Science Olympiad Circuit Lab

Key Concepts

- Circuit Lab Overview
- Circuit Elements & Tools
- Basic Relationships (I, V, R, P)
- Resistor Network Configurations (Series & Parallel)
- ➢ Kirchhoff's Laws
- > Examples
- Glossary of Terms

<u>Circuit Lab Overview</u> Teams of up to 2 students each will be evaluated on their knowledge of Direct Current (DC) Electrical Circuit. The event includes hand-on experiment and problem solving. Students may use nonprogrammable calculators. The approximate allotted time is 50 seconds.

Circuit Elements & Tools

- Independent DC Sources (V, Voltage & I, Current)
 - Current Source
 - Produces constant Current (Amps), I
 - Voltage Source Produces constant Voltage (Volts), V
- Resistor (R, Ohms)

Resistor Color Bands

Band Colors	Value Bands, 1 st & 2 nd	Mulitplier Color Band, 3 rd
BLACK	0	x1
BROWN	1	x10
RED	2	x100
ORANGE	3	x1,000 or 1K
YELLOW	4	x10,000 or 10K
GREEN	5	x100,000 or 100K
BLUE	6	x1,000,000 or 1M
VIOLET	7	x10,000,000 or 10M
GRAY	8	x100,000,000 or 100M
WHITE	9	x1000,000,000 or 1G

Note: If third band is gold then divide by 10 and if silver divide by 100.

Resistor Tolerance Color Bands:

Band Colors	Tolerance Color Band, 4 th
GOLD	5%
SILVER	10%
NONE	20%

- > Digital Multimeter
 - Voltmeter
 - Resistance Very large → infinite
 - Place in parallel to measure voltage
 - Ammeter
 - Resistance Very small → zero
 - Place in series to measure current
 - Ohmmeter Mode
 - Disconnect resistor from the circuit
 - Place in parallel to measure voltage
- Oscilloscope
 Displaya) (altaga ya

Displays Voltage vs. Time

Basic Relationships (I, V, R, P)

- > Ohms Law (relating V, I and R)
 - V = I * R
 - I = V / R
 - R = V / I

- > Power (Watts)
 - P = V * I
 - $P = V^2 / R$
 - $P = I^2 * R$
- Work or Energy (Joules)
 Power deliver over time

W = P * T

Resistor Network Configurations

> Resistors in Series (Same Current and share one terminal)

> Resistors in Parallel (Same Voltage & Share both terminal)

Geq = G1 + G2 + ... + Gn

Kirchhoff's Laws

Kirchhoff's Current Law

Sum of all currents flowing out of a node is equal to zero. $\sum_{n=1}^{N} I_n = 0$

Kirchhoff's Voltage Law

Sum of all voltages around a loop is equal to zero. $\sum_{n=1}^{N} V_n = 0$

Example 1

For the above circuit answer the following questions:

- a) Find the equivalent resistance seen by the current source. *Hint: Combine Parallel & Series resistors.*
- b) Find the voltage across the 30 Ω Resistor. *Hint: use KVL*
- c) Find the current through the 30 Ω Resistor. *Hint:* I=V/R
- d) Find the power across the 30 Ω Resistor. *Hint:* $P=I^*V$
- e) Measure the current and voltage across all the resistors in the circuit. *Hint: Use a Digital Multimeter*

Other Examples

For additional examples and reference material refer to the following link:

http://web.clark.edu/ikhormaee/courseMaterial/engr251/index251.htm

Glossary of Terms

SI – International System of Units which are universally used for electrical measurements.

Electric Charge (q) – A fundamental physical property of matter which results in a force of attraction or a force of repulsion between objects each having a net electric charge.

Coulomb (C) – Unit of electric charge. 1 electron = $-1.602 \times 10^{-19} \text{ C}$

Types of Electric Charge – Only two different types of electric charge have been discovered: **Positive** designates the type of net charge found in a nucleus of an atom and

Negative designates the type of charge associated with an electron.

Law of Charges – Like Charges repel; Unlike Charges attract.

Coulomb Force Law – The **magnitude** of the force of interaction between two point charges is proportional to the product of the charges and inversely proportional to the distance squared between the two charges, i.e.

$$F = k \frac{q_1 q_2}{r^2}$$
 where $k = 9x10^9 \frac{Nm^2}{C^2}$ and

the direction of the force is along the line connecting the two charges.

Electric Field – A region of space in which a electric charge experience a force.

The **magnitude** of the field is equal to the force experienced per unit charge and

the **direction** of the field is the direction of the force on a positive charge.

Electric Field SI Unit = N/C or Volt/ m

Delta Symbol, (Δ) – the difference between values, Δ (__) = (__)_{final value} – (__)_{initial value}

Electric Potential Difference (ΔV) – the electric potential energy per unit charge.

Volt (V) – SI unit of Electric potential difference (1V = 1J/coul).

Electromotive Force (*EMF***)** – any device which can establish an electric potential difference across a circuit, e.g. battery, generator, alternator, power supply, etc.

Electric Current (i)- the net movement of electric charge past a given location.

Electric Circuit – a continuous path along which an electric current can flow.

Requirements for an electric current:

An electric potential difference between **any two points** along the current path and electric charges **free to move at every point** along the current path.

Electron Current -- the net movement of negative electric charge past a given location.

Conventional Current – A positively charged current equal in magnitude to the electron current but moving in a direction opposite to the electron current.

Ampere (A) – SI unit of electric current,	(1A = 1Coul/sec).
---	-------------------

Electric Power delivered to a Circuit ($P = i \Delta V$) SI Unit of Power = Watt (W)

Electrical Resistance (R) – The amount of potential difference across a circuit required to cause one Ampere of current to flow, i.e.

 $R = \Delta V / I$

Note: Electrical Resistance converts Electrical Energy into heat.

Electrical Power converted into heat ($P_{heat} = i^2 R$)

Ohm (\Omega) – SI unit of electrical resistance. (1 Ω = 1 V/A)

Ohm's Law – If the electrical resistance remains constant, then the electric potential drop across a circuit is proportional to the current in the circuit, i.e.

Internal Resistance (R_i **)** – the resistance associated with an *EMF*. Part of the potential drop produced by the *EMF* must be used to cause current in the circuit to also flow through the *EMF*. The actual potential drop available to the circuit outside the EMF is called the **Terminal Voltage** (V_T) is calculated by the following equation:

$$V_T = EMF - iR_i$$

.Note: As the current in a circuit is increased the terminal voltage available to the circuit decreases. The internal resistance is in series with the total resistance of the circuit.

Electrical Capacitance (C) – the amount of charge which must be added or removed to change the electric potential difference by one volt, i.e.

 $C = \Delta q / \Delta V$

Farad (F) – SI unit of electrical capacitance. (1 F = 1 C/V)

RC Time Constant - the product of the resistance through which a capacitor is being charged or discharged and the capacitance. This product equals the time for 63% of the charging or discharging to occur. Note: (Ohm)(Farad) = second

Galvanometer – A sensitive device used to measure very small currents.

- **Voltmeter** An instrument that is used for measuring electrical current. electrical potential (Voltage) differences.
- Ammeter An instrument that is used for measuring electrical current.
- **Multimeter** An instrument that is used for measuring a range of electrical potential differences, electrical currents, and resistance.
- Battery an EMF that converts chemical energy into electrical energy.

Generator / Alternator – an EMF that converts mechanical energy to electrical energy.

- **Power Supply** an EMF that converts electrical energy into a more useful form of electrical energy, usually a different electrical potential difference or from alternating current to direct current or vice versa.
- **Schematic Diagram** A symbolic representation of a circuit using standardized symbols for circuit components.