. To
set this option at the MATLAB prompt, select the self-modifying block and
enter the following command.

set_param(gcb, 'MaskSelfModifiable', 'on');

Then save the block.

Debugging Initialization Commands
You can debug initialization commands in these ways:

• Specify an initialization command without a terminating semicolon to echo
its results to the Command Window.

9-27

9 Creating Masked Subsystems

• Place a keyboard command in the initialization commands to stop
execution and give control to the keyboard. For more information, see the
help text for the keyboard command.

• Enter either of these commands in the MATLAB Command Window:

dbstop if error
dbstop if warning

If an error occurs in the initialization commands, execution stops and you
can examine the mask workspace. For more information, see the help text
for the dbstop command.

Documentation Pane
The Documentation pane enables you to define or modify the type,
description, and help text for a masked block.

This figure shows how fields on the Documentation pane correspond to the
mx + b sample mask block’s dialog box.

9-28

Mask Editor

Mask Type Field
The mask type is a block classification used only for purposes of
documentation. It appears in the block’s dialog box and on all Mask Editor
panes for the block. You can choose any name you want for the mask type.
When Simulink creates the block’s dialog box, it adds “(mask)” after the mask
type to differentiate masked blocks from built-in blocks.

Mask Description Field
The block description is informative text that appears in the block’s dialog box
in the frame under the mask type. If you are designing a system for others to
use, this is a good place to describe the block’s purpose or function.

Simulink automatically wraps long lines of text. You can force line breaks
by using the Enter or Return key.

Block Help Field
You can provide help text that is displayed when the Help button is clicked on
the masked block’s dialog box. If you create models for others to use, this is a
good place to explain how the block works and how to enter its parameters.

You can include user-written documentation for a masked block’s help. You
can specify any of the following for the masked block help text:

• URL specification (a string starting with http:, www, file:, ftp:, or
mailto:)

• web command (launches a browser)

• eval command (evaluates a MATLAB string)

• HTML-tagged text to be displayed in a Web browser

Simulink examines the first line of the masked block help text. If Simulink
detects a URL specification, for example,

http://www.mathworks.com

or

file:///c:/mydir/helpdoc.html

9-29

9 Creating Masked Subsystems

Simulink displays the specified file in the browser. If Simulink detects a web
command, for example,

web([docroot '/My Blockset Doc/' get_param(gcb,'MaskType')...
'.html'])

or an eval command, for example,

eval('!Word My_Spec.doc')

Simulink executes the specified command. Otherwise, Simulink displays
the contents of the Block Help field, which can include HTML tags, in the
browser.

Note, if you enter HTML-tagged text, Simulink copies that text into a
temporary directory and displays it from that temporary directory. If you
want to include an image (for example, with the img tag) with that text, you
need to place the image file in that temporary directory. (You can use tempdir
to find the temporary directory for your system.) Alternatively, you can save
the HTML-tagged text into an HTML file (such as hello.html) in the current
directory and display that file directly (for example, web('hello.html',
'-helpbrowser')). This method enables you to place referenced image files
in the same directory as the HTML file.

Changing Default Values for Mask Parameters in a
Library
To change default parameter values in a masked library block:

1 Unlock the library.

2 Select the block, then select Edit Mask from the Edit menu to access
the block dialog box.

Fill in the desired default values, then save the changes and close the
dialog box.

3 Save the library.

9-30

Mask Editor

When the block is copied into a model and opened, the default values appear
on the block’s dialog box.

For more information, see “Working with Block Libraries” on page 5-21.

9-31

9 Creating Masked Subsystems

Linking Mask Parameters to Block Parameters
The variables associated with mask parameters allow you to link mask
parameters with block parameters. This in turn allows a user to use the mask
to set the values of parameters of blocks inside the masked subsystem.

To link the parameters, open the block’s parameter dialog box and enter an
expression in the block parameter’s value field that uses the mask parameter.
The mx + b masked subsystem, described earlier in this chapter, uses this
approach to link the Slope and Intercept mask parameters to corresponding
parameters of a Gain and Constant block, respectively, that reside in the
subsystem.

You can use a masked block’s initialization code to link mask parameters
indirectly to block parameters. In this approach, the initialization code
creates variables in the mask workspace whose values are functions of the
mask parameters and that appear in expressions that set the values of
parameters of blocks concealed by the mask.

9-32

10

Simulink Debugger

The following sections tell you how to use the Simulink debugger to pinpoint
bugs in a model:

Introduction (p. 10-2) Overview of the debugger.

Using the Debugger’s Graphical
User Interface (p. 10-3)

How to use the debugger’s graphical
user interface.

Using the Debugger’s
Command-Line Interface (p. 10-10)

How to debug from the MATLAB
command line.

Getting Online Help (p. 10-12) How to get help on debugger
commands.

Starting the Debugger (p. 10-13) How to start a simulation from the
debugger.

Starting a Simulation (p. 10-14) How to start a simulation in debug
mode.

Running a Simulation Step by Step
(p. 10-15)

How to run a simulation step by step.

Setting Breakpoints (p. 10-22) How to set breakpoints at blocks and
time steps.

Displaying Information About the
Simulation (p. 10-28)

How to display information about
the current simulation.

Displaying Information About the
Model (p. 10-32)

How to display information about
the model being debugged.

10 Simulink Debugger

Introduction
The Simulink debugger allows you to run a simulation method by method,
stopping the simulation after each method, to examine the results of executing
that method. This allows you to pinpoint problems in your model to specific
blocks, parameters, or interconnections.

Note Methods are functions that Simulink uses to solve a model at each time
step during the simulation. Blocks are made up of multiple methods. “Block
execution” in this documentation is shorthand notation for “block methods
execution.” Block diagram execution is a multi-step operation that requires
execution of the different block methods in all the blocks in a diagram at
various points during the process of solving a model at each time step during
simulation, as specified by the simulation loop.

The Simulink debugger has both a graphical and a command-line user
interface. The graphical interface allows you to access the debugger’s most
commonly used features. The command-line interface gives you access to all
the debugger’s capabilities. If both interfaces enable you to perform a task,
the documentation shows you first how to use the graphical interface, then
the command-line interface, to perform the task.

10-2

Using the Debugger’s Graphical User Interface

Using the Debugger’s Graphical User Interface
Select Simulink Debugger from a model window’s Tools menu to display
the Simulink debugger’s graphical interface.

The following topics describe the major components of the debugger’s
graphical user interface:

• “Toolbar” on page 10-4

• “Breakpoints Pane” on page 10-5

• “Simulation Loop Pane” on page 10-6

• “Outputs Pane” on page 10-7

• “Sorted List Pane” on page 10-8

• “Status Pane” on page 10-9

10-3

10 Simulink Debugger

Toolbar
The debugger toolbar appears at the top of the debugger window.

From left to right, the toolbar contains the following command buttons:

Button Purpose

Step into next method (see “Stepping Commands” on
page 10-16 for more information on this and the following
stepping commands).

Step over next method.

Step out of current method.

Step to first method at start of next time step.

Step to next block method.

Start or continue the simulation.

Pause the simulation.

10-4

Using the Debugger’s Graphical User Interface

Button Purpose

Stop the simulation.

Break before the selected block.

Display inputs and outputs of the selected block when
executed.

Display current inputs and outputs of selected block.

Toggle animation mode on or off (see “Animation Mode”
on page 10-18). The slider next to this button controls the
animation rate.

Display help for the debugger.

Close the debugger.

Breakpoints Pane
To display the Breakpoints pane, select the Break Points tab on the
debugger window.

10-5

10 Simulink Debugger

The Breakpoints pane allows you to specify block methods or conditions
at which to stop a simulation. See “Setting Breakpoints” on page 10-22 for
more information.

Note The debugger grays out and disables the Breakpoints pane when
its animation mode is selected (see “Animation Mode” on page 10-18). This
prevents you from setting breakpoints and indicates that animation mode
ignores existing breakpoints.

Simulation Loop Pane
To display the Simulation Loop pane, select the Simulation Loop tab on
the debugger window.

The Simulation Loop pane contains three columns:

• Method

• Breakpoints

• ID

10-6

Using the Debugger’s Graphical User Interface

Method Column
The Method column lists the methods that have been called thus far in the
simulation as a method tree with expandable/collapsible nodes. Each node
of the tree represents a method that calls other methods. Expanding a node
shows the methods that the block method calls. Block method names are
hyperlinks. Clicking a block method name highlights the corresponding block
in the model diagram. Block method names are underlined to indicate that
they are hyperlinks.

Whenever the simulation stops, the debugger highlights the name of the
method where the simulation has stopped as well as the methods that directly
or indirectly invoked it. The highlighted method names visually indicate the
current state of the simulator’s method call stack.

Breakpoints Column
The breakpoints column consists of check boxes. Selecting a check box sets a
breakpoint at the method whose name appears to the left of the check box.
See “Setting Breakpoints from the Simulation Loop Pane” on page 10-24
for more information.

Note The debugger grays out and disables this column when its animation
mode is selected (see “Animation Mode” on page 10-18). This prevents you
from setting breakpoints and indicates that animation mode ignores existing
breakpoints.

ID Column
The ID column lists the IDs of the methods listed in the Methods column.
See “Method ID” on page 10-10 for more information.

Outputs Pane
To display the Outputs pane, select the Outputs tab on the debugger window.

10-7

10 Simulink Debugger

The Outputs pane displays the same debugger output that would appear in the
MATLAB Command Window, if the debugger were running in command-line
mode. The output includes the debugger command prompt and the inputs,
outputs, and states of the block at whose method the simulation is currently
paused (see “Block Data Output” on page 10-16). The command prompt
displays current simulation time and the name and index of the method in
which the debugger is currently stopped (see “Block ID” on page 10-10).

Sorted List Pane
To display the Sorted List pane, select the Sorted List tab on the debugger
window.

10-8

Using the Debugger’s Graphical User Interface

The Sorted List pane displays the sorted lists for the model being debugged.
See “Displaying a Model’s Sorted Lists” on page 10-32 for more information.

Status Pane
To display the Status pane, select the Status tab on the debugger window.

The Status pane displays the values of various debugger options and other
status information.

10-9

10 Simulink Debugger

Using the Debugger’s Command-Line Interface
In command-line mode, you control the debugger by entering commands
at the debugger command line in the MATLAB Command Window. The
debugger accepts abbreviations for debugger commands. See “Simulink
Debugger Commands—Alphabetical List” in the online Simulink reference for
a list of command abbreviations and repeatable commands. You can repeat
some commands by entering an empty command (i.e., by pressing the Enter
key) at the MATLAB command line.

Method ID
Some Simulink commands and messages use method IDs to refer to methods.
A method ID is an integer assigned to a method the first time it is invoked
in a simulation. The debugger assigns method indexes sequentially, starting
with 0 for the first method invoked in a debugger session.

Block ID
Some Simulink debugger commands and messages use block IDs to refer to
blocks. Simulink assigns block IDs to blocks while generating the model’s
sorted lists during the compilation phase of the simulation. A block ID has the
form sid:bid where sid is an integer identifying the system that contains
the block (either the root system or a nonvirtual subsystem) and bid is the
position of the block in the system’s sorted list. For example, the block index
0:1 refers to the first block in the model’s root system. The slist command
shows the block ID for each block in the model being debugged.

Accessing the MATLAB Workspace
You can enter any MATLAB expression at the sldebug prompt. For example,
suppose you are at a breakpoint and you are logging time and output of your
model as tout and yout. Then the following command

(sldebug ...) plot(tout, yout)

creates a plot. You cannot display the value of a workspace variable whose
name is partially or entirely the same as that of a debugger command by
entering it at the debugger command prompt. You can, however, use the

10-10

Using the Debugger’s Command-Line Interface

MATLAB eval command to work around this problem. For example, use
eval('s') to determine the value of s rather then s(tep) the simulation.

10-11

10 Simulink Debugger

Getting Online Help
You can get online help on using the debugger by clicking the Help button on
the debugger’s toolbar or by pressing the F1 key when the text cursor is in a
debugger panel or text field. Clicking the Help button displays help for the
debugger in the MATLAB Help browser.

Pressing the F1 key displays help for the debugger panel or text field that
currently has the keyboard input focus. In command-line mode, you can get
a brief description of the debugger commands by typing help at the debug
prompt.

10-12

Starting the Debugger

Starting the Debugger
You can start the debugger either from a model window or from the MATLAB
command line. To start the debugger from a model window, select Simulink
Debugger from the model window’s Tools menu. The debugger’s graphical
user interface appears (see “Using the Debugger’s Graphical User Interface”
on page 10-3).

To start the debugger from the MATLAB Command Window, enter either a
sim command or the sldebug command. For example, either the command

sim('vdp',[0,10],simset('debug','on'))

or the command

sldebug 'vdp'

loads the Simulink demo model vdp into memory, starts the simulation, and
stops the simulation at the first block in the model’s execution list.

Note When running the debugger in graphical user interface (GUI) mode,
you must explicitly start the simulation. See “Starting a Simulation” on page
10-14 for more information.

10-13

10 Simulink Debugger

Starting a Simulation
To start the simulation, click the Start/Continue button on the debugger’s
toolbar.

The simulation starts and stops at the first simulation method to be executed.
It displays the name of the method in its Simulation Loop pane and in the
current method annotation on the Simulink block diagram. At this point, you
can set breakpoints, run the simulation step by step, continue the simulation
to the next breakpoint or end, examine data, or perform other debugging
tasks. The following sections explain how to use the debugger’s graphical
controls to perform these debugging tasks.

Note When you start the debugger in GUI mode, the debugger’s
command-line interface is also active in the MATLAB Command Window.
However, you should avoid using the command-line interface, to prevent
synchronization errors between the graphical and command-line interfaces.

10-14

Running a Simulation Step by Step

Running a Simulation Step by Step
The Simulink debugger provides various commands that let you advance
a simulation from the method where it is currently suspended (the next
method) by various increments (see “Stepping Commands” on page 10-16).
For example, you can advance the simulation into or over the next method,
or out of the current method, or to the top of the simulation loop. After each
advance, the debugger displays information that enables you to determine
the point to which the simulation has advanced and the results of advancing
the simulation to that point.

For example, in GUI mode, after each step command, the debugger highlights
the current method call stack in the Simulation Loop pane. The call
stack comprises the next method and the methods that invoked the next
method either directly or indirectly. The debugger highlights the call stack
by highlighting the names of the methods that make up the call stack in
the Simulation Loop pane.

In command-line mode, you can use the where command to display the
method call stack. If the next method is a block method, the debugger points
the debug pointer at the block corresponding to the method (see “Debug
Pointer” on page 10-20 for more information). If the block of the next method
to be executed resides in a subsystem, the debugger opens the subsystem and
points to the block in the subsystem’s block diagram.

10-15

10 Simulink Debugger

Block Data Output
After executing a block method, the debugger prints any or all of the following
block data in the debugger Output panel (in GUI mode) or in the MATLAB
Command Window (in command-line mode):

• Un = v

where v is the current value of the block’s nth input.

• Yn = v

where v is the current value of the block’s nth output.

• CSTATE = v

where v is the value of the block’s continuous state vector.

• DSTATE = v

where v is the value of the blocks discrete state vector.

The debugger also displays the current time, the ID and name of the next
method to be executed, and the name of the block to which the method applies
in the MATLAB Command Window. The following example illustrates typical
debugger outputs after a step command.

Stepping Commands
Command-line mode provides the following commands for advancing a
simulation incrementally:

10-16

Running a Simulation Step by Step

Command Advances the simulation...

step [in into] Into the next method, stopping at the first method
in the next method or, if the next method does not
contain any methods, at the end of the next method

step over To the method that follows the next method, executing
all methods invoked directly or indirectly by the next
method

step out To the end of the current method, executing any
remaining methods invoked by the current method

step top To the first method of the next time step (i.e., the top
of the simulation loop)

step blockmth To the next block method to be executed, executing all
intervening model- and system-level methods

next Same as step over

Buttons in the debugger toolbar allow you to access these commands in GUI
mode.

Clicking a button has the same effect as entering the corresponding command
at the debugger command line.

Continuing a Simulation
In GUI mode, the Stop button turns red when the debugger suspends
the simulation for any reason. To continue the simulation, click the
Start/Continue button. In command-line mode, enter continue to continue
the simulation. By default, the debugger runs the simulation to the next

10-17

10 Simulink Debugger

breakpoint (see “Setting Breakpoints” on page 10-22) or to the end of the
simulation, whichever comes first.

Animation Mode
In animation mode, the Start/Continue button or the continue command
advances the simulation method by method, pausing after each method, to
the first method of the next major time step. While running the simulation in
animation mode, the debugger uses its debug pointer (see “Debug Pointer”
on page 10-20) to indicate on the block diagram which block method is being
executed at each step. The moving pointer providing a visual indication of the
progress of the simulation.

Note When animation mode is enabled, the debugger does not allow you to
set breakpoints and ignores any breakpoints that you set when animating the
simulation.

To enable animation when running the debugger in GUI mode, click the
Animation Mode toggle button on the debugger’s toolbar.

The slider on the debugger toolbar allows you to increase or decrease the
delay between method invocations and hence to slow down or speed up the
animation rate. To disable animation mode when running the debugger in
GUI mode, toggle the Animation Mode button on the toolbar.

To enable animation when running the debugger in command-line mode,
enter the animate command at the MATLAB command line. The animate
command’s optional delay parameter allows you to specify the length of

10-18

Running a Simulation Step by Step

the pause between method invocations (1 second by default) and thereby
accelerate or slow down the animation. For example, the command

animate 0.5

causes the animation to run at twice its default rate. To disable animation
mode when running the debugger in command-line mode, enter

animate stop

at the MATLAB command line.

Running a Simulation Nonstop
The run command lets you run a simulation to the end of the simulation,
skipping any intervening breakpoints. At the end of the simulation, the
debugger returns you to the MATLAB command line. To continue debugging
a model, you must restart the debugger.

Note The GUI mode does not provide a graphical version of the run command.
To run the simulation to the end, you must first clear all breakpoints and
then click the Start/Continue button.

10-19

10 Simulink Debugger

Debug Pointer
Whenever the debugger stops the simulation at a method, it displays a debug
pointer on the block diagram of the model being debugged.

The debug pointer is an annotation that indicates the next method to be
executed when simulation resumes. It consists of the following elements:

• Next method box

• Block pointer

• Method tile

Next Method Box
The next method box appears in the upper-left corner of the block diagram. It
specifies the name and ID of the next method to be executed.

Block Pointer
The block pointer appears when the next method is a block method. It
indicates the block on which the next method operates.

10-20

Running a Simulation Step by Step

Method Tile
The method tile is a rectangular patch of color that appears when the next
method is a block method. The tile overlays a portion of the block on which
the next method executes. The color and position of the tile on the block
indicate the type of the next block method as follows.

In animation mode, the tiles persist for the length of the current major time
step and a number appears in each tile. The number specifies the number
of times that the corresponding method has been invoked for the block thus
far in the time step.

10-21

10 Simulink Debugger

Setting Breakpoints
The Simulink debugger allows you to define stopping points in a simulation
called breakpoints. You can then run a simulation from breakpoint to
breakpoint, using the debugger’s continue command. The debugger lets
you define two types of breakpoints: unconditional and conditional. An
unconditional breakpoint occurs whenever a simulation reaches a method that
you specified previously. A conditional breakpoint occurs when a condition
that you specified in advance arises in the simulation.

Breakpoints are useful when you know that a problem occurs at a certain
point in your program or when a certain condition occurs. By defining
an appropriate breakpoint and running the simulation via the continue
command, you can skip immediately to the point in the simulation where the
problem occurs.

Setting Unconditional Breakpoints
You can set unconditional breakpoints from the

• Debugger toolbar

• Simulation Loop pane

• MATLAB Command Window (command-line mode only)

Setting Breakpoints from the Debugger Toolbar
To set a breakpoint on a block’s methods, select the block and then click the
Breakpoint button on the debugger toolbar.

10-22

Setting Breakpoints

The debugger displays the name of the selected block in the Break/Display
points panel of its Breakpoints pane.

Note Clicking the Breakpoint button on the toolbar sets breakpoints on the
invocations of a block’s methods in major time steps.

You can temporarily disable the breakpoints on a block by deselecting the
check box in the breakpoints column of the panel. To clear the breakpoints on
a block and remove its entry from the panel, select the entry and then click
the Remove selected point button on the panel.

Note You cannot set a breakpoint on a virtual block. A virtual block is a block
whose function is purely graphical: it indicates a grouping or relationship
among a model’s computational blocks. The debugger warns you if you
attempt to set a breakpoint on a virtual block. You can obtain a listing of
a model’s nonvirtual blocks, using the slist command (see “Displaying a
Model’s Nonvirtual Blocks” on page 10-34).

10-23

10 Simulink Debugger

Setting Breakpoints from the Simulation Loop Pane
To set a breakpoint at a particular invocation of a method displayed in the
Simulation Loop pane, select the check box next to the method’s name in
the breakpoint column of the pane.

To clear the breakpoint, deselect the check box.

Setting Breakpoints from the MATLAB Command Window
In command-line mode, use the break and bafter commands to set
breakpoints before or after a specified method, respectively. Use the clear
command to clear breakpoints.

Setting Conditional Breakpoints
You can use either the Break on conditions panel of the debugger’s
Breakpoints pane

10-24

Setting Breakpoints

or the following commands (in command-line mode) to set conditional
breakpoints.

Command Causes Simulation to Stop

tbreak [t] At a simulation time step

ebreak At a recoverable error in the model

nanbreak At the occurrence of an underflow or overflow (NaN) or
infinite (Inf) value

xbreak When the simulation reaches the state that determines
the simulation step size

zcbreak When a zero crossing occurs between simulation time steps

Setting Breakpoints at Time Steps
To set a breakpoint at a time step, enter a time in the debugger’s Break at
time field (GUI mode) or enter the time using the tbreak command. This
causes the debugger to stop the simulation at the Outputs.Major method of
the model at the first time step that follows the specified time. For example,
starting vdp in debug mode and entering the commands

tbreak 2
continue

causes the debugger to halt the simulation at the vdp.Outputs.Major method
of time step 2.078 as indicated by the output of the continue command.

%--
%
[TM = 2.078784598291364] vdp.Outputs.Major
(sldebug @18):

Breaking on Nonfinite Values
Selecting the debugger’s NaN values option or entering the nanbreak
command causes the simulation to stop when a computed value is infinite or
outside the range of values that can be represented by the machine running

10-25

10 Simulink Debugger

the simulation. This option is useful for pinpointing computational errors
in a Simulink model.

Breaking on Step-Size Limiting Steps
Selecting the Step size limited by state option or entering the xbreak
command causes the debugger to stop the simulation when the model uses a
variable-step solver and the solver encounters a state that limits the size of
the steps that it can take. This command is useful in debugging models that
appear to require an excessive number of simulation time steps to solve.

Breaking at Zero Crossings
Selecting the Zero crossings option or entering the zcbreak command
causes the simulation to halt when Simulink detects a nonsampled zero
crossing in a model that includes blocks where zero crossings can arise. After
halting, Simulink displays the location in the model, the time, and the type
(rising or falling) of the zero crossing. For example, setting a zero-crossing
break at the start of execution of the zeroxing demo model,

sldebug zeroxing
%--
%
[TM = 0] zeroxing.Simulate
(sldebug @0): zcbreak
Break at zero crossing events : enabled

and continuing the simulation

(sldebug @0): continue

results in a rising zero-crossing break at

[Tz = 0.2] [Hz = 0]
Detected 2 Zero Crossing Events 0:5:1R, 0:5:2R
%--
%
[Tm = 0.4] zeroxing.ZeroCrossingDetectionLoop
(sldebug @45):

10-26

Setting Breakpoints

If a model does not include blocks capable of producing nonsampled zero
crossings, the command prints a message advising you of this fact.

Breaking on Solver Errors
Selecting the debugger’s Solver Errors option or entering the ebreak
command causes the simulation to stop if the solver detects a recoverable error
in the model. If you do not set or disable this breakpoint, the solver recovers
from the error and proceeds with the simulation without notifying you.

10-27

10 Simulink Debugger

Displaying Information About the Simulation
The Simulink debugger provides a set of commands that allow you to display
block states, block inputs and outputs, and other information while running
a model.

Displaying Block I/O
The debugger allows you to display block I/O by clicking the appropriate
buttons on the debugger toolbar

or by entering the appropriate debugger command.

Command Displays a Block’s I/O

probe Immediately

disp At every breakpoint

trace Whenever the block executes

Displaying I/O of Selected Block
To display the I/O of a block, select the block and click in GUI mode or
enter the probe command in command-line mode.

Command Description

probe Enter or exit probe mode. In probe mode, the debugger
displays the current inputs and outputs of any block
that you select in the model’s block diagram. Typing any
command causes the debugger to exit probe mode.

10-28

Displaying Information About the Simulation

Command Description

probe gcb Display I/O of selected block.

probe s:b Print the I/O of the block specified by system number s
and block number b.

The debugger prints the current inputs, outputs, and states of the selected
block in the debugger Outputs pane (GUI mode) or the MATLAB Command
Window.

The probe command is useful when you need to examine the I/O of a block
whose I/O is not otherwise displayed. For example, suppose you are using the
step command to run a model method by method. Each time you step the
simulation, the debugger displays the inputs and outputs of the current block.
The probe command lets you examine the I/O of other blocks as well.

Displaying Block I/O Automatically at Breakpoints
The disp command causes the debugger to display a specified block’s inputs
and outputs whenever it halts the simulation. You can specify a block either
by entering its block index or by selecting it in the block diagram and entering
gcb as the disp command argument. You can remove any block from the
debugger’s list of display points, using the undisp command. For example, to
remove block 0:0, either select the block in the model diagram and enter
undisp gcb or simply enter undisp 0:0.

Note Automatic display of block I/O at breakpoints is not available in the
debugger’s GUI mode.

The disp command is useful when you need to monitor the I/O of a specific
block or set of blocks as you step through a simulation. Using the disp
command, you can specify the blocks you want to monitor and the debugger
will then redisplay the I/O of those blocks on every step. Note that the
debugger always displays the I/O of the current block when you step through
a model block by block, using the step command. You do not need to use the
disp command if you are interested in watching only the I/O of the current
block.

10-29

10 Simulink Debugger

Watching Block I/O
To watch a block, select the block and click in the debugger toolbar or
enter the trace command. In GUI mode, if a breakpoint exists on the block,
you can set a watch on it as well by selecting the check box for the block in
the watch column of the Break/Display points pane. In command-line
mode, you can also specify the block by specifying its block index in the trace
command. You can remove a block from the debugger’s list of trace points
using the untrace command.

The debugger displays a watched block’s I/O whenever the block executes.
Watching a block allows you obtain a complete record of the block’s I/O
without having to stop the simulation.

Displaying Algebraic Loop Information
The atrace command causes the debugger to display information about a
model’s algebraic loops (see “Algebraic Loops” on page 2-24) each time they
are solved. The command takes a single argument that specifies the amount
of information to display.

Command Displays for Each Algebraic Loop

atrace 0 No information

atrace 1 The loop variable solution, the number of iterations
required to solve the loop, and the estimated solution error

atrace 2 Same as level 1

atrace 3 Level 2 plus the Jacobian matrix used to solve the loop

atrace 4 Level 3 plus intermediate solutions of the loop variable

10-30

Displaying Information About the Simulation

Displaying System States
The states debug command lists the current values of the system’s states in
the MATLAB Command Window. For example, the following sequence of
commands shows the states of the Simulink bouncing ball demo (bounce)
after its first and second time steps.

sldebug bounce
[Tm=0] **Start** of system 'bounce' outputs
(sldebug @0:0 'bounce/Position'): states
Continuous state vector (value,index,name):

10 0 (0:0 'bounce/Position')
15 1 (0:5 'bounce/Velocity')

(sldebug @0:0 'bounce/Position'): next
[Tm=0.01] **Start** of system 'bounce' outputs
(sldebug @0:0 'bounce/Position'): states
Continuous state vector (value,index,name):

10.1495095 0 (0:0 'bounce/Position')
14.9019 1 (0:5 'bounce/Velocity')

Displaying Solver Information
The strace command allows you to pinpoint problems in solving a model’s
differential equations that can slow down simulation performance. Executing
this command causes the debugger to display solver-related information at
the MATLAB command line when you run or step through a simulation. The
information includes the sizes of the steps taken by the solver, the estimated
integration error resulting from the step size, whether a step size succeeded
(i.e., met the accuracy requirements that the model specifies), the times at
which solver resets occur, etc. If you are concerned about the time required
to simulate your model, this information can help you to decide whether the
solver you have chosen is the culprit and hence whether choosing another
solver might shorten the time required to solve the model.

10-31

10 Simulink Debugger

Displaying Information About the Model
In addition to providing information about a simulation, the debugger can
provide you with information about the model that underlies the simulation.

Displaying a Model’s Sorted Lists
In GUI mode, the debugger’s Sorted List pane displays lists of blocks for
a model’s root system and each nonvirtual subsystem. Each list lists the
blocks that the subsystems contains sorted according to their computational
dependencies, alphabetical order, and other block sorting rules. In
command-line mode, you can use the slist command to display a model’s
sorted lists.

---- Sorted list for 'vdp' [12 blocks, 9 nonvirtual blocks,
directFeed=0]

0:0 'vdp/Integrator1' (Integrator)
0:1 'vdp/Out1' (Outport)
0:2 'vdp/Integrator2' (Integrator)
0:3 'vdp/Out2' (Outport)
0:4 'vdp/Fcn' (Fcn)
0:5 'vdp/Product' (Product)
0:6 'vdp/Mu' (Gain)
0:7 'vdp/Scope' (Scope)
0:8 'vdp/Sum' (Sum)

These displays include the block index for each command. You can thus
use them to determine the block IDs of the model’s blocks. Some debugger
commands accept block IDs as arguments.

Identifying Blocks in Algebraic Loops
If a block belongs to an algebraic list, the slist command displays an
algebraic loop identifier in the entry for the block in the sorted list. The
identifier has the form

algId=s#n

where s is the index of the subsystem containing the algebraic loop and n is
the index of the algebraic loop in the subsystem. For example, the following

10-32

Displaying Information About the Model

entry for an Integrator block indicates that it participates in the first algebraic
loop at the root level of the model.

0:1 'test/ss/I1' (Integrator, tid=0) [algId=0#1, discontinuity]

You can use the debugger’s ashow command to highlight the blocks and lines
that make up an algebraic loop. See “Displaying Algebraic Loops” on page
10-35 for more information.

Displaying a Block
To determine the block in a model’s diagram that corresponds to a particular
index, enter bshow s:b at the command prompt, where s:b is the block index.
The bshow command opens the system containing the block (if necessary) and
selects the block in the system’s window.

Displaying a Model’s Nonvirtual Systems
The systems command displays a list of the nonvirtual systems in the model
being debugged. For example, the Simulink clutch demo (clutch) contains
the following systems:

sldebug clutch
[Tm=0] **Start** of system 'clutch' outputs
(sldebug @0:0 'clutch/Clutch Pedal'): systems
0 'clutch'
1 'clutch/Locked'
2 'clutch/Unlocked'

Note The systems command does not list subsystems that are purely
graphical in nature, that is, subsystems that the model diagram represents
as Subsystem blocks but that Simulink solves as part of a parent system. In
Simulink models, the root system and triggered or enabled subsystems are
true systems. All other subsystems are virtual (that is, graphical) and hence
do not appear in the listing produced by the systems command.

10-33

10 Simulink Debugger

Displaying a Model’s Nonvirtual Blocks
The slist command displays a list of the nonvirtual blocks in a model. The
listing groups the blocks by system. For example, the following sequence of
commands produces a list of the nonvirtual blocks in the Van der Pol (vdp)
demo model.

sldebug vdp
[Tm=0] **Start** of system 'vdp' outputs
(sldebug @0:0 'vdp/Integrator1'): slist
---- Sorted list for 'vdp' [12 blocks, 9 nonvirtual blocks,
directFeed=0]

0:0 'vdp/Integrator1' (Integrator)
0:1 'vdp/Out1' (Outport)
0:2 'vdp/Integrator2' (Integrator)
0:3 'vdp/Out2' (Outport)
0:4 'vdp/Fcn' (Fcn)
0:5 'vdp/Product' (Product)
0:6 'vdp/Mu' (Gain)
0:7 'vdp/Scope' (Scope)
0:8 'vdp/Sum' (Sum)

Note The slist command does not list blocks that are purely graphical
in nature, that is, blocks that indicate relationships or groupings among
computational blocks.

Displaying Blocks with Potential Zero Crossings
The zclist command displays a list of blocks in which nonsampled zero
crossings can occur during a simulation. For example, zclist displays the
following list for the clutch sample model:

(sldebug @0:0 'clutch/Clutch Pedal'): zclist
2:3 'clutch/Unlocked/Sign' (Signum)
0:4 'clutch/Lockup Detection/Velocities Match' (HitCross)
0:10 'clutch/Lockup Detection/Required Friction

for Lockup/Abs' (Abs)
0:11 'clutch/Lockup Detection/Required Friction for

Lockup/ Relational Operator' (RelationalOperator)

10-34

Displaying Information About the Model

0:18 'clutch/Break Apart Detection/Abs' (Abs)
0:20 'clutch/Break Apart Detection/Relational Operator'

(RelationalOperator)
0:24 'clutch/Unlocked' (SubSystem)
0:27 'clutch/Locked' (SubSystem)

Displaying Algebraic Loops
The ashow command highlights a specified algebraic loop or the algebraic
loop that contains a specified block. To highlight a specified algebraic loop,
enter ashow s#n, where s is the index of the system (see “Identifying Blocks
in Algebraic Loops” on page 10-32) that contains the loop and n is the index
of the loop in the system. To display the loop that contains the currently
selected block, enter ashow gcb. To show a loop that contains a specified
block, enter ashow s:b, where s:b is the block’s index. To clear algebraic-loop
highlighting from the model diagram, enter ashow clear.

Displaying Debugger Status
In GUI mode, the debugger displays the settings of various debug options,
such as conditional breakpoints, in its Status panel. In command-line mode,
the status command displays debugger settings. For example, the following
sequence of commands displays the initial debug settings for the vdp model:

sim('vdp',[0,10],simset('debug','on'))
[Tm=0] **Start** of system 'vdp' outputs
(sldebug @0:0 'vdp/Integrator1'): status

Current simulation time: 0 (MajorTimeStep)
Last command: ""
Stop in minor times steps is disabled.
Break at zero crossing events is disabled.
Break when step size is limiting by a state is disabled.
Break on non-finite (NaN,Inf) values is disabled.
Display of integration information is disabled.
Algebraic loop tracing level is at 0.

10-35

10 Simulink Debugger

10-36

A

Block Libraries

The following sections describe the usage and contents of the Simulink block
libraries. You can use either the Simulink Library Browser on Windows or the
MATLAB command simulink on UNIX to display and browse the libraries.

Commonly Used (p. A-3) Blocks from other libraries that most
models use.

Continuous (p. A-5) Blocks that model linear functions.

Discontinuities (p. A-6) Blocks whose outputs are
discontinuous functions of their
inputs.

Discrete (p. A-7) Blocks that represent discrete-time
functions.

Logic and Bit Operations (p. A-8) Blocks that represent discrete-time
functions.

Lookup Tables (p. A-10) Blocks that use lookup tables to
determine outputs from inputs.

Math Operations (p. A-11) Blocks that model general
mathematical functions.

Model Verification (p. A-13) Blocks that enable you to create
self-validating models.

Model-Wide Utilities (p. A-15) Various utility blocks.

Ports & Subsystems (p. A-16) Blocks for creating various types of
subsystems.

Signal Attributes (p. A-18) Blocks that modify or output
attributes of signals.

A Block Libraries

Signal Routing (p. A-19) Blocks that route signals from one
point in a block diagram to another.

Sinks (p. A-20) Blocks that display or write block
output.

Sources (p. A-21) Blocks that generate signals.

User-Defined Functions (p. A-23) Blocks that allow you to define
the function that relates inputs to
outputs.

Additional Discrete (p. A-24) Additional blocks for modeling
discrete systems.

Additional Math (p. A-26) Blocks that perform math operations
useful for modeling digital systems.

Simulink Extras (p. A-27) Blocks that perform specialized
operations.

A-2

Commonly Used

Commonly Used
The Commonly Used library contains blocks from other libraries that most
models use.

Block Name Purpose

Bus Creator Create a signal bus.

Bus Selector Select signals from an incoming bus.

Constant Generate a constant value.

Data Type Conversion Convert an input signal to a specified data type.

Demux Extract and output the elements of a bus or
vector signal.

Discrete Time Integrator Perform discrete-time integration or
accumulation of a signal.

Gain Multiply the input by a constant.

Ground Ground an unconnected input port.

Inport Create an input port for a subsystem or an
external input.

Integrator Integrate a signal.

Logical Operator Perform the specified logical operation on the
input.

Mux Combine several input signals into a vector or
bus output signal.

Outport Create an output port for a subsystem or an
external output.

Product Multiply or divide inputs.

Relational Operator Perform the specified relational operation on the
inputs.

Saturation Limit the range of a signal.

Scope Display signals generated during a simulation.

Subsystem Represent a system within another system.

A-3

A Block Libraries

Block Name Purpose

Sum Add or subtract inputs.

Switch Switch output between the first input and the
third input based on the value of the second
input.

Terminator Terminate an unconnected output port.

Unit Delay Delay a signal one sample period.

A-4

Continuous

Continuous
The Continuous library contains blocks that model linear functions.

Block Name Purpose

Derivative Output the time derivative of the input.

Integrator Integrate a signal.

State-Space Implement a linear state-space system.

Transfer Fcn Implement a linear transfer function.

Transport Delay Delay the input by a given amount of time.

Variable Time Delay Delay the input by a variable amount of time.

Zero-Pole Implement a transfer function specified in terms
of poles and zeros.

A-5

A Block Libraries

Discontinuities
The Discontinuities library contains blocks whose outputs are discontinuous
functions of their inputs.

Block Name Purpose

Backlash Model the behavior of a system with play.

Coulomb and Viscous
Friction

Model discontinuity at zero, with linear gain
elsewhere.

Dead Zone Provide a region of zero output.

Dead Zone Dynamic Set inputs within dynamically determined
bounds to zero.

Hit Crossing Detect crossing point.

Quantizer Discretize input at a specified interval.

Rate Limiter Limit the rate of change of a signal.

Rate Limiter Dynamic Limit the rising and falling rates of the signal.

Relay Switch output between two constants.

Saturation Limit the range of a signal.

Saturation Dynamic Bound the range of the input to limits that can
change with time.

Wrap To Zero Set output to zero if input is above threshold.

A-6

Discrete

Discrete
The Discrete library contains blocks that represent discrete-time functions.

Block Name Purpose

Difference Calculate the change in a signal over one time
step.

Discrete Derivative Compute a discrete time derivative.

Discrete Filter Implement IIR and FIR filters.

Discrete State-Space Implement a discrete state-space system.

Discrete Transfer Fcn Implement a discrete transfer function.

Discrete Zero-Pole Implement a discrete transfer function specified
in terms of poles and zeros.

Discrete-Time Integrator Perform discrete-time integration of a signal.

First-Order Hold Implement a first-order sample-and-hold.

Memory Output the block input from the previous time
step.

Tapped Delay Delay a scalar signal for multiple sample periods
and output all the delayed versions.

Transfer Fcn First Order Implement a discrete-time first-order transfer
function.

Transfer Fcn Lead or Lag Implement a discrete-time lead or lag
compensator.

Transfer Fcn Real Zero Implement a discrete-time transfer function
that has a real zero and no pole.

Unit Delay Delay a signal one sample period.

Weighted Moving
Average

Implement a weighted moving average.

Zero-Order Hold Implement zero-order hold of one sample period.

A-7

A Block Libraries

Logic and Bit Operations
The Logic and Bit Operations library contains blocks that apply logic and
bit operations to their inputs.

Block Name Purpose

Bit Clear Set the specified bit of the stored integer to zero.

Bitwise Operator Perform the specified bitwise operation on the
inputs.

Combinatorial Logic Implement a truth table.

Compare To Constant Determine how a signal compares to the
specified constant.

Compare To Zero Determine how a signal compares to zero.

Detect Change Detect a change in a signal’s value.

Detect Decrease Detect a decrease in a signal’s value.

Detect Fall Negative Detect a falling edge when the signal’s value
decreases to a strictly negative value, and its
previous value was nonnegative.

Detect Fall Nonpositive Detect a falling edge when the signal’s value
decreases to a nonpositive value, and its
previous value was strictly positive.

Detect Increase Detect an increase in a signal’s value.

Detect Rise Nonnegative Detect a rising edge when a signal’s value
increases to a nonnegative value, and its
previous value was strictly negative.

Detect Rise Positive Detect a rising edge when a signal’s value
increases to a strictly positive value, and its
previous value was nonpositive.

Extract Bits Output a selection of contiguous bits from the
input signal.

Interval Test Determine if a signal is in a specified interval.

Interval Test Dynamic Determine if a signal is in a specified interval
whose limits can change.

A-8

Logic and Bit Operations

Block Name Purpose

Logical Operator Perform the specified logical operation on the
input.

Relational Operator Perform the specified relational operation on the
inputs.

Shift Arithmetic Shift the bits and/or binary point of a signal.

A-9

A Block Libraries

Lookup Tables
The Lookup Tables library contains blocks that use lookup tables to determine
outputs from inputs.

Block Name Purpose

Cosine Implement a cosine function in fixed point using
a lookup table approach that exploits quarter
wave symmetry.

Direct Lookup Table
(n-D)

Index into an N-dimensional table to retrieve a
scalar, vector, or 2-D matrix.

Interpolation (n-D)
Using PreLookup

Perform high-performance constant or linear
interpolation.

Lookup Table Perform piecewise linear mapping of the input.

Lookup Table (2-D) Perform piecewise linear mapping of two inputs.

Lookup Table (n-D) Perform piecewise linear or spline mapping of
two or more inputs.

Lookup Table Dynamic Approximate a one-dimensional function using
a selected lookup method and a dynamically
specified table.

PreLookup Index Search Perform index search and interval fraction
calculation for input on a breakpoint set.

Sine Implement a sine wave in fixed point using a
lookup table approach that exploits quarter
wave symmetry.

A-10

Math Operations

Math Operations
The Math Operations library contains blocks that model general mathematical
functions.

Block Name Purpose

Abs Output the absolute value of the input.

Add Add or subtract inputs.

Algebraic Constraint Constrain the input signal to zero.

Assignment Assign values to specified elements of a signal.

Bias Add a bias to the input.

Complex to
Magnitude-Angle

Output the phase and magnitude of a complex
input signal.

Complex to Real-Imag Output the real and imaginary parts of a
complex input signal.

Divide Multiply or divide inputs.

Dot Product Generate the dot product.

Gain, Matrix Gain Multiply block input by a specified value.

Magnitude-Angle to
Complex

Output a complex signal from magnitude and
phase inputs.

Math Function Perform a mathematical function.

Matrix Concatenation Concatenate inputs horizontally or vertically.

MinMax Output the minimum or maximum input value.

MinMax Running
Resettable

Determine the minimum or maximum of a
signal over time.

Polynomial Perform evaluation of polynomial coefficients on
input values.

Product Generate the product or quotient of block inputs.

Real-Imag to Complex Output a complex signal from real and
imaginary inputs.

Reshape Change the dimensionality of a signal.

A-11

A Block Libraries

Block Name Purpose

Rounding Function Perform a rounding function.

Sign Indicate the sign of the input.

Sine Wave Function Output a sine wave.

Slider Gain Vary a scalar gain using a slider.

Subtract Add or subtract inputs.

Sum Generate the sum of inputs.

Sum of Elements Add or subtract inputs.

Trigonometric Function Perform a trigonometric function.

Unary Minus Negate the input.

Weighted Sample Time
Math

Support calculations involving sample time.

A-12

Model Verification

Model Verification
Acknowledgment

The Model Verification blocks were developed in conjunction with the Control
System Design team of the Advanced Chassis System Development group of
DaimlerChrysler AG, Stuttgart, Germany.

The Model Verification library contains blocks that enable you to create
self-validating models.

Block Name Purpose

Assertion Assert that the input signal is nonzero.

Check Discrete Gradient Check that the absolute value of the difference
between successive samples of a discrete signal
is less than an upper bound.

Check Dynamic Gap Check that a gap of varying width occurs in the
range of a signal’s amplitudes.

Check Dynamic Lower
Bound

Check that a signal is always greater than a
value that can vary at each time step.

Check Dynamic Range Check that a signal always lies in a varying
range of amplitudes.

Check Dynamic Upper
Bound

Check that a signal is always less than a value
that can vary at each time step.

Check Input Resolution Check that a signal has a specified resolution.

Check Static Gap Check that a fixed-width gap occurs in the range
of a signal’s amplitudes

Check Static Lower
Bound

Check that a signal is greater than (or optionally
equal to) a lower bound that does not vary with
time.

A-13

A Block Libraries

Block Name Purpose

Check Static Range Check that the input signal falls in a fixed range
of amplitudes.

Check Static Upper
Bound

Check that a signal is less than (or optionally
equal to) an upper bound that does not vary
with time.

A-14

Model-Wide Utilities

Model-Wide Utilities
The Model-Wide Utilities library contains various utility blocks.

Block Name Purpose

DocBlock Create text that documents the model and save
the text with the model.

Model Info Display revision control information in a model.

Time-Based
Linearization

Generate linear models in the base workspace
at specific times.

Trigger-Based
Linearization

Generate linear models in the base workspace
when triggered.

A-15

A Block Libraries

Ports & Subsystems
The Ports & Subsystems library contains blocks for creating various types of
subsystems.

Block Name Purpose

Configurable Subsystem Represent any block selected from a specified
library.

Enable Add an enabling port to a subsystem. Note that
this block resides inside the Enabled Subsystem
and the Enabled and Triggered Subsystem in
the Subsystems library.

Enabled and Triggered
Subsystem

Represent an enabled and triggered subsystem.

Enabled Subsystem Represent an enabled subsystem.

For Iterator Subsystem Implement a C-like for loop.

Function-Call Generator Execute a function-call subsystem a specified
number of times at a specified rate

Function-Call
Subsystem

Represent a function-call subsystem.

If Implement C-like if-else statement logic.

If Action Subsystem Represent a subsystem whose execution is
triggered by an If block.

Inport Create an input port for a subsystem or an
external input. Note that this block resides
inside the Subsystem block and inside other
subsystem blocks in the Subsystems library.

Model Include a model as a block in another model.

Outport Create an output port for a subsystem or an
external output. Note that this block resides
inside the Subsystem block and inside other
subsystem blocks in the Subsystems library.

A-16

Ports & Subsystems

Block Name Purpose

Subsystem, Atomic
Subsystem

Represent a system within another system.

Switch Case Implement C-like switch statement logic.

Switch Case Action
Subsystem

Represent a subsystem whose execution is
triggered by a Switch Case block.

Trigger Add a trigger port to a subsystem. Note that this
block resides inside the Triggered Subsystem
and the Enabled and Triggered Subsystem in
the Subsystems library.

Triggered Subsystem Represent a triggered subsystem.

While Iterator
Subsystem

Represent a subsystem that executes repeatedly
while a condition is satisfied during a simulation
time step.

A-17

A Block Libraries

Signal Attributes
The Signal Attributes library contains blocks that modify or output attributes
of signals.

Block Name Purpose

Data Type Conversion Convert a signal to another data type.

Data Type Conversion
Inherited

Convert from one data type to another using
inherited data type and scaling.

Data Type Duplicate Force all inputs to the same data type.

Data Type Propagation Set the data type and scaling of the propagated
signal based on information from the reference
signals.

Data Type Scaling Strip Remove scaling and map to a built-in integer.

IC Set the initial value of a signal.

Probe Output a signal’s attributes, including width,
sample time, and/or signal type.

Rate Transition Specify the data transfer mechanism between
the data rates of a multirate system.

Signal Conversion Convert a signal to a new type without altering
signal values.

Signal Specification Specify attributes of a signal.

Weighted Sample Time Support calculations involving sample time.

Width Output the width of the input vector.

A-18

Signal Routing

Signal Routing
The Signal Routing library contains blocks that route signals from one point
in a block diagram to another.

Block Name Purpose

Bus Assignment Assign values to specified elements of a bus.

Bus Creator Create a signal bus.

Bus Selector Output signals selected from an input bus.

Data Store Memory Define a shared data store.

Data Store Read Read data from a shared data store.

Data Store Write Write data to a shared data store.

Demux Separate a vector signal into output signals.

Environment Controller Create branches of a block diagram that apply
only to simulation or only to code generation.

From Accept input from a Goto block.

Goto Pass block input to From blocks.

Goto Tag Visibility Define the scope of a Goto block tag.

Index Vector Switch output between different inputs based on
the value of the first input.

Manual Switch Switch between two inputs.

Merge Combine several input lines into a scalar line.

Multiport Switch Choose between block inputs.

Mux Combine several input lines into a vector line.

Selector Select or reorder the elements of the input
vector.

Switch Switch between two inputs.

A-19

A Block Libraries

Sinks
The Sinks library contains blocks that display or write block output.

Block Name Purpose

Display Show the value of the input.

Outport Create an output port for a subsystem or an
external output.

Scope Display signals generated during a simulation.

Stop Simulation Stop the simulation when the input is nonzero.

Terminator Terminate an unconnected output port.

To File Write data to a file.

To Workspace Write data to a variable in the workspace.

XY Graph Display an X-Y plot of signals using a MATLAB
figure window.

A-20

Sources

Sources
The Sources library contains blocks that generate signals.

Block Name Purpose

Band-Limited White
Noise

Introduce white noise into a continuous system.

Chirp Signal Generate a sine wave with increasing frequency.

Clock Display and provide the simulation time.

Constant Generate a constant value.

Counter Free-Running Count up and overflow back to zero after the
maximum value possible is reached for the
specified number of bits.

Counter Limited Count up and wrap back to zero after outputting
the specified upper limit.

Digital Clock Generate simulation time at the specified
sampling interval.

From File Read data from a file.

From Workspace Read data from a variable defined in the
workspace.

Ground Ground an unconnected input port.

Inport Create an input port for a subsystem or an
external input.

Pulse Generator Generate pulses at regular intervals.

Ramp Generate a constantly increasing or decreasing
signal.

Random Number Generate normally distributed random numbers.

Repeating Sequence Generate a repeatable arbitrary signal.

Repeating Sequence
Interpolated

Output discrete-time sequence and repeat,
interpolating between data points.

Repeating Sequence
Stair

Output and repeat the discrete time sequence.

A-21

A Block Libraries

Block Name Purpose

Signal Builder Generate an arbitrary piecewise linear signal.

Signal Generator Generate various waveforms.

Sine Wave Generate a sine wave.

Step Generate a step function.

Uniform Random
Number

Generate uniformly distributed random
numbers.

A-22

User-Defined Functions

User-Defined Functions
The User-Defined Functions library contains blocks that allow you to define
the function that relates inputs to outputs.

Block Name Purpose

Embedded MATLAB
Function

Include MATLAB code in models that generate
embeddable C code.

Fcn Apply a specified expression to the input.

Level-2 M-File
S-Function

Use a Level-2 M-file S-function in a model.

MATLAB Fcn Apply a MATLAB function or expression to the
input.

M-File S-Function Use a Level-2 M-file S-function in a model.

S-Function Access an S-function.

S-Function Builder Build a C MEX S-function from specifications
and code that you supply.

A-23

A Block Libraries

Additional Discrete
The Additional Discrete library contains blocks for modeling discrete systems.

Block Name Purpose

Fixed-Point State-Space Implement discrete-time state space.

Transfer Fcn Direct Form
II

Implement a Direct Form II realization of a
transfer function.

Transfer Fcn Direct Form
II Time Varying

Implement a time varying Direct Form II
realization of a transfer function.

Unit Delay Enabled Delay a signal one sample period, if the external
enable signal is on.

Unit Delay Enabled
External IC

Delay a signal one sample period, if the external
enable signal is on, with an external initial
condition.

Unit Delay Enabled
Resettable

Delay a signal one sample period, if the external
enable signal is on, with an external Boolean
reset.

Unit Delay Enabled
Resettable External IC

Delay a signal one sample period, if the external
enable signal is on, with an external Boolean
reset and initial condition.

Unit Delay External IC Delay a signal one sample period, with an
external initial condition.

Unit Delay Resettable Delay a signal one sample period, with an
external Boolean reset.

Unit Delay Resettable
External IC

Delay a signal one sample period, with an
external Boolean reset and initial condition.

Unit Delay With Preview
Enabled

Output the signal and the signal delayed by one
sample period, if the external enable signal is
on.

Unit Delay With Preview
Enabled Resettable

Output the signal and the signal delayed by one
sample period, if the external enable signal is
on, with an external Boolean reset.

A-24

Additional Discrete

Block Name Purpose

Unit Delay With Preview
Enabled Resettable
External RV

Output the signal and the signal delayed by one
sample period, if the external enable signal is
on, with an external RV reset.

Unit Delay With Preview
Resettable

Output the signal and the signal delayed by one
sample period, with an external Boolean reset.

Unit Delay With Preview
Resettable External RV

Output the signal and the signal delayed by one
sample period, with an external RV reset.

A-25

A Block Libraries

Additional Math
The Additional Math library contains math blocks useful for modeling digital
systems.

Block Name Purpose

Decrement Real World Decrease the real world value of the signal by
one.

Decrement Stored
Integer

Decrease the stored integer value of a signal
by one.

Decrement Time To Zero Decrease the real-world value of the signal by
the sample time, but only to zero.

Decrement To Zero Decreases the real-world value of a signal by
one, but only to zero.

Increment Real World ncrease the real world value of the signal by one.

Increment Stored Integer Increase the stored integer value of a signal by
one.

A-26

Simulink Extras

Simulink Extras
The Extras block library contains specialized blocks.

A-27

A Block Libraries

A-28

Index

IndexA
Abs block

zero crossings 2-23
absolute tolerance

definition 7-15
simulation accuracy 7-41

Adams-Bashforth-Moulton PECE solver 7-14
algebraic loops

direct feedthrough blocks 2-24
displaying 2-26
highlighting 10-35
identifying blocks in 10-32
simulation speed 7-41

aligning blocks 5-5
annotations

changing font 4-20
creating 4-19
definition 4-19
deleting 4-19
editing 4-19
moving 4-19

Apply button on Mask Editor 9-15
Assignment mask parameter 9-21
atomic subsystem 2-11
attributes format string 4-18
AttributesFormatString block

parameter 5-14
Autoscale icon drawing coordinates 9-18

B
Backlash block

zero crossings 2-23
backpropagating sample time 2-38
Backspace key

deleting annotations 4-19
deleting blocks 5-6
deleting labels 6-22

Band-Limited White Noise block
simulation speed 7-41

block callback parameters 4-42
Block data tips 5-2
block descriptions

creating 9-10
block diagram

updating 3-9
block diagrams

panning 3-7
printing 3-15
zooming 3-7

block libraries
Blocksets and Toolboxes A-27
definition 5-21
Extras A-27
searching 5-30

block names
changing location 5-18
copied blocks 5-4
editing 5-17
flipping location 5-18
generated for copied blocks 5-5
hiding and showing 5-18
location 5-17
rules 5-17

block parameters
about 5-7
modifying during simulation 7-5
scalar expansion 6-16
setting 5-8

Block Properties dialog box 5-10
block type of masked block 9-29
blocks

aligning 5-5
autoconnecting 4-10
callback routines 4-41
changing font 5-17
changing font names 5-17
changing location of names 5-18
checking connections 2-14
connecting automatically 4-10

Index-1

Index

connecting manually 4-13
copying from Library Browser 5-30
copying into models 5-4
copying to other applications 5-5
deleting 5-6
disconnecting 4-18
drop shadows 5-16
duplicating 5-6
grouping to create subsystem 4-25
hiding block names 5-18
input ports with direct feedthrough 2-24
library 5-21
moving between windows 5-5
moving in a model 5-6
names

editing 5-17
orientation 5-15
reference 5-21
resizing 5-15
showing block names 5-18
signal flow through 5-15
under mask 9-15
updating 2-14

<>blocks 5-17
See also block names

Blocksets and Toolboxes library A-27
Bogacki-Shampine formula 7-14
books

MATLAB related 1-8
bounding box

grouping blocks for subsystem 4-25
selecting objects 4-4

branch lines 4-14
Break Library Link menu item 5-25
breaking links to library block 5-25
breakpoints

setting 10-22
setting at end of block 10-25
setting at timesteps 10-25
setting on nonfinite values 10-25

setting on step-size-limiting steps 10-26
setting on zero crossings 10-26

Browser 8-22

C
callback routines 4-41
callback routines, referencing mask

parameters in 4-43
callback tracing 4-41
Cancel button on Mask Editor 9-15
canvas, editor 3-6
changing

signal labels font 6-22
Clear menu item 5-6
CloseFcn block callback parameter 4-43
CloseFcn model callback parameter 4-42
colors for sample times 2-38
commands

undoing 3-6
comp.soft-sys.matlab 1-9
composite signals 6-8
conditionally executed subsystem 2-11
conditionally executed subsystems 4-29
Configuration Parameters dialog box 7-36
connecting blocks 4-13
ConnectionCallback

port callback parameters 4-45
constant sample time 2-39
context menu 3-6
continuous sample time 2-32
control flow subsystem 4-29
control input 4-29
control signal 4-29 6-8
copy

definition 5-21
Copy menu item 5-4
CopyFcn block callback parameter 4-43
copying

blocks 5-4

Index-2

Index

signal labels 6-22
Create Mask menu item 9-15
Cut menu item 5-5

D
dash-dot lines 6-8
dbstop if error command 9-28
dbstop if warning command 9-28
Dead Zone block

zero crossings 2-23
debugger

running incrementally 10-15
setting breakpoints 10-22
setting breakpoints at time steps 10-25
setting breakpoints at zero crossings 10-26
setting breakpoints on nonfinite

values 10-25
setting breakpoints on step-size-limiting

steps 10-26
skipping breakpoints 10-19
starting 10-10
stepping by time steps 10-17

debugging initialization commands 9-30
decimation factor

saving simulation output 7-26
Delete key

deleting blocks 5-6
deleting signal labels 6-22

DeleteFcn block callback parameter 4-43
demos

Simulink 1-5
description of masked blocks 9-29
DestroyFcn block callback parameter 4-43
diagnosing simulation errors 7-38
diagonal line segments 4-15
diagonal lines 4-13
direct feedthrough blocks 2-24
disabled subsystem

output 4-31

disabling zero-crossing detection 2-22
disconnecting blocks 4-18
discrete blocks

in enabled subsystem 4-32
in triggered systems 4-37

discrete sample time 2-32
Discrete-Time Integrator block

sample time colors 2-38
discrete-time systems 2-31
Documentation pane of Mask Editor 9-15
Dormand-Prince

pair 7-13
drawing coordinates

Autoscale 9-18
normalized 9-18
Pixel 9-19

drop shadows 5-16
duplicating blocks 5-6

E
editor 3-5

canvas 3-6
toolbar 3-5

either trigger event 4-34
Enable block

creating enabled subsystems 4-31
outputting enable signal 4-32
states when enabling 4-32

enabled subsystems 4-30
setting states 4-32

ending Simulink session 3-27
error tolerance 7-15

simulation accuracy 7-41
simulation speed 7-40

ErrorFcn block callback parameter 4-44
eval command

masked block help 9-29
examples

masking 9-6

Index-3

Index

multirate discrete model 2-34
Exit MATLAB menu item 3-27
Extras block library A-27

F
falling trigger event 4-34
Fcn block

simulation speed 7-40
files

writing to 7-4
Final State check box 7-25
fixed in minor time step 2-32
fixed-step solvers

definition 2-17
Flip Block menu item 5-15
Flip Name menu item 5-18
floating Display block 7-5
floating Scope block 7-5
font

annotations 4-20
block 5-17
block names 5-17
signal labels 6-22

Font menu item
changing block name font 5-17
changing the font of a signal label 6-22

font size, setting for Model Explorer 8-3
font size, setting for Simulink dialog boxes 8-3
From Workspace block

zero crossings 2-23
fundamental sample time 7-8

G
Gain block

algebraic loops 2-24
Go To Library Link menu item 5-26
grouping blocks 4-24

H
handles on selected object 4-4
held output of enabled subsystem 4-31
held states of enabled subsystem 4-32
help

sources of 1-7
via newsgroup 1-9

Help button on Mask Editor 9-15
help text for masked blocks 9-10
Hide Name menu item

hiding block names 5-18
hiding port labels 4-28

Hide Port Labels menu item 4-27
hiding block names 5-18
hierarchy of model

replacing virtual subsystems 2-14
Hit Crossing block

notification of zero crossings 2-21
zero crossings

and Disable zero crossing detection
option 2-23

hybrid systems
integrating 2-41

I
Icon pane of Mask Editor 9-14
icons

creating for masked blocks 9-16
If block

zero crossings
and Disable zero crossing detection

option 2-23
inherited sample time 2-32
InitFcn block callback parameter 4-43
InitFcn model callback parameter 4-42
initial conditions

specifying 7-24
Initial State check box 7-26
initial states

Index-4

Index

loading 7-26
initial step size

simulation accuracy 7-41
initialization commands 9-25

debugging 9-30
Initialization pane of Mask Editor 9-15
Inport block

in subsystem 4-24
supplying input to model 7-17

inputs
loading from base workspace 7-17
mixing vector and scalar 6-17
scalar expansion 6-16

Integrator block
algebraic loops 2-24
sample time colors 2-38
simulation speed 7-41
zero crossings 2-23

invariant constants 2-39

J
Jacobian matrices 7-14

K
keyboard actions summary 3-23
keyboard command 9-28

L
labeling signals 6-21
labeling subsystem ports 4-27
learning Simulink 1-5
libinfo command 5-28
libraries, see block libraries
library blocks

breaking links to 5-25
definition 5-21
finding 5-26
getting information about 5-26

Library Browser 5-28
copying blocks from 5-30

library links
creating 5-22
definition 5-21
disabling 5-23
displaying 5-27
modifying 5-23
propagating changes to 5-24
showing in Model Browser 8-23
status of 5-26
unresolved 5-22

line segments 4-14
diagonal 4-15
moving 4-15

line vertices
moving 4-16

lines
branch 4-14
connecting blocks 4-10
diagonal 4-13
moving 5-6
signals carried on 7-5

links
breaking 5-25
to library block 5-22

LinkStatus block parameter 5-26
LoadFcn block callback parameter 4-44
loading from base workspace 7-17
loading initial states 7-26
location of block names 5-17
Look Under Mask menu item 9-15
loops, algebraic, see algebraic loops

M
M-file S-functions

simulation speed 7-40
Mask Editor 9-14
mask help text 9-10

Index-5

Index

Mask Subsystem menu item 9-14
mask type

defining 9-10
mask workspace 9-27
masked blocks

block descriptions 9-10
documentation 9-28
help text 9-10
icons

creating 9-10
Icon pane 9-16

initialization commands 9-25
looking under 9-15
parameters

assigning values to 9-21
default values 9-30
mapping 9-6
prompts for 9-20
referencing in callbacks 4-43

showing in Model Browser 8-23
type 9-29
unmasking 9-15

masked subsystems
showing in Model Browser 8-23

Math Function block
algebraic loops 2-24

MathWorks Store
purchasing products from 1-8

MathWorks Web site 1-8
MATLAB

books 1-8
terminating 3-27

MATLAB Central 1-9
MATLAB Fcn block

simulation speed 7-40
mdl files 3-11
Memory block

simulation speed 7-40
menus 3-5

context 3-6

MinMax block
zero crossings 2-23

mixed continuous and discrete systems 2-41
model

editor 3-5
Model Browser 8-22

showing library links in 8-23
showing masked subsystems in 8-23

model callback parameters 4-41
model configuration preferences 8-4
Model Explorer

font size 8-3
model file name, maximum size of 3-11
model files

mdl file 3-11
model navigation commands 4-26
model verification A-13
Model Verification block library A-13
ModelCloseFcn block callback parameter 4-44
models

callback routines 4-41
creating 4-2
creating templates 4-2
editing 3-3
navigating 4-26
printing 3-15
saving 3-11
selecting entire 4-5

models, self-validating A-13
mouse actions summary 3-23
MoveFcn block callback parameter 4-44
multirate systems

example 2-34
Mux block A-3

N
NameChangeFcn block callback parameter 4-44
names

blocks 5-17

Index-6

Index

copied blocks 5-4
New Library menu item 5-21
New menu item 4-2
newsgroup 1-9
normalized icon drawing coordinates 9-18
numerical differentiation formula 7-14
numerical integration 2-15

O
objects

selecting more than one 4-4
selecting one 4-4

ode113 solver
advantages 7-14
hybrid systems 2-41
Memory block

and simulation speed 7-40
ode15s solver

advantages 7-14
and stiff problems 7-40
hybrid systems 2-41
Memory block

and simulation speed 7-40
unstable simulation results 7-41

ode23 solver 7-14
hybrid systems 2-41

ode23s solver
advantages 7-14
simulation accuracy 7-41

ode45 solver
hybrid systems 2-41

Open menu item 3-3
OpenFcn block callback parameter

purpose 4-44
opening

Subsystem block 4-26
orientation of blocks 5-15
Outport block

in subsystem 4-24

Outport blocks A-3
output

additional 7-27
between trigger events 4-36
disabled subsystem 4-31
enable signal 4-32
options 7-26
saving to workspace 7-22
smoother 7-26
specifying for simulation 7-27
trigger signal 4-37
writing to file

when written 7-4
writing to workspace 7-22

when written 7-4
output ports

Enable block 4-32
Trigger block 4-37

P
panning block diagrams 3-7
PaperOrientation model parameter 3-18
PaperPosition model parameter 3-18
PaperPositionMode model parameter 3-18
PaperType model parameter 3-18
parameters

block 5-7
setting values of 5-8
tunable

definition 2-8
Parameters pane of Mask Editor 9-15
ParentCloseFcn block callback

parameter 4-44
Paste menu item 5-4
Pixel icon drawing coordinates 9-19
ports

block orientation 5-15
labeling in subsystem 4-27

PostLoadFcn model callback parameter 4-42

Index-7

Index

PostSaveFcn block callback parameter 4-45
PostSaveFcn model callback parameter 4-42
PostScript files

printing to 3-17
preferences, model configuration 8-4
PreLoadFcn model callback parameter 4-42
PreSaveFcn block callback parameter 4-44
PreSaveFcn model callback parameter 4-42
print command 3-15
Print menu item 3-15
printing to PostScript file 3-17
produce additional output option 7-27
produce specified output only option 7-27
Product block

algebraic loops 2-24
professional version

differences with Student Version 1-10
purely discrete systems 2-34

Q
Quit MATLAB menu item 3-27

R
Random Number block

simulation speed 7-41
Redo menu item 3-7
reference blocks

definition 5-21
reference information

obtaining 1-6
refine factor

smoothing output 7-26
Relational Operator block

zero crossings 2-23
relative tolerance

definition 7-15
simulation accuracy 7-41

Relay block

zero crossings 2-23
reset

output of enabled subsystem 4-31
states of enabled subsystem 4-32

resizing blocks 5-15
rising trigger event 4-34
Rosenbrock formula 7-14
Rotate Block menu item 5-15
Runge-Kutta (2,3) pair 7-14
Runge-Kutta (4,5) formula 7-13

S
sample time

backpropagating 2-38
changing during simulation 2-33
colors 2-38
constant 2-39
continuous 2-32
discrete 2-32
fixed in minor time step 2-32
fundamental 7-8
inherited 2-32
simulation speed 7-41
variable 2-33

Sample Time Colors menu item 2-39
updating coloring 4-9

sampled data systems 2-31
Saturation block A-3

zero crossings 2-23
how used 2-21

Save As menu item 3-11
Save menu item 3-11
Save options area 7-22
save_system command

breaking links 5-25
scalar expansion 6-16
Select All menu item 4-5
Set Font dialog box 5-17
set_param command

Index-8

Index

breaking link 5-25
running a simulation 7-2

setting breakpoints 10-22
Shampine, L. F. 7-14
Show Name menu item 5-18
show output port

Enable block 4-32
Trigger block 4-37

showing block names 5-18
Sign block

zero crossings 2-23
Signal Builder block

zero crossings 2-24
signal buses 6-13
signal flow through blocks 5-15
signal labels

changing font 6-22
copying 6-22
creating 6-21
deleting 6-22
editing 6-22
moving 6-21

signal propagation 6-5
signals

composite 6-8
labeling 6-21
labels 6-21
names 6-21
virtual 6-5

signals, creating 6-2
simulation

accuracy 7-41

displaying information about
algebraic loops 10-30
block execution order 10-32
block I/O 10-28
debug settings 10-35
integration 10-31
nonvirtual blocks 10-34
nonvirtual systems 10-33
system states 10-31
zero crossings 10-34

execution phase 2-15
parameters

specifying 7-38
running incrementally 10-15
running nonstop 10-19
speed 7-40
status bar 3-6
stepping by breakpoints 10-22
stepping by time steps 10-17
unstable results 7-41

Simulation Diagnostics Viewer 7-38
simulation errors

diagnosing 7-38
simulation time

compared to clock time 7-6
writing to workspace 7-22

Simulink
demos 1-5
ending session 3-27
how to learn 1-5
icon 3-2
menus 3-5
starting 3-2
terminating 3-27

Simulink block library, see block libraries
simulink command

starting Simulink 3-2
Simulink dialog boxes

font size 8-3
Simulink Library Browser 3-2

Index-9

Index

size of block
changing 5-15

sldebug command
starting the Simulink debugger 10-13

solvers
fixed-step

definition 2-17
ode113

advantages 7-14
and simulation speed 7-40

ode15s
advantages 7-14
and simulation speed 7-40
and stiff problems 7-40
simulation accuracy 7-41

ode23 7-14
ode23s

advantages 7-14
simulation accuracy 7-41

speed of simulation 7-40
stairs function 2-35
start time 7-6
StartFcn block callback parameter 4-45
StartFcn model callback parameter 4-42
starting Simulink 3-2
State-Space block

algebraic loops 2-24
states

between trigger events 4-36
loading initial 7-26
when enabling 4-32
writing to workspace 7-22

status bar 3-6
Step block

zero crossings 2-24
step size

simulation speed 7-40
stiff problems 7-14
stiff systems

simulation speed 7-40

stop time 7-6
StopFcn block callback parameter 4-45
StopFcn model callback parameter 4-42
Student Version

differences with professional version 1-10
Simulink differences 1-10

subsystem
atomic 2-11
conditionally executed 2-11

Subsystem block
adding to create subsystem 4-24
opening 4-26
zero crossings 2-24

subsystem ports
labeling 4-27

subsystems
creating 4-24
displaying parent of 4-27
labeling ports 4-27
opening 4-26
triggered and enabled 4-37
underlying blocks 4-26
undoing creation of 4-26

Sum block
algebraic loops 2-24

summary of mouse and keyboard actions 3-23
support

sources of 1-7
Switch block

zero crossings 2-24
Switch Case block

zero crossings
and Disable zero crossing detection

option 2-24

T
technical support 1-9
terminating MATLAB 3-27
terminating Simulink 3-27

Index-10

Index

terminating Simulink session 3-27
time interval

simulation speed 7-40
toolbar

editor 3-5
Transfer Fcn block

algebraic loops 2-24
Trigger block

creating triggered subsystem 4-36
outputting trigger signal 4-37
showing output port 4-37

triggered and enabled subsystems 4-37
triggered subsystems 4-34
triggers

control signal
outputting 4-37

either 4-34
events 4-34
falling 4-34
input 4-34
rising 4-34
type parameter 4-36

troubleshooting 1-7
tunable parameters

definition 2-8

U
Undo menu item 3-6
UndoDeleteFcn block callback parameter 4-45
undoing commands 3-6
Unmask button on Mask Editor 9-15
unstable simulation results 7-41
Update Diagram menu item

fixing bad link 5-23
out-of-date reference block 5-25
recoloring model 4-9

updating a block diagram 3-9

URL specification in block help 9-29

V
vector length

checking 2-14
verification, model A-13
vertices

moving 4-16
virtual blocks 5-2
virtual signals 6-5

W
web command

masked block help 9-29
window reuse 4-27
workspace

loading from 7-17
mask 9-27
saving to 7-22
writing to

simulation terminated or
suspended 7-4

www.mathworks.com 1-8
www.mathworks.com/academia 1-8
www.mathworks.com/store 1-8
www.mathworks.com/support/books 1-8

Z
zero crossings

Saturation block 2-21
zero-crossing slope method 4-30
Zero-Pole block

algebraic loops 2-24
zooming block diagrams 3-7

Index-11

	toc
	Introducing Simulink
	About the Student Version
	Student Use Policy
	Student Version Activation

	Obtaining Additional MathWorks Products
	Getting Started with Simulink
	Finding Reference Information
	Troubleshooting
	Other Resources
	Documentation
	Web-Based Documentation

	MathWorks Web Site
	MathWorks Academia Web Site
	MATLAB & Simulink Based Books
	MathWorks Store
	MATLAB Central -- File Exchange/Newsgroup Access
	Technical Support

	Differences Between the Student and Professional Versions

	How Simulink Works
	Introduction
	Modeling Dynamic Systems
	Block Diagram Semantics
	Creating Models
	Time
	States
	Working with States
	Continuous States
	Discrete States
	Modeling Hybrid Systems

	Block Parameters
	Tunable Parameters
	Block Sample Times
	Custom Blocks
	Systems and Subsystems
	Flattening the Model Hierarchy
	Conditionally Executed Subsystems
	Atomic Subsystems

	Signals
	Block Methods
	Method Types
	Method Naming Convention

	Model Methods

	Simulating Dynamic Systems
	Model Compilation
	Link Phase
	Method Execution Lists
	Block Priorities

	Simulation Loop Phase
	Loop Iteration

	Solvers
	Fixed-Step Solvers Versus Variable-Step Solvers
	Continuous Versus Discrete Solvers
	Minor Time Steps

	Zero-Crossing Detection
	How Zero-Crossing Detection Works
	Implementation Details
	Caveat
	Blocks with Zero Crossings

	Algebraic Loops
	Highlighting Algebraic Loops
	Eliminating Algebraic Loops

	Modeling and Simulating Discrete Systems
	Specifying Sample Time
	Changing a Block's Sample Time
	Compiled Sample Time

	Purely Discrete Systems
	Multirate Systems
	Determining Step Size for Discrete Systems
	Sample Time Propagation
	Constant Sample Time
	How Simulink Treats Blocks with Infinite Sample Times and Tunabl

	Mixed Continuous and Discrete Systems

	Simulink Basics
	Starting Simulink
	Opening Models
	Opening Models with Different Character Encodings
	Avoiding Initial Model Open Delay

	Model Editor
	Editor Components
	Menu Bar
	Toolbar
	Canvas
	Context Menus
	Status Bar

	Undoing a Command
	Zooming Block Diagrams
	Panning Block Diagrams
	View Command History

	Updating a Block Diagram
	Saving a Model
	Saving Models with Different Character Encodings
	Saving a Model in Earlier Formats

	Printing a Block Diagram
	Print Dialog Box
	Print Command
	Specifying Paper Size and Orientation
	Positioning and Sizing a Diagram

	Generating a Model Report
	Model Report Options
	Directory
	Increment filename to prevent overwriting old files
	Current object
	Current and above
	Current and below
	Entire model
	Look under mask dialog
	Expand unique library links

	Summary of Mouse and Keyboard Actions
	Model Viewing Shortcuts
	Block Editing Shortcuts
	Line Editing Shortcuts
	Signal Label Editing Shortcuts
	Annotation Editing Shortcuts

	Ending a Simulink Session

	Creating a Model
	Creating an Empty Model
	Creating a Model Template

	Selecting Objects
	Selecting an Object
	Selecting Multiple Objects
	Selecting Multiple Objects One at a Time
	Selecting Multiple Objects Using a Bounding Box
	Selecting All Objects

	Specifying Block Diagram Colors
	Choosing a Custom Color
	Defining a Custom Color
	Specifying Colors Programmatically
	Displaying Sample Time Colors

	Connecting Blocks
	Automatically Connecting Blocks
	Connecting Two Blocks
	Connecting Groups of Blocks

	Manually Connecting Blocks
	Drawing a Line Between Blocks
	Drawing a Branch Line
	Drawing a Line Segment
	Moving a Line Segment
	Moving a Line Vertex
	Inserting Blocks in a Line

	Disconnecting Blocks

	Annotating Diagrams
	Annotations Properties Dialog Box
	Text
	Drop shadow
	Enable TeX commands
	Font
	Foreground color
	Background color
	Alignment
	ClickFcn
	Use display text as click callback

	Annotations API

	Creating Subsystems
	Creating a Subsystem by Adding the Subsystem Block
	Creating a Subsystem by Grouping Existing Blocks
	Undoing Subsystem Creation

	Model Navigation Commands
	Window Reuse
	Labeling Subsystem Ports

	Creating Conditionally Executed Subsystems
	Enabled Subsystems
	Creating an Enabled Subsystem
	Blocks an Enabled Subsystem Can Contain

	Triggered Subsystems
	Creating a Triggered Subsystem
	Function-Call Subsystems
	Blocks That a Triggered Subsystem Can Contain

	Triggered and Enabled Subsystems
	Creating a Triggered and Enabled Subsystem
	A Sample Triggered and Enabled Subsystem
	Creating Alternately Executing Subsystems

	Using Callback Functions
	Tracing Callbacks
	Creating Model Callback Functions
	Model Callback Functions

	Creating Block Callback Functions
	Block Callback Parameters

	Port Callback Parameters

	Working with Blocks
	About Blocks
	Block Data Tips
	Virtual Blocks

	Editing Blocks
	Copying and Moving Blocks from One Window to Another
	Moving Blocks in a Model
	Copying Blocks in a Model
	Deleting Blocks

	Working with Block Parameters
	Displaying a Block's Parameter Dialog Box
	Specifying Parameter Values
	Working with Tunable Parameters
	Tuning Block Parameters
	Changing Source Block Parameters

	Block Properties Dialog Box
	General Pane
	Block Annotation Pane
	Callbacks Pane
	Creating Block Annotations Programmatically

	Changing a Block's Appearance
	Changing the Orientation of a Block
	Resizing a Block
	Displaying Parameters Beneath a Block
	Using Drop Shadows
	Manipulating Block Names
	Changing Block Names
	Changing the Location of a Block Name
	Changing Whether a Block Name Appears

	Specifying a Block's Color

	Displaying Block Outputs
	Enabling Port Values Display
	Port Values Display Options

	Working with Block Libraries
	Terminology
	Simulink Block Library
	Creating a Library Link
	Disabling Library Links
	Modifying a Linked Subsystem
	Propagating Link Modifications
	Updating a Linked Block
	Breaking a Link to a Library Block
	Finding the Library Block for a Reference Block
	Library Link Status
	Displaying Library Links
	Getting Information About Library Blocks
	Browsing Block Libraries
	Navigating the Library Tree
	Searching Libraries
	Opening a Library
	Creating and Opening Models
	Copying Blocks
	Displaying Help on a Block
	Pinning the Library Browser

	Working with Signals
	Signal Basics
	About Signals
	Creating Signals
	Signal Line Styles
	Signal Labels
	Displaying Signal Values
	Signal Dimensions
	Complex Signals
	Virtual Signals
	Displaying Virtual Signal Sources and Destinations
	Displaying the Nonvirtual Components of Virtual Signals

	Control Signals
	Signal Buses
	Virtual Versus Nonvirtual Buses
	Bus-Capable Blocks
	Connecting Buses to Subsystem Inports
	Connecting Buses to Model Inports

	Checking Signal Connections
	Signal Glossary

	Determining Output Signal Dimensions
	Determining the Output Dimensions of Source Blocks
	Determining the Output Dimensions of Nonsource Blocks
	Signal and Parameter Dimension Rules
	Input Signal Dimension Rule
	Block Parameter Dimension Rule
	Vector or Matrix Input Conversion Rules

	Scalar Expansion of Inputs and Parameters
	Scalar Expansion of Inputs
	Scalar Expansion of Parameters

	Displaying Signal Properties
	Display Options
	Wide nonscalar lines
	Signal dimensions
	Port data types

	Signal Names
	Signal Labels
	Displaying Signals Represented by Virtual Signals

	Running Simulations
	Simulation Basics
	Controlling Execution of a Simulation
	Starting a Simulation
	Pausing or Stopping a Simulation

	Interacting with a Running Simulation

	Specifying a Simulation Start and Stop Time
	Choosing a Solver
	Choosing a Solver Type
	Choosing a Fixed-Step Solver
	About the Fixed-Step Discrete Solver
	About Fixed-Step Continuous Solvers
	Choosing a Fixed-Step Continuous Solver

	Choosing a Variable-Step Solver
	About Variable-Step Continuous Solvers
	Specifying Variable-Step Solver Error Tolerances

	Importing and Exporting Simulation Data
	Importing Data from the MATLAB Workspace
	Importing Data Arrays
	Using a MATLAB Time Expression to Import Data
	Importing Data Structures
	Importing Signal-Only Structures . The Structure format is the s

	Importing Time-Series Data

	Exporting Data to the MATLAB Workspace
	Format Options

	Importing and Exporting States
	Saving Final States
	Loading Initial States

	Limiting Output
	Specifying Output Options
	Refining Output
	Producing Additional Output
	Producing Specified Output Only
	Comparing Output Options

	Configuration Sets
	Configuration Set Components
	The Active Set
	Displaying Configuration Sets
	Activating a Configuration Set
	Copying, Deleting, and Moving Configuration Sets
	Copying Configuration Set Components
	Creating Configuration Sets
	Setting Values in Configuration Sets
	Model Configuration Dialog Box
	Name
	Simulation mode
	Description

	Model Configuration Preferences Dialog Box
	Name
	Simulation mode
	Description
	Save Preferences
	Restore to Default Preferences
	Restore to Saved Preferences

	Configuration Parameters Dialog Box
	Diagnosing Simulation Errors
	Simulation Diagnostics Viewer
	Error Summary Pane
	Error Message Pane
	Changing Font Size

	Improving Simulation Performance and Accuracy
	Speeding Up the Simulation
	Improving Simulation Accuracy

	Exploring, Searching, and Browsing Models
	The Model Explorer
	Setting the Model Explorer's Font Size
	Model Hierarchy Pane
	Simulink Root
	Base Workspace
	Configuration Preferences
	Model Nodes
	Displaying Node Contents

	Contents Pane
	Customize Contents Pane
	Customizing the Contents Pane
	Reordering the Contents Pane
	Marking Nonexistent Properties
	Changing Property Values

	Dialog Pane
	Main Toolbar
	Search Bar
	Search Type
	Search Options
	Search Button
	Refining a Search

	The Finder
	Filter Options
	Object type list
	Look inside masked subsystem
	Look inside linked systems

	Search Criteria
	Basic
	Advanced
	Match case
	Other match options

	The Model Browser
	Navigating with the Mouse
	Navigating with the Keyboard
	Showing Library Links
	Showing Masked Subsystems

	Creating Masked Subsystems
	About Masks
	Mask Features
	Mask Icon
	Mask Parameters
	Mask Parameter Dialog Box
	Mask Initialization Code
	Mask Workspace

	Creating Masks

	Masked Subsystem Example
	Creating Mask Dialog Box Prompts
	Creating the Block Description and Help Text
	Creating the Block Icon

	Masking a Subsystem
	Mask Editor
	Icon Pane
	Drawing commands
	Examples of drawing commands
	Icon options
	Rotation . When the block is rotated or flipped, you can choose

	Parameters Pane
	Dialog Parameters Panel
	Options for Selected Parameter Panel
	Parameter Buttons
	Add Button . Adds a parameter to the mask's parameter list. The

	Control Types
	Edit Control
	Check Box Control
	Pop-Up Control

	Initialization Pane
	Dialog variables
	Initialization commands
	Allow library block to modify its contents
	Debugging Initialization Commands

	Documentation Pane
	Mask Type Field
	Mask Description Field
	Block Help Field

	Changing Default Values for Mask Parameters in a Library

	Linking Mask Parameters to Block Parameters

	Simulink Debugger
	Introduction
	Using the Debugger's Graphical User Interface
	Toolbar
	Breakpoints Pane
	Simulation Loop Pane
	Method Column
	Breakpoints Column
	ID Column

	Outputs Pane
	Sorted List Pane
	Status Pane

	Using the Debugger's Command-Line Interface
	Method ID
	Block ID
	Accessing the MATLAB Workspace

	Getting Online Help
	Starting the Debugger
	Starting a Simulation
	Running a Simulation Step by Step
	Block Data Output
	Stepping Commands
	Continuing a Simulation
	Animation Mode

	Running a Simulation Nonstop
	Debug Pointer
	Next Method Box
	Block Pointer
	Method Tile

	Setting Breakpoints
	Setting Unconditional Breakpoints
	Setting Breakpoints from the Debugger Toolbar
	Setting Breakpoints from the Simulation Loop Pane
	Setting Breakpoints from the MATLAB Command Window

	Setting Conditional Breakpoints
	Setting Breakpoints at Time Steps
	Breaking on Nonfinite Values
	Breaking on Step-Size Limiting Steps
	Breaking at Zero Crossings
	Breaking on Solver Errors

	Displaying Information About the Simulation
	Displaying Block I/O
	Displaying I/O of Selected Block
	Displaying Block I/O Automatically at Breakpoints
	Watching Block I/O

	Displaying Algebraic Loop Information
	Displaying System States
	Displaying Solver Information

	Displaying Information About the Model
	Displaying a Model's Sorted Lists
	Identifying Blocks in Algebraic Loops

	Displaying a Block
	Displaying a Model's Nonvirtual Systems
	Displaying a Model's Nonvirtual Blocks
	Displaying Blocks with Potential Zero Crossings
	Displaying Algebraic Loops
	Displaying Debugger Status

	Block Libraries
	Commonly Used
	Continuous
	Discontinuities
	Discrete
	Logic and Bit Operations
	Lookup Tables
	Math Operations
	Model Verification
	Model-Wide Utilities
	Ports & Subsystems
	Signal Attributes
	Signal Routing
	Sinks
	Sources
	User-Defined Functions
	Additional Discrete
	Additional Math
	Simulink Extras

	Index

