## Science Olympiad Circuit Lab

## Key Concepts

> Circuit Lab Overview
> Circuit Elements \& Tools
> Basic Relationships (I, V, R, P)
> Resistor Network Configurations (Series \& Parallel)
> Kirchhoff's Laws
> Examples
> Glossary of Terms

## Circuit Lab Overview

Teams of up to 2 students each will be evaluated on their knowledge of Direct Current (DC) Electrical Circuit. The event includes hand-on experiment and problem solving. Students may use nonprogrammable calculators. The approximate allotted time is 50 seconds.

## Circuit Elements \& Tools

> Independent DC Sources (V, Voltage \& I, Current)

- Current Source

Produces constant Current (Amps), I

- Voltage Source

Produces constant Voltage (Volts), V
> Resistor (R, Ohms)


- Resistor Color Bands

| Band Colors | Value Bands, $\mathbf{1}^{\text {st }} \boldsymbol{\&} \mathbf{2}^{\text {nd }}$ | Mulitplier Color Band, $\mathbf{3}^{\text {rd }}$ |
| :---: | :---: | :---: |
| BLACK | 0 | x 1 |
| BROWN | 1 | $\times 10$ |
| RED | 2 | $\times 100$ |
| ORANGE | 3 | $\mathrm{x} 1,000$ or 1 K |
| YELLOW | 4 | $\times 10,000$ or 10 K |
| GREEN | 5 | $\times 100,000$ or 100 K |
| BLUE | 6 | $\mathrm{x} 1,000,000$ or 1 M |
| VIOLET | 7 | $\mathrm{x} 10,000,000$ or 10 M |
| GRAY | 8 | $\times 100,000,000$ or 100 M |
| WHITE | 9 | $\times 1000,000,000$ or 1 G |

Note: If third band is gold then divide by 10 and if silver divide by 100 .

Resistor Tolerance Color Bands:

| Band Colors | Tolerance Color Band, $\mathbf{4}^{\text {th }}$ |
| :---: | :---: |
| GOLD | $5 \%$ |
| SILVER | $10 \%$ |
| NONE | $20 \%$ |

> Digital Multimeter

- Voltmeter
- Resistance Very large $\rightarrow$ infinite
- Place in parallel to measure voltage
- Ammeter
- Resistance Very small $\rightarrow$ zero
- Place in series to measure current
- Ohmmeter Mode
- Disconnect resistor from the circuit
- Place in parallel to measure voltage
> Oscilloscope
Displays Voltage vs. Time


## Basic Relationships (I, V, R, P)

> Ohms Law (relating $\mathrm{V}, \mathrm{I}$ and R )

- $V=I^{*} R$
- $I=V / R$
- $\mathrm{R}=\mathrm{V} / \mathrm{I}$

> Power (Watts)
- $P=V^{*}$ ।
- $P=V^{2} / R$
- $P=I^{2} * R$
> Work or Energy (Joules)
Power deliver over time

$$
W=P * T
$$

## Resistor Network Configurations

> Resistors in Series (Same Current and share one terminal)

> Resistors in Parallel (Same Voltage \& Share both terminal)


- $1 / \mathrm{Req}=1 / \mathrm{R} 1+1 / \mathrm{R} 2+1 / \mathrm{R} 3+\ldots+1 / \mathrm{Rn}=\sum_{i=1}^{n} \frac{1}{R_{i}}$
- Conductance ( $\mathrm{G}=1 / \mathrm{R}$ ) therefore
$\mathrm{Geq}=\mathrm{G} 1+\mathrm{G} 2+\ldots+\mathrm{Gn}$


## Kirchhoff's Laws

> Kirchhoff's Current Law
Sum of all currents flowing out of a node is equal to zero. $\sum_{n=1}^{N} I_{n}=0$

$$
I_{1}+I_{2}+I_{3}=0
$$


> Kirchhoff's Voltage Law
Sum of all voltages around a loop is equal to zero. $\sum_{n=1}^{N} V_{n}=0$


## Capacitors and Time Constant




Time Constant, $\tau=\mathrm{R}^{*} \mathrm{C}$
$\tau$ is the time it takes to charge or discharge $63 \%$ of the maximum voltage.

## Example 1

5 A


For the above circuit answer the following questions:
a) Find the equivalent resistance seen by the current source. Hint: Combine Parallel \& Series resistors.
b) Find the voltage across the $30 \Omega$ Resistor. Hint: use KVL
c) Find the current through the $30 \Omega$ Resistor. Hint: $I=V / R$
d) Find the power across the $30 \Omega$ Resistor. Hint: $P=I * V$
e) Measure the current and voltage across all the resistors in the circuit. Hint: Use a Digital Multimeter

## Other Examples

For additional examples and reference material refer to the following link:
http://web.clark.edu/ikhormaee/courseMaterial/engr251/index251.htm

## Glossary of Terms

SI - International System of Units which are universally used for electrical measurements.
Electric Charge (q) - A fundamental physical property of matter which results in a force of attraction or a force of repulsion between objects each having a net electric charge.

Coulomb (C) - Unit of electric charge. 1 electron $=-1.602 \times 10^{-19} \mathrm{C}$
Types of Electric Charge - Only two different types of electric charge have been discovered:
Positive designates the type of net charge found in a nucleus of an atom and
Negative designates the type of charge associated with an electron.
Law of Charges - Like Charges repel; Unlike Charges attract.
Coulomb Force Law - The magnitude of the force of interaction between two point charges is proportional to the product of the charges and inversely proportional to the distance squared between the two charges, i.e.

$$
F=k \frac{q_{1} q_{2}}{r^{2}} \quad \text { where } \quad k=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \quad \text { and }
$$

the direction of the force is along the line connecting the two charges.
Electric Field - A region of space in which a electric charge experience a force.
The magnitude of the field is equal to the force experienced per unit charge and the direction of the field is the direction of the force on a positive charge.

## Electric Field SI Unit $=$ N/C or Volt $/ \mathrm{m}$

Delta Symbol, ( $\Delta$ ) - the difference between values, $\Delta\left(\_\right)=\left(\_\right)$inal value $-\left(\_\right)_{\text {initial value }}$
Electric Potential Difference $(\Delta \mathbf{V})$ - the electric potential energy per unit charge.
Volt (V) - SI unit of Electric potential difference ( $1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{coul}$ ).
Electromotive Force (EMF) - any device which can establish an electric potential difference across a circuit, e.g. battery, generator, alternator, power supply, etc.

Electric Current (i)- the net movement of electric charge past a given location.
Electric Circuit - a continuous path along which an electric current can flow.
Requirements for an electric current:
An electric potential difference between any two points along the current path and electric charges free to move at every point along the current path.

Electron Current -- the net movement of negative electric charge past a given location.
Conventional Current - A positively charged current equal in magnitude to the electron current but moving in a direction opposite to the electron current.

Ampere (A) - SI unit of electric current, $\quad(1 \mathrm{~A}=1 \mathrm{Coul} / \mathrm{sec})$.

## Electric Power delivered to a Circuit ( $\mathrm{P}=\mathrm{i} \Delta \mathrm{V}$ ) SI Unit of Power = Watt (W)

Electrical Resistance (R) - The amount of potential difference across a circuit required to cause one Ampere of current to flow, i.e.

$$
R=\Delta V / I
$$

Note: Electrical Resistance converts Electrical Energy into heat.
Electrical Power converted into heat ( $\mathrm{P}_{\text {heat }}=i^{2} \mathrm{R}$ )
Ohm ( $\Omega$ ) - SI unit of electrical resistance. $\quad(1 \Omega=1 \mathrm{~V} / \mathrm{A})$
Ohm's Law - If the electrical resistance remains constant, then the electric potential drop across a circuit is proportional to the current in the circuit, i.e.

$$
\Delta \mathrm{V}=\mathrm{Ri}
$$

Internal Resistance $\left(\mathrm{R}_{\mathrm{i}}\right)$ - the resistance associated with an EMF. Part of the potential drop produced by the EMF must be used to cause current in the circuit to also flow through the EMF. The actual potential drop available to the circuit outside the EMF is called the Terminal Voltage $\left(\mathrm{V}_{T}\right)$ is calculated by the following equation:

$$
\mathrm{V}_{\mathrm{T}}=E M F-\mathrm{i} \mathrm{R}_{\mathrm{i}}
$$

.Note: As the current in a circuit is increased the terminal voltage available to the circuit decreases. The internal resistance is in series with the total resistance of the circuit.

Electrical Capacitance (C) - the amount of charge which must be added or removed to change the electric potential difference by one volt, i.e.

$$
C=\Delta q / \Delta V
$$

Farad (F) - SI unit of electrical capacitance. ( $1 \mathrm{~F}=1 \mathrm{C} / \mathrm{V}$ )
RC Time Constant - the product of the resistance through which a capacitor is being charged or discharged and the capacitance. This product equals the time for $63 \%$ of the charging or discharging to occur. Note: $($ Ohm $)($ Farad $)=$ second

Galvanometer - A sensitive device used to measure very small currents.
Voltmeter - An instrument that is used for measuring electrical current. electrical potential (Voltage) differences.

Ammeter - An instrument that is used for measuring electrical current.
Multimeter - An instrument that is used for measuring a range of electrical potential differences, electrical currents, and resistance.

Battery - an EMF that converts chemical energy into electrical energy.
Generator I Alternator - an EMF that converts mechanical energy to electrical energy.
Power Supply - an EMF that converts electrical energy into a more useful form of electrical energy, usually a different electrical potential difference or from alternating current to direct current or vice versa.

Schematic Diagram - A symbolic representation of a circuit using standardized symbols for circuit components.

