Computer Organization
&
Microprocessors

Version 4.6 printed on June 2015
First printed on March 2007

Background and Acknowledgements

This material is intended for the second course in digital systems focus on Computer Organization and
Microprocessors. The content is derived from the author’s educational, engineering and management
career, and teaching experience.

| would like to extend special thanks to the many students and colleagues for their contributions in making
this material a more effective learning tool.

Further, | would invite the reader to forward corrections, additional topics, examples and problems to me
for future updates.

Thanks,
Izad Khormaee
www.EngrCS.com

Microchip material used by permission:

Excerpts from Microchip Technology Inc.’s PIC microprocessor Datasheets, application notes and other
resources has been included with permission from Microchip Technology Inc., November 9, 2006. The
following are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other
countries: Accuron, dsPIC, KEELOQ, microlD, MPLAB, PIC, PICmicro, PICSTART, PowerSmart, PRO
MATE, rfPIC and SmartShunt; as well as the Microchip logo, the Microchip name and logo, and the
KEELOQ logo.

Computer Organization and Microprocessors Page 2

Table of Contents

(O N =y O I [01 o Yo 1T o 110] o L= PR PR 6
1.1. Overview of components, subsystems and interfacesccccveviieiciiiiiii e 7
1.2. Processor Design ConSIAErationscooiiiiiiiiiiie ettt e et e e e e e e s e e e e e e e senreeaaaee s 14
1.3. Computing systems ClassifiCation..............cooiiiiiiiiii e 15
1.4. Historical Perspective and TrendS ...t st 17
R TR g = €= 1= SO 18
1.6. Integrated Development Environment (IDE)...........ooouiiiiiiiii i 19
Vo Lo 11 [g F= L = T o= 23
R TR e]] [T o 41O 24

CHAPTER 2. Assembly Instructions and Processor ArchiteCtureccccccovvcivieeiiee s cciiiieeee e 25
2.1. Instruction Structure & EXECULIONcooiii i e e e e e e e enaeeeeaee s 26
2.2, Byte-oriented OPerations...........eeiiiiiiiiie it 28
2.3. Bit-oriented OPerationsS..........oocuuiiiiiiiiiie e e e e 32
2.4. Literal-oriented OPerationsooii ittt eeeeeeens 34
P T @7 o 1101 @ 0 =T =1 1 o] o - SR 35
2.6. Memory Layout & DefinitioNS...... ..o e 44
2.7. AditioNal RESOUICESttt e e e e ettt e e e e e e e e ne e ee e e e e e e e annnbeaeeeeaeas 48
B < T o] o] [T o 41 TP 49

CHAPTER 3. Input/Output OrganiZationNSccuuuieiiieeesiesciiiie e e e e e s s s stree e e e e e e s s ssstnnee e e e e e s e s snnnneeeeesenannns 50
3.1. Pinout @and Packaging.........cooiuuiiiiiiiii ettt as 51
3.2. ACCESSING [/ DEVICESceiiitiiiieiieiee ettt ettt b ettt e et e e s bb et e snb e e e e s aannee s 55
I TR T o [11 o] F= I =TT TU o= USSR 64
I e o o 1= o USSR 65

Chapter 4. Program Flow, Event Handling and Control........cccccoovvoiiiiiiie e 66
R T O 1YY o TSRS 67
T S v= (o] [@ o =] £ 1] o IS SRR 68
4.3. Procedure Call and Return INStrUCIONS.........ooi i 74
4.4. Interrupt/exception handliNgooo e e e 80
N T O (o Tox Q= Lo @ 1= | F= o S 89
TR T 0T PP ETRR 92
4.7. POWEr MaNAGEMENT. ...ttt e e e ettt et e e e e e e abe e e e e eea e e e e e nneeeeeeeeeeseannbnreeeaeeeeaaann 101
R TR U= S TP 102
4.9. Analog-to-Digital CONVEIETccoiiiiiiiieeeie et e e e e e e e ee e e e e e s nnnreees 103
4.10. Pulse Width Modulation (PWIM)...........uumiiiiiiei ettt e e e e e e st e e e e e e e srnreees 114
411, AdAItiONal RESOUICES......uiiiie ettt e ettt e e e sa e e e e sntee e e e snteeeeesbeeeesnbeeeeeans 119
e 2 (o] o] =Y o3 SO 120

Chapter 5. ArithmetiC & LOGIC OPEIraAtiONSuuuiiiiiii ittt e e e e e s s seb e eeeaaeeeanes 121
5.1, Arithmetic OPEIatioNScoeiii it e e e e e et e e e e et raaeeeaaeas 122
5.2. Move, Set and Clear OPErationscooiiiiiiiiiiii e e e e e e e e e e 138
I = = T el IO o 1T =1 i o] SRS 167
5.5. Specialty OPerations..........ueiiiiiiiiiiiieiee et e e e e e e e e e e e e e e s e aaaes 177
5.6. IEEE Standards for Floating PoOiNt............cooiiiiiiiiiic e 179
I o [[iTo) F= T I =TT TU ot SO 184
TS T o o o= o o SO 185

Computer Organization and Microprocessors Page 3

Chapter 6. C/Assembly/Machine Language EqQUIVAlIENCIEScccvviiiiieeei i 186

0t I 111 o T [T o) o S 187
6.2. Indirect AAdressing (INDFN)cooiiiiiii et et erae e e 195
6.3. FUNCLONS / PrOCEAUIESoiiieeeeeeeit ettt e e e et e e e e e e e e s nan e e e e e e eannnraaneeeaens 197
L B - = R Y/ o 1= S PSPPI 200
6.5. Program FIOW CONMIOISccouiiiieiiiiii ettt e e e sbbe e e e 206
I Lo [o] F= T =TT TU o= SO 210
A o o] o[o USRI 211
(O T=To] =T g A = =T (0] o = o Lo = RSP 212
7.1. CPU Performance and Relating Factors ... 213
7.2. Evaluating PerfOrMEaNnCEooiiiiiiiiiiiie e ebbe e 218
7.3. Performance Bench Marking DESIGNooiiuiiiiiiiiiie ittt 219
A o Lo 11 iTo) F= T =TT TU o= SO 220
4 T o (o] o= o ¢ TP 221
Chapter 8. Memory & Storage Hi€rarChyccuuiiiiiiii et r e e e 222
8.1. MemOry & STOrage OVEIVIEWccoiuuiiiiiiiiiii ettt et e et e e et e e e bee e e e ennee e e e nees 223
I 07 Ter o= |V =T 4 o To o Y USSR 225
8.3, PrIMAry MEMOIY ...ttt ettt e e et e e e s e e e e et e e eabbe e e e e e 226
R S L= Teto g To F= L VS (o] =T [S PP TSP PRP 227
8.5. Virtual Memory ManagemeENnt............ooi it 228
8.6. AdditioNal RESOUICESueiiiieieeeie ettt e e e e e et e e e e e e e e e nbeeee e e e e e eaannnreeeeeaaeas 229
G I o o] o[o USRI 230
Chapter 9. ConcurrenCy in COMPULING .ovviiiiiiiiiiiiir e e e e s s e e e e e s s e re e e e e e s snnnnreneeeaenannes 231
9.1, Overview Of Parall€liSMcooo et e e e e e e e e e e e e e raaeeeeeeas 232
S e o1=1 11 01 o T T PSPPSR 233
SR R Y 1011 o] oYt =TT o o [PPSR TPRP 236
9.4, MUILI-COIE PrOCESSONISeeeeeieeeeeieee et e e e e e e et e e e e e e s e et eeeeaaee e e e neeeeeeeaeeeaaanneneeeeaaeeaannsnneeeeaens 237
9.5, MUIti-ProCESSOr SYSIEMSoiiiiiiii ettt e e e e e e st e e e e nbee e e e enbeeeenseeeeeennees 238
9.6. AdditioNal RESOUITESueeiiieieee ittt e e e e e ettt e e e e e e e e e aneeeeeeeaeeeaannnrneeeeaaens 239
S o (o] o1 =10 P O PP P TSP PP PP 240
Chapter 10. NEtWOIKING ..ooioeiiiieeeee et e et e e e e e e s s st e e e e e e e s asasatteeeeaeeesansraneeeeaeeseannns 241
10.1. Networking Overview & OSI MOGE!cooiiiiiiiiiiie e 242
10.2. Medial Layers (Physical, Data/Link & NetwWork)cocuiiiiiiiiiiiieee e 243
10.3. Host Layers (Transport, Session , Presentation and Application)...........cccoccceeeiiiiieeeiiiieneenns 244
10.4 AdditioNal RESOUICES..... ...ttt e e e e et e e e e e e e e eeeee e e e e eannnbeeeeeeaens 245
LR T o] o] [T 1 4L TSP 246
Appendix A. PICMIcro INStruction St SUMMAIYooiiiiiiiiiiiiiiiieee e iciiieeee e e e ee e e e s e e seeeeeeeeens 247
Appendix B. PICmicro OpCode Field DeSCIIPLiONiiiiicii ittt e e s sanrrane e e 251
Appendix C. Register File SUMMAIYoiiiiiiiiii e 253
Appendix D. Special Features of PICMICIOcccoiiiiiiiiiiie ettt e e e e e e e e e snrraeeee s 257

Computer Organization and Microprocessors Page 4

Appendix E. AdditioNal RESOUICEScc.uuiiiiiieii it e e e s s e e e e e st arer e e e e e e e e snnreneeaees 259

Computer Organization and Microprocessors Page 5

CHAPTER 1. INTRODUCTIONS

Key Concepts and Overview

« Overview of components, subsystems and interfaces
% Processor Design Considerations

% Computing systems Classification

+» Historical Perspective and Trends

% What's next...

+ Integrated Development Environment (IDE)

+ Additional Resources

Computer Organization and Microprocessors Page 6

1.1. Overview of components, subsystems and interfaces

7

< Computer Layers

Application (Word, Photoshop, MATLAB ...)

System Software (Compiler,
Assembler, operating System)

Hardware

» Operating System roles
Operating systems are basically the system resource managers and controllers. The common
Operating systems include Windows, Linux and Mac OS.

The operating system roles include:

= Handle basic Input/output

= Start and stop applications

= Allocate storage, memory and processor — In general, manage the use of computer
resources among the applications (active processes)

Computer Organization and Microprocessors Page 7

» Steps from High Level Language (C, C++, C#, Java, ...) to executable code

High-Level Code, C Language ?Wap (int v{l, Int k)
int temp;
temp = v[K]
V[k] = v[k+1];
v[k+1] = temp;
1
Swap:
Assembly Language Program ADDWF fd,a
(for PICmicro) MOVWEF fd,a
BRA end_loop
Binary Machine Language 0000000010100000010000000011000
(for PICmicro) 0000000000001100000000011100001

Other Binaries \
h 4

A\ 4
Executable Code

As it can be seen from the above figure, high level languages such as C make it easier for human
programmers to read and write the program. Improved code readability increases the programmers’
productivity which has led to popularity of high level language amongst Software engineers and
businesses.

Compilers and assemblers are used to translate the high level language into Machine language which
can be executed on the processor. Programmers typically use Assembly language to optimize the
parts of code that have high impact on performance.

Finally, linker allows integration of functions which are previously written or functions from available
libraries.

« Computer Architecture
Architecture defines the flow of data and patterns of the system. In general, a computer system can

Computer Organization and Microprocessors Page 8

be described using the following architectural diagram:

Control

Output

Input
Data & Control
Path

Memory

Processor

«» Computer Components

>

Input
Keyboard, Mouse, Microphone, Joy stick and Video camera are examples of input devices.

Output
One of the main forms of output is presenting the information on a display. There are a large
number of display types. Here are some examples of display types:

» Cathode Ray Tube-CRT

» Liquid Crystal Display-LCD
*= Electro Luminescent-EL

* Plasma

Typically, displays are memory-mapped which means there is a memory location for every dot on
the display. The value in the memory controls the color and intensity of the corresponding dot.
Collections of dots may be used to form an image, text or other display elements. The following
diagram presents a few examples which show the relationship between data and a RGB (Red,
Green, and Blue) memory-mapped display:

Computer Organization and Microprocessors Page 9

~

~

R G B

FF 00 00 Red
00 FF 00 Green
00 00 00 Black
FF FF FF White

-

[5]
|

(X,Y) Pixel on screen

)

» Networking is another important type of Input/Output

The following list categorizes networking based on the geographical coverage:

= Personal Networking (PN)

PN coverage is around one person, desk or room. Some examples are:

USB

Blue tooth

RS232 — Serial bus
Parallel Bus

= Local Area Networking (LAN)

IEEE 802.3 is the most common LAN type in use within a building or small campus. The light
weight wired implementation is the most common type of Local area networking in use. The

wireless implementation of this network type has also grown dramatically.

= Wide Area networking (WAN)

WAN coverage is across cities, countries or continents. WAN service is typically leased from
a telecommunication company. One could say that the telephone system is a form of WAN.

Computer Organization and Microprocessors

Page 10

> Processor

Processor or Central Processing Unit (CPU) is the program execution unit of the computer and
can be thought of as the brain. The following diagram shows the most common elements or

functional blocks of a processor:

Advanced Pipelining
Hyper threading support

Control Control /10
Interface
Instructional Cache
Secondary
Cache and
Enhanced Floating Point & memory
. . interface
Multimedia
Integrated
Datapath
Control
Control

Computer Organization and Microprocessors

Page 11

®,
0.0

» Memory/Storage

Primary Memory
Typically referred to as solid state memory. It is smaller in size but faster (Access time in
nanoseconds) and is used during program execution. (512 Mbytes for $100 in 2005)

e Volatile memory
This is the most common type of memory where data is retained as long as power is
applied. There most common types of volatile memory are:

¢ CACHE
Cache is the fastest memory and it is used for frequently accessed instructions
and data. Itis intermediate memory between processor and memory/storage.

¢ DRAM
Dynamic Random Access Memory (DRAM), is the second fastest memory type
used for data and programs. Processor can execute the instruction directly from
DRAM. Physically, they are available in a variety of packages depending on the
application.

¢ Nonvolatile memory
This type of memory preserves the data even if power is removed. Read Only
Memory (ROM), Erasable Programmable Read Only Memory (EPROM), Flash RAM
and Nonvolatile RAM (NVRAM) are a few examples of nonvolatile memory.

Storage or Secondary Memory
Typically, larger in size but slower access (Access time in micro to milliseconds). Also lower
cost per mega bytes (250 GB for $100 in 2005)

Some examples include Floppy, Hard Disk (Magnetic Disk), CD and DVD (Optical Disk), Zip
Drive, USB Jump Drive, Magnetic Tape.

Selecting amongst memory types

The selection of memory types are driven by the tradeoff between speed and price. Further,
it should be noted that speed and price are inversely proportional. Most applications benefit
from fastest memory, but budgets limit the speed of memory which developers can afford.

The price and speed trade off leads to small size cache memory (fastest, typically static
RAM) and medium sized main memory (typically DRAM). The largest memory or storage is
typically the hard disk which is also the lowest cost per byte.

Main or Mother Board

A computer typically has a main board which houses the processor and other interface logic required
for the operation of the computer system. The following diagram shows some of the common
components found on a main board:

Computer Organization and Microprocessors Page 12

Processor M Disk and USB
e interfaces
m
0]
r
y
Processor Interface
Graphics

1/0 bus Slots

Computer Organization and Microprocessors Page 13

1.2. Processor Design Considerations

7
*

7
*

7
*

Functionality
Functionality is the foundation of design and as such is prominent in design consideration.

Speed/Performance

Speed and performance are increasingly more important considerations in computer and process
design. Market is demanding higher performance computers as applications have increased in
complexity due to the following factors:

» Increased demand for graphics in order to create more natural presentations

» More types and more complete sets of data leading to larger and more complex database
management

» Multi-tasking and more demand on operating system

» User’s expectation of instantaneous response.

Usability
Usability or ease-of-use continues to grow in importance as a broader range of users attempts to
access more of the computer’s functionality.

Maintainability and reliability

As the systems become more complicated, the need for maintainability and expandability of existing
software and hardware is more important than ever before. This has resulted in designers needing to
use hardware modularization and its equivalent in software, Object Oriented Design.

Memory Requirement
As the technology advances and more memory becomes available at lower cost, minimization of
memory requirement becomes less of a design issue.

For example, a typical desktop computer in 1985 had 512 Kbytes of RAM, where the same type of
computer in 2005 had 512 Mbytes of RAM. That represents a 1,000 fold increase in 20 years. The
price for a 2 GByte in 2010 was roughly about the same as the price for a 512 Kbyte in 1985.

Computer Organization and Microprocessors Page 14

1.3. Computing systems Classification

.

% Computer Usage

It is impossible to go through a day without interacting with computer systems in our modern society.
Today, computers are integrated into many facets of living and working. In many cases, you may be
benefiting from the power of a computer, but you may not be aware of its existence. The following list
provides a few examples:

Cars

Home Appliances

Personal Computers

Internet

Cell Phones

Medical solutions such as Hearing-aid, pace maker and others
Traffic Light

VVVYVVVY

+ Classes of Computer Application

» Workstations & Desktop Computers
A computer used by one user with input and output devices. It may be used for personal,
business, games, hobby, engineering, science or other activities. These systems typically have a
dedicated display, keyboard and network connection.

» Servers
A computer used for running large programs for multiple users, often simultaneously. It is typically
in a data center, accessible only through a network. A server might not have its own keyboard
and display.

Servers are available in a wide range of performance and functionality. The low-end servers and
Supercomputers are the extreme ends of the spectrum:

= Low-end Server
This type of server may be a desktop computer running networkable version of windows,
Linux or some other operating system.

= Supercomputers
This class of computers has the highest performance and is the most expensive.
Supercomputers are typically used for specific and computationally intensive problems such
as weather forecasting.

» Embedded
Computers embedded inside a device performing a set of predetermined functions. Embedded
systems are the most pervasive type of computers and are expected continue to grow rapidly
based on current trends. Embedded systems can be found in a broad range of products such as
washing machines, cell phones and PDAs. A typically modern car has multiple embedded
systems such as the fuel system controller and ABS breaking system.

Based on a 2002 survey, the computer system usage for each type of computer is shown below:
= 1122 million embedded or 89.5% of total

= 131 million desktops or 10.4% of total
= 1 million servers 0.1% of total

Computer Organization and Microprocessors Page 15

¢ Microprocessor Survey
As of 2014, majority of processors are 64-bit (data is 64 bits wide). Prior to 2000, most processor
designers were developing Complex Instruction Set Computers (CISC) which provide a large set of
instructions. The most influential producers of CISC processor vendors were:

>

>

Motorola 68K - CISC
Intel's IA-32 (Intel’s Pentium,...) - CISC

Since 2000, the idea behind CISC has been successfully challenged by many processor
designers and as of 2014, most major producer have migrated to Reduced Instruction Set
Computers (RISC) which provide a selected few simple instructions, but instructions execute in a
single clock cycle. This means that instruction execution is much faster than in CISC. The most
influential producers of RISC processor vendors are:

IBM’s Power PC — RISC

* Also used in Apple PCs until 2006 when Apple moved to Intel’'s RISC processors.

Sun Microsystems’ SPARC - RISC

Microchip’s PIC processors and Microcontrollers - RISC
“PICmicro will be used throughout this book as an example”

ARM Processors - RISC

MIPS - RISC

Computer Organization and Microprocessors Page 16

1.4. Historical Perspective and Trends

.

« Technology Trends

Year Technology used in Computers Relative Measure (Transistors/Device)

1951 Vacuum Tube 1

1965 | Transistor 35

1975 | Integrated circuits 900

1995 | Very Large Scale Integrated Circuit 2,400,000

2005 | Ultra Large Scale Integrated Circuit 6,200,000

2009 | Dual Core Itanium 2 (596 mm?® Die) 1,700,000,000
“using 90 nm process”

2012 | 8-Core Itanium Poulson (544 mm? Die) 3,100,000,000
“using 32 nm process”

2014 | NVIDIA GK110 processor (551 mm? Die) 7,100,000,000
“using 28 nm process”

» Moore’s law states that the number of transistors per square inch will double every 18-24 months.
This observation has held true over the past 50 years (1965 — 2015).

» Complementary Metal Oxide Semiconductor (CMOS) is the dominant semiconductor technology for
integrated circuits. The main reason is that it consumes power mainly during switching according the
following formula:

Power = Capacitive load x Voltage2 x Frequency switched

It is important to note that two of the main limiting factors for integrated circuits are power

consumption and dissipation of resulting heat.

« Computer design trends:
Continued minimization of size and faster execution
Lower voltage (5v 2> 1.5V ...)
Use of Biological solutions

Nano technology

Parallel processing

Large data buses 32->64->128->7

Computer Organization and Microprocessors

Page 17

1.5. What’'s next...

The remainder of this book is focused on introducing key concepts in computer organization and system
design. As much as possible, the general concepts will be introduced first, followed by an implementation
example.

Microchip PIC 18F1220 Microcontroller will be used as the implementation example throughout the
remainder of this book. Microchip PIC 18F1220 will be referred to as PICmicro.

PICmicro is a microcontroller as opposed to a microprocessor, which means, in addition to the
functionality available in a typical microprocessor, PICmirco has additional functionality and circuits which
are outlined below:

‘0

¥ Memory
» 4K bytes of Program Flash Memory
Flash memory used to store the program instruction set which can be reprogrammed up to
100,000 times. The programming is retained for over 40 years.
» 256 bytes of Data Memory
This memory is used for data. It will be referred to as the register file since all the available data
memory is available to the user.
+ 16 input/output ports
% Seven 10-bit Analog to Digital Converters

% One Pulse Width Modulator (PWM)
PWM is used to control amount of power delivered by modulating (changing) duty cycles.

% One Enhanced Universal Asynchronous Receiver Transmitter (EUSART)
Serial to parallel and parallel to serial capability with auto speed detection and wake-up capability.

% Three timers
% Priority-level interrupts

% Choice of internal or external oscillator

Computer Organization and Microprocessors Page 18

1.6. Integrated Development Environment (IDE)

Most processor vendors provide a full Integrated Development Environment (IDE) to support the
developers using of their processors in development of new products. Typically, an IDE includes editor,
compiler, assembler, linker, debugger, simulator and other useful applications/tools. Processor vendors
such as Microchip are focused on providing effective IDEs to increase adoption rates resulting in the
higher use of their processors.

Microchip’s PICmicro family of processors has an extensive set of hardware and software development
tools supporting the designers. PICmicro IDE is called MPLAB IDE and can be downloaded from
www.EngrCS.com or directly from Microchip’s website. MPLAB IDE is available for Widows, MAC and
Linux. The MPLAB IDE offers the following core functionality:

Code Management and Editor

C complier is available but needs to be downloaded and installed.
Assembler

Linker

Simulator

Programmer Interface

Debugger

Extensive online help and tutorial

VVVYVVVYY

Below is a brief overview of these key components of MPLAB IDE:

% Code Management and Editor
MPLAB IDE provides tools for managing your file as part of a project and editing your code in a
context sensitive editor that provides syntax hints during programming.

7
*

% Compiler

MPLAB’s C compiler is a complete ANSI C compiler for PICmicro. This compiler is fully compatible
and integrates seamlessly with MPLAB IDE. It also provides symbolic information that works with
MPLAB IDE debugger and simulator.

C code is saved in files with extension (.c) and include files are saved in files with extension (.h).
below is an example of PICmicro C code:

Computer Organization and Microprocessors Page 19

File: main.c

Project: A Simple Counter
Author: Great Designer
Device: PICmicro (PIC18F1220)

ook kXN

#include <pl18f1220.h>

void main(void)

{
unsigned char input;
unsigned char lastinput = 0x00;
unsigned char count = 0x00;

ADCON1 = Ox7F;
TRISA = 0x01;
TRISB = 0x00;

while(1)
{

input = PORTA;
input = input & 0x01;
if(input != lastinput)

count++;
PORTB = count;

3
lastinput = input;

//TRISA, TRISB, PORTA, PORT are already defined in pl18f1220.h

< Assembler

PICmicro’s assembler (MPASM) is an integral part of MPLAB IDE and MPASM, is a full-featured,
universal macro assembler for all PICmicro MCUs. MPASM generates relocatable object files for the
object linker (MPLINK), MAP files with detailed memory usage and symbol references, absolute LST

files that contain source lines, machine code and COFF files for debugging.

Assembly code is saved in file with extension (.asm) which are part of a project such as the code

shown below:

Computer Organization and Microprocessors

Page 20

; FILE: main.asm

; DESC: A Simple Counter

; DATE: 5-18-06

; AUTH: Great Designer

; DEVICE: PICmicro (PIC18F1220)

list p=18F1220 Set processor type

radix hex ; Sets the default radix for data exp.
#define PORTA OxF80
#define PORTB OxF81
#define TRISA OxF92
#define TRISB OxF93
#define ADCON1 OxFC1
COUNT equ 0x080

LASTIN equ 0x081
INPUT equ 0x082
TEMP equ 0x083

org 0x000 ; Set the program origin (start) to 0x000
; Initialize all 1/0 ports

CLRF PORTA
CLRF PORTB

Initialize PORTA
Initialize PORTB

MOVLW OX7F Set all A\D Converter Pins as
MOVWF ADCON1 digital 1/0 pins
MOVLW OxOA Value used to initialize data direction

MOVWF TRISB Set Port B <pins 0,2,4:7> as output
Set Port B<pins 1,3> as input

Value used to initialize data direction
Set Port A <Pin 7:5,1> as input

Set Port A <Pin 0, 2:4> as output

MOVLW OxE2
MOVWF TRISA

W=20
COUNT = WREG
LASTIN = WREG

MOVLW 0x00
MOVWF COUNT
MOVWF LASTIN

Loop: MOVFF PORTA, INPUT ; INPUT = PORTA
MOVF INPUT, O ; W = PORTA
XORWF LASTIN, O ; W =W XOR LASTIN
ANDLW Ox1 ; W =W AND Ox1
MOVFF INPUT, LASTIN ; LASTIN = PORTA
MOVWF TEMP ; TEMP = W
BTFSC TEMP, O ; If TEMP<O> = 0 Then Skip Next Command
CALL Increment
GOTO Loop

Increment: MOVF COUNT, O ; W = COUNT
ADDLW 1 cW=Ww+1
MOVWF COUNT ; COUNT = W
MOVWF PORTB ; PORTB = W
RETURN

end : Indicates the end of the proaram.

¢ Linker and Obiject Librarian
The linker is required to combine various object files generated by assembler and code libraries into
an executable program. The MPLINK object linker combines relocatable objects created by the
MPASM assembler and the MPLAB C compiler. It can also link relocatable objects from precompiled
libraries using directives from a linker script.

The MPLIB object librarian manages the creation and modification of library files of precompiled code.
When a routine from a library is called from a source file, only the modules which contain that routine

Computer Organization and Microprocessors Page 21

will be linked in with the application. This allows large libraries to be used efficiently in many different
applications.

s Simulator

A great way to test the functionality of your code is to use a simulator before downloading the code
into the processor hardware. The simulator enables the designer to test the functionality while
viewing the processor’s internal states and registers, as well as access to the debugging process.
The only limitation is that the simulator will not test the timing requirements since the code is not
running at the proper speed.

The MPLAB SIM software simulator allows PICmicro code simulation in a PC hosted environment by
simulating the PICmicro on an instruction level. For a given instruction, the data areas can be viewed
or modified as stimuli are applied from either files or user key presses. The execution can be
performed in different modes: Single-Step, Execute Until Break, or Trace. The MPLAB simulator
supports symbolic debugging using MPLAB C Compilers and/or the MPASM assembler.

« Debugger

The code can be debugged while simulating. The developer will have access to all the variables and
memory locations as well as the ability to either single step through the code or run the code to a pre-
determined breakpoint.

7
0

Programmer Interface

Once the code has been tested with simulation, the next step is to download the code into the
PICmicro chip so that it can be installed in the circuit. From MPLAB, code can be downloaded to PIC
Micro using one the PIC programmers.

Computer Organization and Microprocessors Page 22

1.7. Additional Resources

% Peterson. Computer Organization and Design, (2007) Elsevier Service.

¢ Microchip Staff. Microchip PIC 18F1220/1320 Data Sheet. (2004) Microchip Technology
Incorporated.

¢ Microchip Staff. MPLAB IDE User’s Guide and Getting Started with MPLAB

Computer Organization and Microprocessors Page 23

1.8. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Computer Organization and Microprocessors Page 24

CHAPTER 2. ASSEMBLY INSTRUCTIONS AND PROCESSOR ARCHITECTURE

Key concepts and Overview

% Instruction Structure & Execution
% Byte-oriented Instructions

% Bit-oriented Instructions

% Literal-oriented Instructions

% Control Instructions

« Memory Layout & Definitions

+ Additional Resources

Computer Organization and Microprocessors Page 25

2.1. Instruction Structure & Execution

At the most basic level, a processor’s first step is to read an instruction (set of binary values). This step
may also be referred to as fetching an instruction. In the next step, the processor will decode and
execute the instruction. Finally, the processor writes any resulting data to memory. These steps are
repeated until the processor is diverted.

Below is a high level view of this process where PC refers to Program Counter. PC’s value is the address
of the next instruction to be fetched and executed: Notice in this example, two is added to PC each time
which means each instruction is 2 bytes long.

2 —>\
Add
> Data Memory
> Address T % Data
A
Program
Instructi . Execution < > 110
nstruction > Vodule
PC
— > Address
Program
Memory

An instruction is made up of at least two fields and may use two, four or more bytes. First field is typically
the opcode that identifies the desired operation. The second field is the operand for the operation. There
may be additional fields as needed.
PICmicro instructions are single word (two bytes or 16 bits) long except for the three double-word
instructions. All single-word instructions are executed in a single cycle. Single cycle execution is a
common characteristic of Reduced Instruction Set Computer (RISC) where there are small numbers of
instructions, but the instructions execute in a single clock cycle.
PICmicro has five types of instructions:

» Byte-Oriented operations
Bit-Oriented operations

Control Operations

Literal Operations

vV V VvV V

Memory-Block Operations

Computer Organization and Microprocessors Page 26

The Byte-Oriented, Bit-Oriented and Literal operation instructions move and manipulate data. We will be
discussing these instructions in more detail later in this chapter. For these instructions, PC is
incremented by 2 each time an instruction is executed so that PC will always be pointing to the next
instruction.

Control operation instructions are used to change the next PC value to point to an address other than
PC+2 if certain conditions are met. This set of instructions will be discussed in a later chapter. The
control instructions are used to implement conditional expression such as “If-then-else” and loops such as
“For loop”.

Refer to appendices for a complete listing of PICmicro instructions.

Computer Organization and Microprocessors Page 27

2.2. Byte-oriented Operations
Most byte-oriented instructions have three operands:

» The file register (specified by “*)
» The destination of the results (specified by “d”)
» The accessed memory (specified by ‘a”)

The destination designator “d” specifies where the result of the operation is to be placed. If ‘d’ is zero, the
result is placed in the WREG register. If “d” is one, the result is placed in the file register specified in the

instruction (default).

Byte-oriented file regizter operations Example Instruction
15 0 9 87 0
| OPCODE | d | a | fFILE#) ADDWF WYRES, W, B

d = 0 for rezult destination to be WREG register
d =1 for result destination to be file register (f)
a =0 foforce Access Bank

a=1 for B5R fo =elect bank

f = B-hit file register address

Byte to Byte move operations (2-word)

15 12 1 0
| OPCODE | f (Source FILE #) | MOVFF MYREGL, MYREQD
15 12 1 0

| 1111 | f (Destination FILE #) |

f = 12-hit file register address

In this example ADDWF is the opcode (see appendix for PICmicro Instruction Set). Below are a more
detailed description and examples of Byte-Oriented Instructions:

Computer Organization and Microprocessors Page 28

7
*

» Add WREG and f “ADDWF f.d,a”

ADDWF ADD Wto f
Syntax: [fabel | ADDWE f[d [a]]
Ciperands: 0=f= 2565
de [01]
i [l::l1]
Cperation: (W) + il — dest
Status Affected;, MW, OV C, DC, Z
Encoding: nolo | oida | £FEf FEFE
Cescription: Add W to register 'f. If 'd’is "o, the
result is stored in W If 'd is "1, the
result is stored back inregister f
(default). If 'a"is ‘0', the Access
Bank will be selected, If 'a’is ‘1",
the BER is used.
Words: 1
Cycles: 1
2 Cyole Activity:
21 oz 23 4
Decodea Read Procass Write to
register ‘f Data destination
Example: ADTWEF REG, W
Befors Instruction
W = 0x17
REG = [xC?
After Instruction
W = [xDg
REG = [xC2

Notes:

“ 9

¢” in the set of.
de[0,1 meansdcanbeOor1.

Arithmetic Logic Unit (ALU) Status Bit

Definitions (Status Register — SFR)

0 “C” Carry - Set when the instruction
results in a carry out of the most
significant bit, clear when no carry

o “DC’” Digit Carry - Set for carry out of the
4th low order bit.

0 “N” Set for Negative result, clear for
non-negative result

o0 “OV” Set for overflow result, clear for
non-overflow result

0 “Z” Set for zero result, clear for non-zero
result

Hexadecimal Designation
Both “0x” prefix and “h” postfix indicate a
hexadecimal number.

For example both “Ox1F” and “1Fh” are
representations of 0x1F hexadecimal.

BSR “Bank Select Register”

By default, BSR will be set to “0” which
means only the first 8 bits of the register file
address are used and the upper 4-bits are
set to 0 (0O-FF).

Later in this chapter, BSR will be discussed.

“[T any syntax item in the square bracket is
optional. “[]” may be used as nested
construct.

“()” signifies that the content of the register
(not the address) will be used in the
operation. For example (f) refers to content
of register f.

Computer Organization and Microprocessors

Page 29

= Example — Given the following memory map, determine the value stored at memory location 33:

Address Data
0x20 12
0x21 23
0x22 34
0x23 65

Solution:
Location 33: Value is 23. (33 in decimal is equal to 0x21 in hexadecimal)

= Example - ADDWF 0x12,0,0

Before Instruction
W =0x10
REG (0x12) = 0x20

After Instruction
W = 0x30
REG (0x12) = 0x20

The value 0x10 is taken from working register WREG and added to the value 0x20 from file register Ox12.
Because we have a zero for the [d] syntax item, the result is stored back in WREG.

= Example - Given W =25 and F register (22) = 15.
a) Determine what the values of W and register (22) will be after execution of the following assembly
code statement:
ADDWF 22,1
b) Determine the machine code equivalent for the above assembly code.
Solutions:
a) W =25 and F register (22) = 40.

b) Equivalent Machine code is “0010 0111 0001 0110”.

Computer Organization and Microprocessors Page 30

% Movefstofy “MOVFF ffy”

MOVFF Move f to f = Example - Given the following memory
Syntax: [izbal] MOVFF ff content:
Operands: 0 =fgy = 4005 Address Data
0 =fy=4095
Operation: (fgl — 1y
Status Affected: Mone 0x10 33
Encoding:
1stwiord (sourca) 1100 | rrer | frfc | £Iff,
2nd word (desting [1111 rrre rree | rrrfy
0x15 25
Description: The contents of source register ‘fg
are moved to destination register
f4". Location of source . can be
anywhera in the 4096-byte data After execution of “MOVFF 0x10, 0x15”:
space (000N to FFFR) and location
of destination ‘fy can also be a) What are the content in file registers 0x10
anywhere from 000h to FFFh. and 0x15?
Either source or destination can be b) What's the machine code equivalent?
W ia useful special situation). c) Assuming the instructions are stored
MOVEE s particulardy usaful for starting at program memory location 0x26,
transferring a data memory location show the program memory content from
toa peripheral register (such asthe 0x26 to 0x29.
transmit buffer or an 150 port).
The MOVEF instruction cannot use Solutions:
the PCL, TOSU, TOSH or TOSL as
the destination register. a)
The MOVEF instruction should not
be used to modify interrupt settings Address Data
while any interruptis enabled (sea
page T3
Woords: 2 0x10 0x33
Cycles: 203
0 Cle Activity:
Q1 Q2 Q3 Q4 0x15 0x33
Decodes R=ad Process [[=]
register 'f° Ciata operation
{srch
Decods Mo Mo Writs b) 1 100 0000 0001 OOOO:
operation op=ration ragister T 1111 0000 0001 0101
Mo dummy (de=st) c)
d
ke Address Data
Exampls: MOVFF REG1, REGZ 0x26 0x10
Befora Instruction 0x27 0xCO
REG1 = 0x33
REGZ2 = OxM 0x28 0x15
After Instruction
RE G = o3, 0x29 OxFO
REG2 = 0x33

Computer Organization and Microprocessors Page 31

2.3. Bit-oriented Operations
A bit-oriented instruction has three operands:

» The file register (specified by “*)
» The bit in the file register (specified by “b”)
» The accessed memory (specified by “a”)

The bit field designator ‘b’ selects the number (position) of the bit affected by the operation, while the file
register designator “f” represents the number (address) of the file in which the bit is located.

Bit-oriented file register operations Example Instructions

15 121 9s 7 D
orcoDE| b BIT#| a| f(FLE# ESF MYREG, bit

by = 3-hit position of kit in filz register (f)
a = 0 fo force Access Bank

a= 1 for BSR to select bank

f = B-bit file register address

Below is a more detailed description of the two example instructions for the bit-Oriented Instructions:

% BitSetf “BSFf,b,a"

BSF Bit Set f = Example — value at location 29h is set to
T Tiabel] BSE T0lal 0x20. What is _the value at location 29h
o d - after the following code has been
perands: = =255 .
Debe? executed:
a= ol "BSF 0x29,2"
X El

Operation: 1 — f<b=
Status Affected: Mone Solution:
Encoding: IEEEEEEES value in location 29h will be 0x24
Descriplion: Bit ‘b in register 'f issat. If'a” is'0,

the Access Bank will be salectad,

overriding the BSR valua. If 'a”= 1, = Example — All memory locations have

then the bank will be selected as been cleared prior to executing the

per the BSR valua. following machine code:
Words: 1
Cycles: 1 “1000 1010 0111 0000”
Q Cyde Activity:
)] 0z a3 4 a) What ‘s the assembly code
Decode Read Process Write equivalent?
register Data register b) Which memory location has been
changed and what is the new content?
Example: BEF FLAS REG, 7
Eefore Instruction Solution:
FLAG_REG = 0x0A
Aftor Instruction a) BSF 0x70,5,0
FLAGREG = 0OxBA b) Location 0x70 changed to

“0010 0000” or “0x20”

Computer Organization and Microprocessors Page 32

Example — Location 0x35 is set to 0x31 before execution of instruction “BSF 0x35,3".
a) What is the Machine Code for the instruction in Hex?
b) What is the value in location 0x35 after the instruction execution?

Computer Organization and Microprocessors Page 33

2.4. Literal-oriented Operations

The literal instructions may use some of the following operands:

» Aliteral value to be loaded into a file register (specified by ‘k’)
» The desired Special Function Register (FSR) register to load with the literal value (specified by ‘f')
» No operand required (specified by ‘—')

Literal operations Example Instructions

15 8 7 0
OPCODE | k (literal) | MOVLW 0XTF

K = &-bit immediate value

Below is a more detailed description of the example instructions for the literal-Oriented Instructions:

% Move literal to WREG “MOVLW 0x7F”

MOVLW Mowve literal to W Notes:
Operands: 0= k=255
Diperation: bk — W
Status Affected: Mone
Encoding: ooaa 1110 | kkkk Kkkk
Description: The eight-bit literal k™ is loaded
into V.
Wiords: 1
Cycles: 1
2 Cyole Activity:
) 2 23 24
Decode Read Process Write 1o W
litzral "k Diata
Example; MWL OXER
After Instruction
W = OeBd

Computer Organization and Microprocessors Page 34

2.5. Control Operations
The control instructions may use some of the following operands:

» A program memory address (specified by ‘n’)
» The mode of the CALL or RETURN instructions (specified by ‘s’)
» No operand required (specified by ‘—')

Control operations Example Instructions
CALL, GOTO and Branch operations
15 57 0
| OPCODE | n=70=(lteral) | @0To Label
15 12 1 0
| 1111 | n="154:3= {literal) |

n = 20-hit immediate value

15 87 0
| OPCODE | 5| n<=7:0= {literal | CALL MIFUNC
15 12 1 0
| | n=15:3= (lteral) |

5 = Fast bit
15 11 10 0
| opcopeE | n<10:0= (iteral) | EFA MYFUNC
15 87 0
| oPconE | n<7:0- fieral) | EC MYFUNC

More detailed description of the Control instruction examples to follow:

Computer Organization and Microprocessors Page 35

< Go to address “k=K19K15 . . . KiKy” “GOTO k”

GOTO Unconditional Branch

Syntax: [febel] GOTO kK

Operands: 0=k = 1048575

Operation: k — PC=2001=

Status Affected: Mone

Encoding:

1stwiord (k=7.0=) 1114 1111 | k-kkk | kkkkg
ndwordik=19:8=) 1111 |k kkk| kkkk | kkkkg

Description: 30T allows an unconditional
branch anywhere within the entire
2-Mbyte memaory range. The 20-bit
valus 'K is lcaded into PC<20:1=,

Z0TO is always a two-cyde

instruction.
Words: 2
Cycles: 2
2 Cycle Activity:
[y Qa2 Q3 4
Decode Read litzral Mo Read likzral
LAETHIER aperation K198
Wirite to PC
M M Mo M
opsration oparation opsration operation
Example: G0TS THERE
After Instruction
FPC = Address (THERE)

“k” is shifted to the left by 1 before being
assigned to PC. This means that jump
are always to a word boundary.

Example — Determine the value of PC
after the following machine code is
executed:

"1110 1111 1000 0001”
"1111 0000 1000 0010”

Solution:
PC =10502h

Computer Organization and Microprocessors

Page 36

» Example — Determine the Machine Code equivalent for the Goto statement in the following Code

Segment:

Address Instruction (Assembly OpCode)

0x290 GOTO GreatProgram

6;(-932 GreatProgram ; Now what?
Solution:

» Example — Determine the next instruction location (PC) to be accessed after the execution of the
following Machine Code:
1110 1111 1010 1100
1111 0000 0000 0010

Solution:

Computer Organization and Microprocessors Page 37

«» Call Subroutine at address “k=KgK1s . . . KiKy” “CALL k,s”

Notes:

CALL Subrouting Call
. __|]
Syntax: [lmbal] CALL Kk[g] "
Operands: 0=k = 1048575
se [0,1]
Operation: (PC)+4 S TOS,
k— PC<201>,
ifs=1
W — WS,
(Status) — STATUSS,
(BSE) —+ BSRS
Status Affected: Mone
Encoding:

Tstword (k=7:0=) | 1110 | 1108 | kqkkk | kkkkg
2nd word(k=12:8=>)| 1111 |kigkkk| kkkk | kkkkg

Description: Subroutine call of entire 2-Mbyte
memory range. First, return
address (PC + 4) is pushed onto
the return stack. If 's' = 1, the W,
Status and BSR registers are also
pushed into their respadive
shadow registers, WS, STATUSS
and BSES. If 's" = 0, no update
ocours (default). Then, the 20-bit
value 'k is loaded into PC<20; 1=,
CALL is a two-cycle instruction.

Waords: 2
Cycles: 2
23 Cycle Activity:
21 Q2 Q3 4
Decads Read literal | Push PC to | Read litsral
LETHIES stack K198,
Wit o PC
Na Mo Mo Mo
cperation cparation capsration operation

Exampla: HERE
Before Instrudion

CALL THERE, FAST

P = address (HERE}

After Instruction

PC =

TOS =

WS = W
BSRS = BSR
STATUSS = Stalus

address [THERE]
address [HERE + 4

Computer Organization and Microprocessors

Page 38

» Example — Determine the value of PC after the execution of the following Machine Code:
1110 1111 1010 1100
1111 0100 0001 0101

Solution:

» Example — Determine the Machine Code equivalent for the following CALL Instruction:

Address Instruction (Assembly OpCode)
0x24 FortyTwo: MOVFF answer, life
0x290 CALL FortyTwo

Solution:

Computer Organization and Microprocessors Page 39

°oe

% Branch Unconditionally “BRA n”

ERA Unconditional Branch

Synitax: [izbai] BRA n

Dperands: Sl024 =< 1023

Ciperation: (PCi+ 2+ 20— PC

Status Affected: Mone

Encoding: 1101 dnnn | onno [TITICL

Descripion: Add the 2's complement numbssr
2n to the PC. Since the PC wil
have incrementad to fetch the next
instruction, the new address will ba
PC + 2 + 2n. This instruction is a
two-cyvele instruction.

Words: 1

Cycles: 2

3 Cyole Activity:

1 a2 g 24
Decods Read litzral Process Write to PC
n Dala
M Mo M Mo
operation op=ration operation op=ration
Example: HERE BRA Jump

Bafore Instruction

FC

= address (HERE]

After Instruction

PC

= address [(Jumpl

Notes:

Address Calculation

New PC =BRA’'s PC + 2 + 2*n
‘n is in 2’s Complement format”

Example — Determine the address of
the next instruction to be executed after
the following BRA instruction:

Address
0x236

Memory Content
1101 0111 1000 1000

It is important to note that offset is
provided in “2n” and 2’s complements
format. Therefore:

1111 0001 0000 (Offset=2*n) +
0010 0011 0110 (PC)
10 (2)

"4 0001 0100 1000
or
0x148 new PC

As you see the overflow is ignored and
the address of the next instruction after
BRA will be location 0x148.

» Example — Determine the Machine Code equivalent for the following BRA instruction:

Address

0x110

0x230

Solution:

Instruction (Assembly OpCode)

BRA NextEvent

NextEvent: NOP

Computer Organization and Microprocessors

Page 40

» Example — Determine the PC after the execution of:

Address Code
0x3210 BRA 215
Solution:

» Example — Determine the Machine Code equivalent for the following BRA instruction:
Hint: Negative n value.

Address Instruction (Assembly OpCode)
0x2110 Step: MOVWEF Dove, 0

0x2140 BRA Step

Solution:

Computer Organization and Microprocessors Page 41

« Branch if Carry

“BC nn

BC Branch if Carry
Syntax: [fzbal] BC n
Operands: 128 <n =127
Operation: if Carry bitis 1’
(PCi+ 2+ 20— PC
Slatus Affected: Mone
Encoding: 1114a d0l0 | mnmn TITITICL
Description: If the Carry bit is 1, then the
program will branch.
The 2's complement number 20" is
added to the PC. Sinoa the PC will
have incrementad to fatch the next
instruction, the new address will be
PC + 2 + 2n. This instructiionis then
a two-cyele instruction,
Words: 1
Cycles: 10
0 Cycle Activity:
If Jump:
[y 2 23 24
Decode Read lit=ral Frocess Write to PC
™ Diata
Mo Mo Mo Mo
operation op=ration operation op=ration
If Mo Jump:
Y Q2 23 24
Decode Read lit=ral Process Mo
i) Data op=ration
Example: HERE BC JUMP

Before Instruction

PC

address (HERE)

After Instruction
If Carry

PC
If Carry

PC

1;
Eddrass. {JUME]

address (HERE + 2]

Example — Assuming Carry bit is set,
determine the PC after execution of the
following machine code:

Address Data
0x252 1110 0010 1111 1100
Solution:

Example — Implement the following C
code using BC instruction:

high=0;

if (temp == 255) {
high = 1;

}

Solution:
high equ 0x80
temp equ 0x81

clrf high

Example — Write the machine code for
line labeled “loop2” in the following code
segment:

Wreg = 245

org 0x3442
Loop: Nop

BNZ loop2

ADDLW 25
Loop2: BC Loop
Solution:

“1110 0010 1111 1100”

Computer Organization and Microprocessors

Page 42

» Example — Determine the Machine Code equivalent for the following code segment:

Address Instruction (Assembly OpCode)

0x220 Loop: ADDLW 52
0x222 MOVFF New, Old
0x226 BC Loop
0x340 Step: MOVWF Dove, 0
Solution:

Computer Organization and Microprocessors Page 43

2.6. Memory Layout & Definitions

In general, computer memory is organized into two sections: data memory and program memory. The
size and organization of the memory depend on the type of system and its function. For the PICmicro
example used here, the memory sizes are in Kilo bytes (103) and Mega bytes(106). Depending on your
application, memory ranges may be in Giga bytes (10°) and Terra bytes (10'?).

Typical computer systems have all three types of memory (Program memory, Data memory, Nonvolatile
memory). Although Program and Data memories may be the same type of hardware, Program and Data
are stored in different sections of memory. This organization is required to ensure that data does not
overwrite programs. Additionally, if the data and program paths are kept separate, the processor can read
and write instructions and data simultaneously in order to improve performance.

As discussed earlier, PICmicro is a microcontroller which means that it will have some amount of each
memory type on-chip, in addition to other functionality. Specifically, PICmicro has the following types of
memory on the chip:

% Program Memory — 4 Kbytes on-chip with ability to access off-chip memory if available. The on-chip
program memory is EEPROM which is non-volatile (data is not lost when power is removed). The
following diagram outlines the total memory space and location of on-chip program memory from
0018-0FFFh

Reset Vector 0000h

High Priority Interrupt Vector 0008h

Low Periority Interrupt Vector 0018h

On-Chip
(4 Kbytes)
Program Memory

OFFFh
1000h
Addressable Memory
(2 Mbytes)
Reads ‘0’ if not implemented
1FFFFFh

Data Memory Space (2 Mbytes)

Computer Organization and Microprocessors Page 44

< Data RAM

PICmirco’s Program and Data memories use separate buses. This allows for concurrent access of
program and data resulting in improved performance.

The data memory is implemented as static RAM. Each register in the data memory has a 12-bit
address, allowing up to 4096 bytes of data memory. The data memory map is divided into as many
as 16 banks that contain 256 bytes each. The lower 4 bits of the Bank Select Register (BSR<3:0>)
select which bank will be accessed. The upper 4 bits for the BSR are not implemented.

The data memory contains Special Function Registers (SFR) and General Purpose Registers (GPR).
The SFRs are used for configuraton and status reporting of the controller and peripheral functions,
while GPRs are used for data storage and temporary memory for programs. The SFRs are located
in Bank 15,from F80h to FFFh. . Any remaining space in the Bank may be implemented as GPRs.
GPRs start at the first location of Bank 0 (000h) and extend upwards through the rest of the banks.
Any read of an unimplemented location will return ‘O’s.

The entire data memory may be accessed directly or indirectly. Direct addressing may require the
use of the BSR register. Indirect addressing requires the use of a File Select Register (FSRn) and a
corresponding Indirect File Operand (INDFn). Each FSR holds a 12-bit address value that can be
used to access any location in the Data Memory map without banking.

The instruction set and architecture allow operations across all banks. This may be accomplished by
indirect addressing or by the use of the MOVFF instruction. The MOVFF instruction is a two-
word/two-cycle instruction that moves a value from one register to another. To ensure that commonly
used registers (SFRs and select GPRs) can be accessed in a single cycle, regardless of the current

BSR values, an Access Bank is implemented. A segment of Bank 0 and a segment of Bank 15
comprise the Access RAM.

Computer Organization and Microprocessors Page 45

BSR=3:0= Ciata Mermory Map

= 0oag 00h 'c"":?:e 55 H"I:"rﬂ II::II:T;IEI::

Bank O = e T " 080h
FFh| GPR OFFh

Coh
Access RAM Low | _
~ deol \Goess RAN Figh] Aon
E-ahr—llk 1 o Unused & AJD:,F?SF\AS.:I igh F'-:l
=1110 Bank 14 Read ‘00h I
Whena=n,
The BSR is ignored and the
Access Bank is used.
The first 128 bytes are
EFFh General Purposs RANM
ot Fooh ifrom Bank 0).
- 1111 -n Unused F7Fh
——— Bank1s r+ — — — — A Fapl The second 128 bytes are
FFh SFR FEFA Special Function Registers

(from Bank 15].

Whena=1,

The BSR specifies the Bank
usad by the instruction.

PICmicro has banked memory in the General Purpose Registers (GPRs) area. GPRs are not initialized by
a Power-on Reset and are unchanged on all other Resets. Data RAM is available for use as GPRs by all
instructions. The second half of Bank 15 (F80h to FFFh) contains Special Function Registers (SFRs). The
SFRs are used by the Central Processing Unit (CPU) and peripheral modules for controlling the desired
operation of the device.

The following registers are most commonly used:
e Addresses 0xF80 through OxFFF. These are the Special Function Registers (SFR) such as
PORTA, PORTB, TRISA, TRISB, etc.
e Addresses 0x000 through OxOFF. These are the Access Ram and General Purpose Registers
(GPR) which can be used by programs to store data.

Computer Organization and Microprocessors Page 46

In many instructions, the value of flag “a” may be set to define the use of BSR as shown below:

e a=0
GPR address - 0x000 — OxO7F ; GPRs are available at 0x00-0x7F
SFR address > O0xF80 — OxFFF ; SFR range is always from F80 to FFH

e a=1“Default” with BSR =0
GPR address > 0x080 — OxOFF ; GPRs are available at two ranges 0x80-0x0FF or 0x00-0x7F
SFR address = 0xF80 — OxFFF ; SFR range is always from F80 to FFH

e a=1"Default” with BSR =3
GPR address - 0x380 — Ox3FF ; GPRs are available at two ranges 0x380-0x3FF or 0x00-0x7F
SFR address > 0xF80 — OxFFF ; SFR range is always from F80 to FFH

Computer Organization and Microprocessors Page 47

2.7. Additional Resources

% Microchip Staff. Microchip PIC 18F1220/1320 Data Sheet. (2004) Microchip Technology
Incorporated.

% Huang,. PIC Microcontroller: An Introduction to Software & Hardware Interfacing, (2004) Thomson.

+ Reese. Microprocessor: From Assembly Language to C using the PIC18Fxxx2. (2003) Course
Technology.

« Peterson. Computer Organization and Design, (2007) Elsevier Service.

Computer Organization and Microprocessors Page 48

2.8. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Computer Organization and Microprocessors Page 49

CHAPTER 3. INPUT/OUTPUT ORGANIZATIONS

Key concepts and Overview

0,

+ Pinout and Packaging

7

% Accessing I/O Devices

7

++ Additional Resources

Computer Organization and Microprocessors

Page 50

3.1. Pinout and Packaging

PICmicro is available in three types of packaging. It is important to note that each package has a
different pin layout. Plastic Dual In-Line Package (PDIP) is the most common type of packaging for
prototyping where automated systems are not available. On the other hand, Quad Flat No-Lead (QFN)
package and Shrink Small Outline Package (SSOP) are most commonly used for high volume production
where automation can handle small sizes and cost is important. SSOP is able to handle a wider range of

temperatures compared to QFN.

18-Pin PDIP, SOIC

RANAND ==l 1 ./ 18 [J=a=t- RE3/CCP1P1A
RATANULVDIN «—=[] 2 17 [=== RE2/P1E/INTZ
RALTOCK! =[] 3 = 18 1= OSC1/CLKIRAT
WCLRVPARAS oy R 15 [e OSC2/CLKORAS
=
WESAVES —el] 5 % 14 [J-=— VDo/AVDD
=
P (5] RET/PGDIT10SN
RAZANZNVREF- w—l] & T 13 [P1D/KEIR
AN RBE/PGCIT10S0¢
RAVANINVREF+ a7 12 [=—n T13CKIP KA
REOANAINTD w—e] & 11 [Jaae RES/PGMIKEN
RE1/ANSTX/ g 10 [] s REBHANERXS
CKANTA DT/KBID
28-Pin QFN

] =—w RALTOCK
2T] e R UANTLVDIN

PE] e RAOIAND

2

TCLRAPPIRAS m—ee 1
I (=t]2

s — 3

o] = 4
Aas—m=[]5

M C--a—e 15

R8s 2/ AN 20 REF-=a—w 7

MNC e 111

REOAMAANT () st] 9
RBAANG/RX/OT/KBID e[12

RAZIAMN3NVREF + =i]2
RE1/MNETHACKANT 1 e 10

]~ [

241 w— RB3/CCP1/FP1A
2] === REB2ZP1BINTZ2

PIC18F1X20

20-Pin SSOP

\J 20

RANAND =[] 1 [=== RE3/CCP1PIA

RATANULYDIN=—=[] 2 18 []=+—=RE2/P1B/INTZ
RA4TOCKI=—==[] 3 18 []=—m0SC1CLKIRAT
MCLRNVPPRAS—[] 4 o 17 [w—w OSCHCLKO/RAG
Vss—-l: 5 g 16 j-ﬂ—‘u‘DD
tvss—a]] g '?g'? 15 []-+—Avin
RAZIANZAVREF —u—u] | 7 E 14 jq—rﬁfg::ﬂglgr”os""

o PBEPGCT10S0)
j T13CKIP1C/KBIZ

L e RESIPGMKEI

— T
j DT/HKEID

RAAN3NVREF+=—=] | 8 13
REOANINTOw—a] g
RB1/ANS/TX/ agn]

CHR/NTA

12
"

17— A\VDD
16[J-=—w RET/PGDIT10SIP10/KEIR
15[]-— REGPGCIT10SOT13CKIP1C/KRIZ

MC a—ae] 14

RESPGMKE! 1 w—me=] 13

Computer Organization and Microprocessors

Page 51

« Prototype Packaging

As discussed earlier PDIP is the most common packaging used for prototyping. PICmicro

(PIC18F1220) pin out is shown below:

18-Pin PDIP, SOIC

RA1T/ANT/LVDIN =—=[]2

RA4/TOCKI ==[]3
MCLR/\/PR/RAS

_PE

VsS/AVSS — =[5

RAZ2/AN2/VREF- -—=[6

RAZAN3NREF+ = =7

RBO/AN4/INTO =[] 8

RB1/ANSTX/ <-=[]g
CK/INT1

PIC18F1X20

RAO/ANO =—=[1 U 18

17

16

15

14

13

12
11

10

] =—= RB3/CCP1/P1A
] == RB2/P1B/INT2

| | == OSC1/CLKIVRATY
[] =—= OSC2/CLKO/RAB

| | =— VVDD/AVDD

B RB7/PGD/T10S8I/
P1D/KBI3

(] == RB&/PGC/T10S0/
T13CKI/P1C/KBI2

| | =— RB5/PGM/KBI1

(] = RB4/ANGRX/
DT/KBIO

Each pin can be configured to perform a variety of functions, for example Pin 8 may be an 1/O port (RB0),
I/O port (AN4), or external Interrupt 0 (INTO). This type of multi-use is common in microcontroller with
high level of functionality, but it is less common in general purpose microprocessors.

The two pins whose definition is constant are pins 5 and 14 which are ground and power.

= Pin5 Ground (0 V)
= Pin14 Power (2 to 5.5 V)

Computer Organization and Microprocessors

Page 52

+« Full PIN Descriptions

PICmicro’s pin definition is outlined in the following two tables.

Pin Number

PDIP{
soic

Pin Name Pin
Type

SSOP| QFN

Buffer
Type

Description

MCLR/VPR/RAS 4 4 1

5T

ST

Master Clear (input) or programming voltage (input).
Master Clear (Reset) input. This pinis an active-low
Resetf fo the device.

Frogramming valtage input.
Digital input.

RA5 |
Al 6 | 18 | 21
0SC1 !

ST

CMOS

COscillator crystal or external clock input.
Oscillator crystal input or external clock source
input. ST buffer when configured in RC made,
CMOS otherwise.
External clock source input. Always associated with
pin function C LKL,

221, (See related D2C1/C

KO pins.)

QsCa0

5T

11 5T General purpose 110 pin.
15 17 20 Oscillator crystal or clock output.
] — Oscillator crystal output. Connects to crystal or

resonator in Crystal Oscillator mode.
In RZ, EC and INTRC modes, Q3!
CLKC, which has 1/4 the frequency c
denates instruction cycle rate.

General purpose 1

pin outputs

035C1 and

RANAND 1
RAD
AND I

RATANTLYDIN 2 2 27
RA1 .
AN1 I

LVDIN |
RAZ/ANZ/VREF- 6 7 7
RAZ o
ANZ |

VREF- |

RASZANSNVREF+ 7] g
RA3 o]
AM3 [

YREF+ |
RALTOCK 3 3 | 28
RA4
TOCKI |
RAS
RAG

RAT

5T
Analog

5T
Analog
Analog

5T
Analog
Analog

5T
Analog
Analog

ST/OD
ST

PORTA is a bidirectional 110 port.

Digital
Analog input 0.

Digital /0.
Analog input 1.
Low-Yoltage Detect input.

Digital /0.
Analog input 2.
AD reference voltage {low) input.

Digital 110,
Analog input 3.
AD reference voltage (high) input.

Digital /0. Open-drain when configured as cutput.
Timerl external clock input.
See the MCLRAVPRREAS pin.

See the OSCUCLKIRAT pin.

—

—

—
|

Legend: TTL compatible input

Cutput
Open-drain (no P diode to VDD)

I

Schmitt Trigger input with CMOS levels

CMOSs =
|
=]

CMOS compatible input or output
Input
Power

Computer Organization and Microprocessors

Page 53

Pin Number
Pin | Buffer

ssOP | @FN | Type | Type

Pin Name POIR!
soIC

Description

PORTE is a bidirectional /0 port. PORTE can be software
programmed for intermal weak pull-ups on all inputs.
REAMAINTG g :
REO e} TTL Digital 110,
AN4 I Analog Analog input 4.
IMTO I sT External interrupt 0.

RE1ANSTH/CKANTY 10

RE1 1o TTL Digital 1/,

ANS I Analog Analog input 5.

TX] — ELISART asynchronous transmit.

Ck 110 aT EUSART synchronous clock (see related RX/OT).
[MT 1 I sT External interrupt 1.

REZPT1BANTZ 17 19 23
REZ 1o TTL Digital 110,
F1E] — Enhanced CCP1/PWIM output.
INT2 I ST External interrupt 2.

REBICCP1P1A 18 20 24
REZ 1o TTL Digital 110,

CCP1 Il sT Capture 1 input/Compare 1 output™WM 1 output.
F1A 0 — Enhanced CCP1/PWIM output.

REA/ANGRX/DT/KRIO | 10 il 12

RE4 e} TTL Digital 110,

(=]
[te)

[L=]
—_
(]

o

)

ANE I Analog Analog input 8.
Rx I sT ELSART asynchronous receive.

OT ([aT ELUSART synchronous data (see related TXICK).
KEID I TTL Interrupt-on-change pin.
RESPGMKEN il 12 13
RES I TTL Digital 110,
FGM 11 ST Low-Veoltage ICSP Programming enakble pin.
KEI I TTL Interrupt-on-change pin.
REBBPGC/T1CS0/ 12 13 15
T13CKIP1C/KBIZ
RE& 1o TTL Digital 110,
PGC 11 sT In-Circuit Debugger and ICSP programming clack pin.
T1050] — Timer! oscillator cutput.
TAACKI I ST TimerlTimer2 external clock output.
P1C] — Enhanced CCP1/PWIM output.
KEBI2Z I TTL Interrupt-on-change pin.
RE7TPGDITICSN 13 14 16
F10/KEIZ
RET 1o TTL Digital 110,

PGD 11 sT In-Circuit Debugger and ICSP programming data pin.
T1051 I CMOS Timer1 oscillator input.

F1D 0

KEI3 I
W8S 5 56 | 3.5 P — | Ground reference for logic and 11O pins.
VDD 14 |15 16[17,19] F — | Positive supply for logic and /O pins.
MC — — 18 — — Mo connect.

Enhanced CCP1/PWI output.

TTL Interrupt-on-change pin.

Legend: TTL = TTL compatible input CMO5 = CMOS compatible input or output
ST = Schmitt Trigger input with CMOS3 levels I = Input

O Output F Power

Open-drain (na P diode to DD}

Computer Organization and Microprocessors Page 54

3.2. Accessing I/O Devices

PICmicro programs are able to read from and write to external devices by using the Special Function
registers (SFRs) to configure the external pins as input/output or configure the internal peripheral
modules such as the Analog to Digital converter or the Pulse Width Modulator.

SFRs can be classified as relating to either the core functions or the peripheral functions. The registers
related to the “core” are described in this section, and the others will be covered in the latter part of the
text. Note that the unused SFR locations will be signified by “__” and are read as ‘O’s.

Hint: all the names and values have been predefined in header file “p18f1220.inc” for assembly
programming and in “p18f1220.h” for C programming.

R/

« Below is a list of Special Function Registers (SFR):

Address Name Address Name Address Name Address Name
FFFh TOSU FOFh| INDF2' FEFh| CCPRIH FOFh IPR1
FFEh TOSH FDEh | POSTINC22 FEEh| CCPRIL FOEh PIR1
FFDh TOSL FDDh | POSTDEC2@! FEDh | CCP1CON FoDh PIE1
FFCh| STKPTR FDCh| PREINCZ' FECh — FoCh —
FFEh| PCLATU FDBh| PLUSW2') FEEh — FOBh | OSCTUNE
FFah| PCLATH FDAh FSR2H FBAh — FaAh —
FFoh PCL FDSh FSRZL FBOh — Fooh —
FF8h| TBLPTRU FDah| STATUS FBB&h — Fash —
FF7h| TBLPTRH FD7h| TMROH FB7h | PWMICON Fa7h —
FFeh | TBLPTRL FD&h TMROL FBGh | ECCPAS Foeh —
FF5h| TABLAT FD5h| TOCON FBS5h — Fosh —
FF4h| PRODH FD4h — FB4h — Fo4h —
FF3n| PRODL FD3h| OSCCON FB3h| TMR3H Fo3h TRISB
FF2h| INTCON FDzh| LVDCON FBzh TMR3L Fazh TRISA
FFih| INTCONZ FD1h| WDTCON FB1h TACON Fo1h —
FFOR | INTCON3 FDOh RCOM FBOh | SPBRGH Fooh —
FEFh| INDFQ'@ FCFh| TMR1H FAFh | SPBRG F&8Fh —
FEEh | POSTINCO! FCEh TMRAIL FAEh| RCREG FSEh —
FEDh | POSTDECOY! FCDh| T1CON FADh| TXREG FaDh —
FECh| PREINCOW@ FCCh TMR2 FACh TXSTA Fach —
FEBh | PLUSWOIZ! FCEh PR2 FAEh RCSTA F8Eh —
FEAh FSROH FCAh| T2CON FAAh | BAUDCTL F8Ah LATE
FEoh FSROL FCah — FAGh EEADR Faah LATA
FEsh WREG FCah — FAgh | EEDATA Fash —
FE7h| INDF1%) FC7h — FATh | EECOMNZ F&7h —
FE&h | POSTING1'@ FCBh — Fagh | EECON1 Faah —
FEsh | POSTDEC 112 FC5h — FASh — Fash —
FE4h | PREINC1® FC4h| ADRESH FAdh — Fa4h —
FE3h| PLUSW12 FC3h| ADRESL FA3h — Fash —
FEzh FSR1H Fczh| ADCOND FAZh IPR2 Fazh —
FE1h FSRIL FC1ih| ADCON1 FATh PIR2 Feth| PORTB
FEOh BSR FCoh| ADCONZ FAOH PIE2 Faoh PORTA

Note: 1) Unimplemented registers are read as ‘0’
2) Not a physical register

Computer Organization and Microprocessors Page 55

Special Function Register (SFR) Summary Table 1 of 2

File Name Bit 7 Eit 6 Bit 5 Eit 4 Bit 3 Bit 2 Bit 1 Bit 0 P‘“g'Fﬂ“:‘Bg‘R
TosU — — — Top-of Stack Upper Byte (TOS<20:16>) ---0 0ooa
TOSsH Top-of-Stack High Byte (TOS<158=) 0000 gooa
TOsL Top-of-Stack Low Byte (TOS<7:0=) 0000 gooa
STEPTR STKFUL STEUMF — Retum Stack Paointer 0o-0 gooa
PCLATU — — bit 219 |Holding Register for PC<20:16 = ---0 0000
PCLATH Holding Reqistar for PC<15:8= 0oon ooon
PCL PC Low Byte (PC<7:0=) 0000 gooa
TELFTRLU — — bit 21 Program Memory Table Pointer Upper Byte (TELPTR<20:16=>) --00 0ooon
TELFTREH Program Memory Table Pointer High Byte (TELPTR<15:8>) 0000 0oon
TBLPTRL Program Memory Table Pointer Low Byte (TELPTR=<7:0=) oooo 0oon
TABLAT Program Memory Table Latch 0oon ooon
PRODH Product Register High Byte HERK KEEK
PRODL Product Register Low Byte HEEK KEEK
INTCOM GIE/GIEH | PEIE/GIEL | TMROIE INTOIE REIE TMROIF INTOIF REIF 0000 000
INTCONZ REFU INTEDGD | INTEDGT | INTEDGZ — TMROIP — REIFP 1111 -1-1
INTCOMNS INTZ2IP INT1IP — INT2IE INT1IE — INTZ2IF INTAIF 11-0 0-00
IMDFQ Uses contents of FSR0 to address data memory — value of FSR0 not changed (not a physical registan) MiA
POSTINCO Uses contents of FSR0 to address data memory — value of FSRO postincremented (not a physical register) MiA
POSTDECD |Usescontents of FSRO to address data memory— value of FSRO post-decrementad (not a physical register) MiA
PREINCO Uses contents of FSRO to address data memory — value of FSR0 pre-incremented (not a physical register) MNIA
PLUSWO Uses contents of FSRO to address data memory — value of FSRO offset by W (not a physical register) IR
FSROH — — — — Indirect Data Memory Address Pointer 0 High ---- 0000
FSROL Indiract Data Memory Address Pointer O Low Byte HERK KEEK
WREG Working Register HERK KEEK
INDF1 Uses contents of FSR1 to address data memory — value of FSR1 not changed (not a physical registan) MNIA
POSTIMNCA Uses contents of FSR1 to address data memory — value of FSR1 post-incremented (not a physical register) IR
POSTDECT | Usescontents of FSR1 to address data memory — value of FSR1 post-decremented (not a physical register) A
PREINCA Uses contents of FSR1 to address data memory — value of FSR1 pre-incrementad (not a physical register) MiA
PLUSWA1 Uses contents of FSR1 to address data memory — value of FSR1 offset by W inot a physical register) MiA
FSR1H — | — | — | — [|indirect Data Memory Address Painter 1 High ——-- 0000
FSR1L Indirect Data Memory Address Pointer 1 Low Byte HKEEN FHAX
BSR — | — | — | — |Bankselect Register ---- 0000
IMDF2 Uses contents of FSR2 to address data memory — value of FSRE2 not changed (not a physical registan) MiA
POSTINCZ Uses contents of FSR2 to address data memory — value of FSR2 post-incremented (not a physical register) MiA
POSTDECZ |Usescontents of FSR2 to address data memory — value of FSR2 post-decremented (not a physical register) MiA
PREINZCZ Uses contents of FSR2 to address data memory — value of FSR2 pre-incremented (not a physical register) NIA
PLUSWZ2 Uses contents of FSR2 to address data memory — value of FSR2 offset by W (not a physical register) A
FSR2H — | — | — | — [|indirect Data Memory Address Pointer 2 High ---- 0000
FSR2ZL Indiract Data Memory Address Pointer 2 Low Byte HERK KEEK
STATUS — | = | = 1 w | ov z DC C - -3
TMROH Timerd Register High Byte oooo 0oon
TMROL Timerd Register Low Byte WA IOLHN
TOCOM TMROOM TOBEIT TOCS TOSE PSA ToPs2 TOPS1 TOPSO 1111 1111
OSCCON IDLEM IRCF2 IRCF1 IRCFO QOSTS IOFS SC31 SCE0 0000 gooo
LYDCOM — — IWRST LWDEM LWDLZ LvOL2 LvDL LvDLo --00 0101
WOTCON — — — — — — — SWDTEN ——- ---0
RCON IPEN — —) TO FD FOR BOR 0--1 11g0

Computer Organization and Microprocessors Page 56

Special Function Register (SFR) Summary Table 2 of 2

File Name | Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit) | o
TMR1H Timer1 Register High Byte KEME KEXX
TMR1L Timer1 Registar Low Byte KEME KEXX
TICON ro16 | TiRUN | Tickpst | Tickeso | T1oscen | TISYNC | TMRics | TMR1ON | oooo oooo
TMR2 Timer2 Registar 0000 0000
PR2 Timer2 Period Register 1111 1111
T2CON — | Toutesa | Toutpsz | Toutest | Touteso | TMR20N | T2cKPS1 | T2CKPS0 | -000 0000
ADRESH AD Result Register High Byte KUHE AL
ADRESL AD Result Register Low Byle KUHE AL
ADCOMO WCFG1 WCFGE0 — CHSs2 CHS1 CHS0 GO/DONE ADON 00-0 0000
ADCON1 — PCFGE PCFGE5 PCFG4 PCFE3 PCFG2 PCFG1 PCFGO -000 oooa
ADCOMN2 ADFM — ACOT2 ACOT ACQTO ADCS2 ADCS1 ADCS0 0-00 0000
CCPR1H Capture/Compare/PWH Register 1 High Byte KUK HAKK
CCPRIL Capture/Compare/PWH Register 1 Low Byta KUK HAKK
CCPI1CON P1n11 P1MO DC1B1 DC1B0 CCPIM3Z CCP1MZ2 CCPIM CCPAMO | oooo oono
FWM1CON PRSEM PDCE PDCS PDC4 PDC3 POC2 PDCA FOCO 0000 oooo
ECCPAS ECCPASE | ECCPASZ | ECCPAST | ECCPASD PSSACT PS3ACO PSSBD1 PSSBDO | oooo oooo
TMR2H Timer3 Register High Byte KR HAMK
TMR2L Timer3 Register Low Byta KR HAMK
T3CON RD16 — T3CKPS1 | TICKPSD | T3CCH TISYNC | TMR3CS | TMR3ON | o-0o0 oooo
SPERGH EUSART Baud Rate Generator High Byte 0000 0000
SPERG EUSART Baud Rate Generator Low Byle 0000 0000
RCREG EUSART Recaive Register 0000 0000
TAREG EUSART Transmit Register 0000 0o0o
THSTA CSRC TX9 TXEM SYMC SEMDE BRGH TRMT TXaD 0000 0010
RCSTA SPEN RXx9 SREN CREN ADDEM FERR COERR RX9D 0000 000x
BALIDCTL — RCIDL — SCKP BRG16 — WUE AEDEM -1-1 0-00
EEADR EEFROM Address Registar oooo 0ono
EEDATA EEPROM Data Register oooo
EECOM2 EEFROM Contrdd Register 2 (not a physical register) o000 0oono
EECOM1 EEPGD CFGES — FREE WRERR WREN WR RD xm-0 =000
IPR2 OSCFIP — — EEIP — WOIP TMR3IIP — 1--1 -11-
FIR2 QSCFIF — — EEIF — VDIF THMR2IF — 0--0 -00-
FIE2 OSCFIE — — EEIE — VDIE TMR3IIE — 0--0 -00-
IPR1 — ADIP RCIP THIP — CCP1IP TMRZIP TMR1IP -111 -111
FIR1 — ADIF RCIF TXIF — CCP1IF TMRZIF TMR1IF -000 -000
FIE1 — ADIE RCIE TXIE — CCP1IE TMRZIE TMR1IE | -o0o -o0o
OSCTUNE — — TUMS TUN4 TUM3 TUNZ TUMA1 TUMO --00 0000
TRISE Data Direction Control Register for PORTE 1111 1111
TRISA TRISATIY I TRISAG! I — |Data Direction Control Register for PORTA 11-1 1111
LATE ReadMrite PORTE Data Latch KEME KEXX
LATA LATA<7>2 | LaTA<g=" | — |Readrite PORTA Data Latch XH-X AKX
PORTE Read PORTE pins, Write PORTE Data Latch KAHL HAHK
PORTA RATIZ | RAET | RASH) |Read PORTA pins, Write PORTA Data Latch xx0x 0000

Computer Organization and Microprocessors Page 57

Lagend:

x = unknown, u = unchangad, — = unimplamentad, g = value depands on condition
Note 1:

RAG and associated bits are configured as port pins in RCIO, ECIO and INTIOZ2 {(with port function on RAG) Oscillator mode only and read ‘07
in all other cscillator modes.

2: RAT and associated bits are configured as port pins in INTID2 Oscillator mode only and read '0' in all other modes.
3: Bit 21 of the PC is only available in Test mode and Seral Programming modes.
4: The RAS port bit is only available when MCLRE fuse (COMNFIG3H=7>) is programmed to '0°. Otherwise, RAS reads '0°. This bit is read-only.

Computer Organization and Microprocessors Page 58

s 1/O Port Set up

As discussed earlier, microprocessors typically consist only of a Central Processing Unit (CPU) while all other
functionality is implemented externally through specialized integrated circuits. All of these modules are accessed
and controlled as if they were memory locations by reading and writing to their respective locations.

PICmicro is a microcontroller which means that, in addition to the CPU, a number of additional functional modules
are contained onboard the chip. These additional functional modules include:

» As many as 16 external PICmicro pins that can be configured as input or output ports.

» Analog to digital converter module

» Pulse Width Modulator (PWM) which is used to control the speed of DC motors and other devices that may be
controlled with amount of energy delivered.

Later in this chapter, all three of these modules will be discussed.

« External Pin Set up as general purpose /O Ports

Some pins of the I/O ports are multiplexed with an alternate function from other modules on the PICmicro. In
general, when a peripheral is enabled, the pins used by the peripheral may not be used as general purpose /O
pins. Each port has three registers for its operation. These registers are:

= TRIS register (data direction register)

= PORT register (reads the levels on the pins of the device)
= LAT register (output latch)

A simplified model of a generic I/O port without the interfaces to other peripherals is shown below:

~1
RD LAT e
Ciata
Bus
WR LAT i0 pint!
or Port
Data Latch
] [Ny S {
WR TRIS CH1
TRIS Latch Input
N !',..1 Buffer
RD TRIS e
RD Port

Mote 1: 110 pins have diode protection to VoD and Vas,

» PORTA, TRISA and LATA Registers
PORTA is an 8-bit wide, bidirectional port. Reading the PORTA register reads the status of the
pins, whereas writing to it will write to the port latch.

Computer Organization and Microprocessors Page 59

Port A Register:

I/O Pins:

Alternative

Uses:

RA7 RA6 RA5 RA4 RA3 RA2 RA1 RAO
b7 b6 b5 b4 b3 b2 b1 b0
p16

p15 i p4 ip3 p7 p6 p2 p‘I

“Each I/0O pin may be configured for multiple uses,
refer to pin definitions earlier in the chapter for a list

of Alternative uses for each pin”

The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the
corresponding PORTA pin an input. When the pin is set to input it will be in a high-impedance
mode. Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output. In this mode
the contents of the corresponding bit in the output latch (LATA) will be available on the selected

external 1/O pin.

The Data Latch register (LATA) is also memory mapped. Read-modify-write operations on the
LATA register read and write the latched output value from and to PORTA.

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-
Write (R-M-W) operation. The register is read, the data is modified, and the result is stored
according to either the instruction or the destination designator ‘d’. A read operation is performed
on a register even if the instruction writes to that register. It is important to consider the impact of
a read on the configuration before using read-modify-write instructions.

= Example of initializing PortA

CLRF PORTA ; Initialize PORTA by clearing output data latches
CLRF LATA ; Alternate method to clear output data latches
MOVLW Ox7F ; Configure A/D
MOVWF ADCON1 ; for digital inputs
MOVLW O0xFO ; Value used to initialize data direction
MOVWEF TRISA ; Set RA<3:0> as outputs and RA<7:4> as inputs
= Port A Functions Summary
Name Bit# | Buffer Function
RAOAND bit 0 ST Inputfoutput port pin or analog input.
RATANT/LVDIN bit 1 ST Inputfoutput port pin, analog input or Low-Voltage Detect input.
RAZ/ANZNVREF- bit 2 ST Inputfoutput port pin, analog input or VREF-.
RAZANZINVREF+ bit 3 ST Inputfoutput port pin, analog input or VREF+.
RA4TOCKI bit 4 ST Inputfoutput port pin or external clock input for Timer0O.
Cutput is open-drain type.
MCLR/\VPP/RAS bit 5 ST | Master Clear input or programming voltage input (if MCLR is enabled); input
only port pin ar programming voltage input (if MCLR is disabled).
OSCZ2/CLKO/RAG bit 6 ST |O3C2, clock output or /O pin.
OSC1/CLKIRAT bit 7 ST | OSCH1, clock input or /O pin.

Legend: TTL =TTL input, ST = Schmitt Trigger input

Computer Organization and Microprocessors

Page 60

Port A Associated Registers Summary

N Bit 7 Bit6é | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito | _‘AMeon Vﬂlufhon
ame i i i i i i i all other
POR,BOR| "o Ctc
PORTA | RA7T | RAG™ | RAS® | RA4 | RAZ | RAZ | RA1 | RAD |xxox ooooluuou oooo
LATA LATA7 | LaTas™ | — [LATA Data Output Register xx-x xxxx|uu-u uuun
TRISA |TRISATT[TRISA6!T] — |PORTA Data Direction Register 11-1 1111f11-1 1111
ADCON1| — PCFG6 | PCFGS | PCFG4 | PCFG2 | PCFG2 | PCFG1T | PCFGO [-000 0aoo]-000 oooo
Legend: x=unknown, u=unchangad, —=unimplemented locations read as ‘0. Shaded cells are not used by PORTA.
Note 1: RA7:RAG and their associated latch and data direction bits are enabled as /O pins based on oscillatar
configuration; otherwise, they are read as ‘0.
2: RA5is aninput only if MCLR is disabled.

» PORTB, TRISB and LATB Registers

PORTB is an 8-bit wide, bidirectional port. Reading the PORTB register reads the status of the
pins, whereas writing to it will write to the port latch.

RB2 RB1 RBO
b2 b1 b0

RB7 RB6 RB5 RB4 RB3
b7 b6 b5 b4 b3

p13

Port B Register:

I/O Pins: p12 i p11 :p10 : p18 i p17 | p9 p8

Alternating Uses:
g “Each 1/O pin may be configured for multiple uses,

refer to pin definitions earlier in the chapter for a list
of Alternative uses for each pin”

The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the
corresponding PORTB pin an input. When the pin is set to input it will be in a high-impedance
mode. Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output. In this mode
the contents of the corresponding bit in the output latch (LATB) on the selected pin.

The Data Latch register (LATB) is also memory mapped. Read-modify-write operations on the
LATB register read and write the latched output value from and to PORTB.

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-
Write (R-M-W) operation. The register is read, the data is modified, and the result is stored
according to either the instruction or the destination designator ‘d’. A read operation is performed
on a register even if the instruction writes to that register. It is important to consider the impact of
a read on the configuration before using read-modify-write instructions.

Example of initializing PortB

CLRF PORTB ; Initialize PORTB by clearing output data latches
CLRF LATB ; Alternate method to clear output data latches
MOVLW 0x70 ; Set RBO , RB1, RB4 (Pins 8,9 &10) as
MOVWEF ADCON1 ; digital I/O pins

MOVLW 0xCF ; Value used to initialize data direction

MOVWEF TRISB ; Set RB<3:0> as inputs, RB<5:4> as outputs and

; RB<7:6> as inputs

Computer Organization and Microprocessors

Page 61

» Port B Functions Summary

Name

Bit#

Buffer

Function

RBOANAANTO

bit

0 | TTLsT)

Input/output port pin, analog input ar external interrupt

input 0.

REBAANSTHCKIANTA

bit

1| TTLMs T

Input/output port pin, analog input, Enhanced USART

Asynchronous Transmit, Addressable USART
Synchronous Clock or external interrupt input 1.

RBZ/P1B/INT2

bit 2

TTLs T

Input/output part pin or external intarrupt input 2.
Internal software programmable weak pull-up.

RB3/CCP1/P1A

bit 2

TTLs T

Input/output port pin or Capture1 input/Compare1 output/
PWM output. Internal software programmable weak pull-up.

RB4/ANG/RX/DT/KEID

bit 4

TTLYSTH)

[nput/output port pin (with interrupt-on-change), analog input,
Enhanced USART Asynchronous Receive or Addressable

USART Synchronous Data.

RES/PGM/KE

bit

5

TTLISTE)

Input/output port pin (with interrupt-on-change).
Internal software programmable weak pull-up.

Low-Voltage ICSP enable pin.

P1C/KBIZ

REBE/PGC/T10SO/M13CKI/

bit &

TTLSTI®®)

Input/output port pin (with interrupt-on-change), Timer1/

Timer3 clock input or Timerloscillator output,
Internal software programmable weak pull-up.
Serial programming clock.

RB7/PGDIT10SI/P1D/KBI3

bit 7

TTLs TS

Inputfoutput port pin (with interrupt-on-change) or Timer1
oscillator input. Internal software programmable weak pull-up.

Serial programming data.

Legend: TTL =TTL input, 8T = Schmitt Trigger input
Note 1: This buffer

2: This buffer
3: This buffer
4: This buffer
5: This buffer
6: This buffer

= Port B Associated Registers Summary

is a TTL input when configured as a port input pin.
is a Schmitt Trigger input when configurad as the external interrupt.

is a Schmitt Trigger input when configured as the CCP1 input.
is a Schmitt Trigger input when used as EUSART receive input.

is a Schmitt Trigger input when used in Serial Programming mode.
is a TTL input when used as the T13CKI input.

Value on Value on

Name Bit 7 Bit & Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR. BOR all other

Resets
FORTE RB7 RE& RES RE4 RBE3 RB2 RB1 RBO ¥200] ggdd | uuuu uuuu
LATE LATE Data COutput Register EXKX XHXX | uuuu uuuu
TRISE PORTE Data Direction Register 1111 1111 | 1111 1111
INTCON GIE/GIEH |PEIE/GIEL| TMROIE | INTOIE RBIE | TMROIF | INTOIF REIF | 0000 000x | 0000 000u
INTCONZ REPU | INTEDGO |INTEDG1 | INTEDG2 — TMROIP — RBIP | 1111 -1-1] 1111 -1-1
INTCON3 INTZIP INT1IP — INTZIE | INT1IE — INT2IF | INT1IF | 11-0 0-00] 11-0 0-00
ADCONA — PCFGE | PCFGs | PCFG4 | PCFG3 | PCRG2 | PCFGT | PCRGD | -0o0 o000 | -000 0000

Legend: = unknown, u=unchanged, g = value depends on condition. Shaded cells are not used by PORTE.

Computer Organization and Microprocessors

Page 62

» Example of Basic Input/Output Configuration
As described earlier, configuring external PICmicro pins as input/output is as simple as writing to
SFR registers ADCON1, TRISA and TRISB. Below is a sample pin configuration code from a
counter program:

The following lines clear the data in PORTA and PORTB.

CLRF PORTA
CLRF PORTB

The following line sets the W register (accumulator) to value 0x7F = 01111111
MOVLW OX7F

The W register is used as a temporary location for values. In this case the value 0x7F has been
placed in W register first. The following line copies the value of W register to ADCON1 register.
The ADCONT1 register is one of three registers that control the operation of the PICmicro’s built in
Analog to Digital Converter (ADC). Setting the value of ADCON1 to 0x7F tells the PIC that pins

1,2,6,7,8,9 and 10 will be used for input/output rather than for the ADC.
MOVWF ADCON1

The following line sets the W register (accumulator) to value 0x00 = 00000000
MOVLW 0x00

The following line copies the contents of the W register to the TRISB register.

The TRISB register is the control register for PORTB. The bits in TRISB signify which direction
the data is flowing in PORTB (1 = Input, 0 = Output).

MOVWF TRISB

The following line sets the W register (accumulator) to value 0x01 = 00000001
MOVLW 0x01

The following line copies the contents of the W register to the TRISA register.

The TRISA register is the control register for PORTA. The bits in TRISA signify which direction
data is flowing in PORTA (1 = Input, 0 = Output).

MOVWF TRISA

Now that the input/output pins have been configured, the user can write to or read from these
input/output pins by writing and reading from PORTA and PORTB registers. For example, the
following code writes data (OxAB) to the 8 pins of PortA:

MOVLW OxAB
MOVWF PORTA

Computer Organization and Microprocessors Page 63

3.3. Additional Resources

% Staff. Microchip PIC 18F1220/1320 Data Sheet. (2004) Microchip Technology Incorporated.

% Huang,. PIC Microcontroller: An Introduction to Software & Hardware Interfacing, (2004) Thomson.

+ Reese. Microprocessor: From Assembly Language to C using the PIC18Fxxx2. (2003) Course
Technology.

« Peterson. Computer Organization and Design, (2007) Elsevier Service.

Computer Organization and Microprocessors Page 64

3.4. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Computer Organization and Microprocessors Page 65

CHAPTER 4. PROGRAM FLOW, EVENT HANDLING AND CONTROL

Key concepts and Overview

s Overview

% Stack Operations

% Procedure Call and Return Instructions
% Interrupt/exception handling

% Clock and Oscillator

s Timers

% Power Management

% Reset

+ Analog-to-Digital Converter

% Pulse Width Modulation (PWM)

«» Additional Resources

Computer Organization and Microprocessors Page 66

4.1. Overview

As discussed earlier, the CPU executes instructions in a sequential fashion. PICmicro will execute the
instruction in the word (2 bytes) that is pointed to by the Program Counter (PC). Upon completion of the
current instruction, PC is incremented by 2 and executes the next instruction word pointed to by the PC.
There are a number of instructions and events that are designed to move PC to another location other
than PC+2. The following are the most common of these instructions and events:

®,
0.0

7
*

Branch instructions

As seen in earlier chapters, branch instructions redirect the PC to a location in memory other than
(PC + 2). Each branch instruction may test a specific condition. For example: “BC n” will cause the
PC to move to n if the Carry flag is set, otherwise it will continue executing the next instruction word
pointed to by PC+2. Branch instructions are used to develop high-level language “If-then-else”
statements, other conditional statements, and loop constructs.

Procedure Call and Return Instructions

The Call instruction directs the PC to a new location similar to the Branch instructions. Additionally, it
keeps tracks of the original (PC+4) so that it may return to this location after completing a set of
instructions at the new location. The Return instruction is used to return to the location of the
instruction immediately following the Call instruction. The implementation of high-level language
functions and procedures rely on these types of instructions.

Interrupts and exceptions

Interrupts and exceptions are required for implementation of event detection and handling. Exception
refers to a software-initiated interrupt. We will use interrupt to refer to both exceptions and interrupts.
Interrupts may occur at any time during the program execution. Once an Interrupt is detected, the PC
will be changed to point to a pre-determined location in the memory corresponding to the detected
interrupt. The code that starts at this new location is written to handle the interrupt or exception.

Timers

There are situations where the CPU has to wait for a specified amount of time. Although the
processor may be placed in a wait loop by executing NOP instructions, this approach has a number
of disadvantages:

= The actual time has to be experimentally determined since calculations based on instruction
cycle time may be difficult to make.

= In a multiprocessing system, the loop only counts the time allocated to the process executing
the wait loop and not the time used by other processes.

= The processor is not able to perform other tasks while it is in the wait loop.

» Timers solve these issues by allowing the CPU to continue with normal task execution until a
timer timeout interrupt has occurred. The Timer timeout is able to generate a timer interrupt after
a specified time duration which would result in redirecting the PC to a new location in the memory
to execute the code that handles the timed event.

Power managed Modes

Increasingly, most processors have the power management capability in order to save power. The
key feature is the ability to transition from sleep to active mode driven by an external event. For
example: When the user presses a key on a computer, or upon detection of network activity. Using
this functionality, the CPU may be put into a standby or low power mode until it is needed.

Computer Organization and Microprocessors Page 67

4.2. Stack Operations

Stacks are special memory locations used to store return addresses and other information that will need
to be retrieved later. This space is called a stack since one can visualize data being stacked on the top of
each other. There are specific operations for adding and removing words from stack.

STKPTR Special Function Register contains information about the stack status (empty or full) and stack
point as shown below:

Bit 7 Bit 6 Bit5 Bit4
. STKF_UL _ STKUNF . Stac_k Points _1-31 STKPTR
{1: Stack is Full} {1: Stack is Empty} {0 is not valid}

The most common use of stack is for subroutines. When a CALL instruction is executed, the current
value of (PC+4) is added (or “pushed”) on to the stack so that it can be recovered (or “popped”) during a
RETURN instruction. The value recovered by RETURN is used as the location of the next instruction.

Computer Organization and Microprocessors Page 68

«» PUSH Instruction

Adding a word to the stack is called pushing a word onto the stack which is shown below:

Address Code/ Program

2978h PUSH

3494h

3562h

Stack

Below are the specifications for the PUSH instruction:

297Ah

3494h

3562h

Stack after the push

PUSH Push Top of Return Stack
Syntax: [lzbel] PUSH

Operands: Mone

Cperation: (PC+2) =TOS

Status Affect=d: Mone

Encoding: oooo | oooo | oooo 010l
Description: The PC + 2 is pushed onto the top

of the return stack. The previous
TOS value is pushed down on the

stack.

This instruction allows implement-
ing a software stack by modifying
TS and then pushing it onto the

return stack.
Words: 1
Cwicles: 1
2 Cycle Activity:
N 22 Q3 4
Decode Push Mo Mo
PC+2onto | operation operation
return stack
Example: PUSH
Before Instruction
TOS = Ox003454
pC = (0x000124
After Instruction
pC = (0x0001 26
TOS = (0x0001 26
Stack (1 level down) = (OxD03454

Note

e 21-bit value for the content of the top of
stack (TOS) is located at TOSU, TOSH
and TOSL Special Function Registers (Top
Of Stack Upper, High, Low).

e Bits 6 and 7 of STKPTR Special Function
Register indicate whether stack is empty
and full, respectively.

Before attempting to add data to the stack,
it is important to check bit 7 of STKPTR to
ensure that the stack is not full.

Similarly, before attempting to remove data
from the stack, it is important to check bit 6
of STKPTR to ensure that the stack is not
empty.

o Program Counter (PC) is the address of
the next instruction to be executed.

Computer Organization and Microprocessors

Page 69

+ Pop Instruction

The removal operation is called popping a word from the stack which is shown below:

Below is the specification for the pop instruction:

POP

2672h

3494h

3562h

Stack

PP Pop Top of Return Stack
Syntax: [label] POP
Operands: Mone
Cperation: (TOS) — bit buckst
Status Affected: Mone
Encoding: | aaao | oooo | Qoo | 01l0 |
Description: The TOS value is pulled off the
return stack and is discarded. The
TS value then becomes the
previous value that was pushed
onto the return stack,
This instruction is provided to
enablzthe usartoproperly manage
the return stack to incorporate a
softwars stack,
Waords: 1
Cycles: 1
2 Cyele Activity:
21 oz Q3 2
Decode Mo Pop TOS Mo
oparation value operation
Example; EOP
@oTo HEW
Before Instruction
TS = Dx003142
Stack (1 level down) = Ox014232
After Instruction
TOS = OxD143232
PC = MEW

3494h
3562h
Stack after the pop

Note

21-bit value for the content of the top of
stack (TOS) is located at TOSU, TOSH
and TOSL Special Function Registers
(Top Of Stack Upper, High, Low).

Bits 6 and 7 of STKPTR Special
Function Register indicate whether
stack is empty and full, respectively.

Before attempting to add data to the
stack, it is important to check bit 7 of
STKPTR to ensure that the stack is not
full.

Similarly, before attempting to remove
data from the stack, it is important to
check bit 6 of STKPTR to ensure that
the stack is not empty.

Program Counter (PC) is the address of
the next instruction to be executed.

Computer Organization and Microprocessors

Page 70

« Stack Usage
PICmicro has 31 stack levels (Level 1 — 31) which are most commonly used for saving data between
procedure calls or interrupts. In most cases, stack stores the value of key registers or PC locations
that may be needed later.

Stack memory space does not occupy any of the available program or data memory. However, the
designer may decide to use specific memory to extend stack space beyond the 31 levels.

The following diagram depicts an overview of PICmicro stack and user memory space:

[Reset Vector 0000h

High Priority Interrupt Vector 0008h

Low Priority Interrupt Vector 0018h

PC <20:0> On-Chip
21 bits (4 Kbytes)
— — Program Memory
Stack Level 1 OFFFh
1000h
Addressable Memory
(2 Mbytes)
Stack Level 31 Reads ‘0’ if not implemented
\ 1FFFFFh

User Memory Space (2 Mbytes)

» Return Address Stack
The return address stack allows any combination of up to 31 program calls and interrupts to occur
before a RETURN is needed. The Program Counter (PC) for next instruction is pushed onto the
stack when a CALL or RCALL instruction is executed, or an interrupt is acknowledged. The PC
value for next instruction is pulled off the stack on a RETURN, a RETLW or a RETFIE instruction.
PCLATU and PCLATH registers are not affected by any of the RETURN or CALL instructions.

The stack operates as a 31-word by 21-bit memory and a 5-bit stack pointer, with the Stack
Pointer initialized to 00000b after all Resets. There is no memory location is associated with
Stack Pointer, 00000b. This is only a Reset value. During a CALL type instruction, the Stack
Pointer is first incremented, and then the PC value of the next instruction is written to the memory
location pointed to by the Stack Pointer (STKPTR) register.

Computer Organization and Microprocessors Page 71

During a RETURN type instruction, the contents of the memory location pointed to by the Stack
Pointer are written to the PC, and then the Stack Pointer is decremented. RETURN type
instruction causes the contents of the memory location pointed to by the Stack Pointer to be
transferred to the PC followed by Stack Pointer decrement (which is the same as a pop from the
stack). The Stack Pointer is readable and writable, and the address on the top of the stack is
readable and writable through the Top-Of-Stack (TOS) Special File Registers. Data can also be
pushed to or popped from the stack using the TOS Special Function Registers. As mentioned
earlier, the STKPTR register also contains status bits indicating if the stack is full or empty.

» Top-Of-Stack Access
The top of the stack is readable and writable. Three register locations, TOSU, TOSH and TOSL
(Top-Of-Stack Upper, High, and Low), hold the contents of the stack location pointed to by the
STKPTR register as shown below:

Return Address Stack

11111
11110
11101

TOSU TOSH TOSL STKPTR<4:0>

1 A1 [Conl F -
i ‘ aool1l
“ = Top-of-Stack | UU1ASdR Jooolo

JO0ERR Jaoonl
aoooo

Access to top of stack allows users to implement a software stack if necessary. After a CALL,
RCALL or interrupt, the software can read the pushed value by reading the TOSU, TOSH and
TOSL registers. These values can be copied to a user-defined software stack. At return time, the
software can replace TOSU, TOSH and TOSL with the values saved on the software stack, and
then do a return.

The user must disable the global interrupt enable bits while accessing the stack to prevent
inadvertent stack corruption (refer to the interrupt section for more detail).

< Example — Determine the value of TOSU, TOSH and TOSL after the following instruction has been
executed:

Address Instruction
07FEh PUSH

Solution:
Pushed on stack (PC + 2 = 0x800)
TOSU=0x00, TOSH=0x08, TOSL=0x00

< Example — Determine the value of TOSU, TOSH and TOSL after the following instruction has been
executed:

Address Instruction
001890h POP

Solution:
Unknown (insufficient information)

Computer Organization and Microprocessors Page 72

®

+ Example — Determine the value of data memory locations OxFFF, OxFFE and OxFFD after the
execution of:

Address Instruction
0x292 PUSH

Solution:

Computer Organization and Microprocessors Page 73

4.3. Procedure Call and Return Instructions

Procedure call and return instructions are important in a programmer’s ability to create blocks of codes
that could be shared by multiple parts of one program or multiple programs, eliminating the need to
rewrite the same code multiple times. The major benefits of this type of reuse are reduction in code size
and ease of maintenance since any fix only requires change to one code segment.

Procedure call and return instructions have this advantage over Branch and Goto instructions because of
their ability to return the PC to the code immediately following the CALL instruction. Again, the high level
language functions and procedures are implemented using Procedure CALL and RETURN instructions.

PICmicro provides CALL, RCALL, RETURN and RETLW in support of Procedures as described below:

Computer Organization and Microprocessors Page 74

< CALL n,s

CALL Subroutine Call
Syntax; [lzhal] CALL k[s]
Cperands: 0=k= 1048675
g e [01]
Ciperation: (PCI+ 4 = TOS,
bk — PC=20:1=,
fz==1
|:l'.l".l| I — WS,
(Status) — STATLISS,
(BSR) — BSRS
Status Affected: Mone
Encoding:
1at wiord (k=7 0=) 1110 1108 | kskkk | kkkkg

2nd word(k=19:8=)] 1111 |kiskkk

kkkk kkkke

Description: Subroutine call of entire 2-Mbyte
memory range. First, return
address (PC +4) is pushed anto
the return stack. If =" = 1, the W,
Status and BSR registers ar= also
pushed into their respective
shadow registers, W3S, STATUSS
and BSRS. If 's” = ¢, no update
occurs (default). Then, the 200bit
value ‘'l is loaded into PC<20; 1=,
CRLL is a two-oycle instruction.

Words: 2

Cyicles: 2

2 Cwcle Activity:

21 22 o3 24
Decode Fead literal | Push PCto | Read literal
TS stack k'=18:.8=
Write to PC

Mo Mo Mo Mo
operation operation operation operation

Example: HERE CALL, THERE, FAST

Before Instruction
PC = address (HERE)
After Instruction
PC = address (THERE)
TOS = address (HERE + 4)
Ws = W
BSRS = BSR
STATUSS = Status

Computer Organization and Microprocessors

Page 75

% RCALL n

RCALL Relative Call
Syntax: [fabel] RCALL n
Cperands: 1024 =n= 1023
Ciperation: (PCI+ 2 = TOS,
(PCI+2+2n—= PC
Status Affected: None
Encoding: | 1101 | 1nmn | nnnn | nnmnn |
Description: Subrouting callwith a jumpupto 1K
from the current location. First,
return address (PC + 21 is pushed
orto the stack. Then, add the 2's
complemant number 2n' to the PC.
Since the PC will have incremented
to fetch the next instruction, the new
addrass willbe PC + 2 + 2n. This
instruction is a two-cycle instruction.
Words: 1
Cycles: 2
2 Cycle Activity:
1 2 o3 4
Decode Read litaral Process Wirite to PC
n Data
Push PC 1o
stack
Mo M Mo Mo
operation operation operation oparation
LErample: HERE RCALL Jump
Before Instruction
PC = Address (HERE)
After Instruction
PC = Address (Jump)
TOS= Address (HERE + 29

Computer Organization and Microprocessors

Page 76

% RETLW

RETLW Return Literal to W Notes:
Syntax: [fabel] RETLW k .
Operands: 0=k 266
Cperation: ke — W,
(TO=) — PC,
PCLATL, PCLATH are unchanged
Status Affect=d: Mone
Encoding: | a0aon | 1100 | kkkk | kkkk |
Description: W is loaded with the eight-bit literal
k. The program counter is loaded
from the top of the stack (the return
address). The high address latzh
(PCLATH) remains unchanged.
Words: 1
Cyles: 2
3 Cycle Activity:
21 Q2 03 24
Dacoda Read Process Pop PC
literal “k' Data from stack,
Write to W
Mo Mo Mo Mo
operation oparation operation aparation
Exarnple:

CALL TABLE

TAELE
ALDDWEF
RETLW
RETLW

RETLW

PCL

k1

kn

W contains table
ocffset walus

W now has

table walue

W = offset
Bagin table

End of table

Before Instruction

W

= 0€07

After Instruction

W

= wvalua of kn

Computer Organization and Microprocessors

Page 77

% RETURN

RETURN Return from Subroutine

Srioe bl TETORT o] = Example - For the following code segment:

Oipzrands: sc [0,1]

Operation: (TOS) — PC, Address Instruction :
et 52h CALL add_one
(STATUSS) — Status, DECF 0x81
(BSRS) — BSR,
PCLATU, PCLATH are unchanged

Status Affected: Mone

. 75h add_one: INCF 0x81

Encoding: | oooa | 000D | o0ol | oo0ls I

Description: Return from subroutine, The stack
is popped and the top of the stack
is lcaded into the program counter, RETURN

If '='=1, the contents of the shadow
registers, WS, STATUSS and
BSRS, are loaded into their corre-
sponding registers, W, Status and
B=R. If 's = 0, no update of these
registers occurs (default).

a) Are all the shown addresses valid? If not,
what is the next valid address for any invalid

?
Words: ’ address?
Cycles: 2 b) Determine location of instruction “DECF”.
2 Cycle Activity:
a1 o2 Q3 4 c) Determine machine Code for each shown
Dacode Mo Process Pop PC instruction.
operation Data from stack
Mo Na Mo Na d) Determine top of stack value after each
operation operation operation oparation . .
instruction.
Solution:
Example: RETURN
After Interrupt
PC = TOS

Computer Organization and Microprocessors Page 78

« Example - Function CALL and Return
a) Write an assembly code function “diff’ that subtracts two 8-bit operands and returns the result.
b) Write the equivalent machine code.
c) Call Diff from location 0x128 when Top of Stack (TOS) is set to 0x1232. Show value of PC and
TOS immediately before CALL, before Return, and after Return.

Solution:
a) diff function

op1 equ 0x80

op2 equ 0x81

result equ 0x82

org 0x200

; diff function returns result=op1 — op2
diff: MOVF op2, W

SUBWF op1, W
MOVWF result
RETURN 1

b)

Computer Organization and Microprocessors Page 79

4.4, Interrupt/exception handling

As discussed earlier, interrupts are required for event detection and handling. Interrupts may occur at
anytime. When they do, the location of the next instruction is pushed onto the stack, and thePC is
changed to point to a pre-determined location in the memory. The code that starts at this new location is
written to handle the interrupt or exception.

PICmicro handles interrupts from multiple sources. Additionally, the ability to assign interrupt priority
enables the designer to assign a low or high priority to each interrupt source. The high priority interrupt
events can override any low priority interrupts that may be in progress. The high priority interrupt vector is
at 000008h program memory location, and the low priority interrupt vector is at 000018h program memory
location. Interrupt vector is the location that PC will be set to after an interrupt has occurred and has
been acknowledged.

The following four SFR registers are used to control interrupt operations (there are another six SFR
registers that will be discussed later):

+» RCON Register
Bit 7 Bit0

IPEN _ _ Rl TO PD’ POR’ BOR’ RCON

it 7 IPEMN: Interrupt Priority Enable bit

1 = Enable pricrity levels on interrupts
a = Disable priority levels on interrupts (PIC16C 22024 Compatibility mode)

bit -5 Unimplemented: Read as ‘o
bt 4 Rl: rE=SET Instruction Flag bit

1 = The RESET instruction was not executed (st by firmwarne only)
0 = The RESET instruction was executed causing a device Reset
(must be set in software after a Brown-out Reset occurs)
it 3 TO: Watchdog Time-out Flag bit
1= Set by power-up, CLEWDT instruction or SLEEP instruction
o= AWDT time-out ocourred
bit 2 PD: Power-down Detection Flag bit

1 = Set by power-up or by the CLEWDT instruction

0 = Cleared by execution of the sLEEP instruction
bit 1 ﬁ: Power-on Reset Status bit

1= A Power-on Reset has not occurred (set by firmware only)

0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bitd BOR:Brown-out Reset Status bit

1 = A Brown-out Reset has not occurred (set by firmware only)
a = A Brown-out Reset occurred (must be setin software after a Brown-out Reset ocours)

Computer Organization and Microprocessors Page 80

« INTCON Register

Bit7 Bit0
GIE/ PEIE/ TMRO INTO RBIE TMRO INTO RB
GIEH GIEL IE IE IF IF IF

bit 7 GIE/GIEH: Global Interrupt Enable bit

When IPEM = o
1 = Enables all unmasked interrupts
0 = Disables all interrupts
i —
1 = Enablzs all high pricrity interrupts
0 = Disables all interrupts
kit & PEIE/GIEL: Peripheral Internupt Enable kit
(il -
1 = Enables all unmasked peripheral interrupts
0 = Disables all peripheral interrupts
[Tl -1
1 = Enablzs all low priority peripheral interrupts
0 = Disables all low priority peripheral interrupts
bit & TMROIE: TMRO Owverflow Interrupt Enable bit
1 = Enables the TMRO overflow interrugt
0 = Disables the TMRO overflow interrupt
bit 4 INTOIE: INTO External Interrupt Enable bit
1 = Enables the INTO external interrupt
0 = Disables the IMTO external interrupt
bit 2 RBIE: BEE Fort Change Interrupt Enable bit
1 = Enables the RE port change interrupt
0 = Disables the BB port change interrupt
kit 2 TMROUIF: TMRO Cwerflow Interrupt Flag bit
1 = TMRO register has overflowed (must be cleared in softwars)
0 = TMRO register did not overflow
bit 1 INTOIF: IMNTO External Interrupt Flag bit
1 = The INTO external interrupt occurred (must be cleared in software)
a0 = The INTO external interrupt did not ocour
kit O REBIF: RE Fort Change Interrupt Flag bit

1 = At least one of the RE7:RE4 pins changed state {must be cleared in software)

0 = Mone of the RB7:RE4 pins have changed state

INTCON

Mote: A mismatch condition will continue to set this bit. Reading PORTE will end the

mismatch condition and allow the bit o be clearad,

Computer Organization and Microprocessors

Page 81

« INTCON2 Register

Bit7 Bit0
RBPU’ INTE INTE INTE TMRO RBIP
DGO DG1 DG2 IP INTCON2
bit 7 RBPU: FORTE FPull-up Enable kit
1= All PORTE pull-ups are disakbled
a= PORTE pull-ups are enabled by individual port latch values
bit & INTEDGO: External Interrupt 0 Edge Select bit
1 = Interrupt on rising edge
a = Interrupt on falling edge
bit 5 INTEDG1: External Interrupt 1 Edge Select bit
1 = Interrupt on rising edge
a = Interrupt on falling edge
kit 4 INTEDG2: External Interrupt 2 Edge Selact bit
1 = Interrupt on rising edge
a = Interrupt on falling edge
bit 2 Unimplemented: Read as ‘o
bit 2 TMROIP: TMED Overflow Interrupt Priority bit
1 = High priority
0 = Low priorty
kit 1 Unimplementaed: Read as ‘o
bit O RBIP: EE Fort Change Interrupt Pricrity bit
1 = High pricrity
0 = Low prionty
Computer Organization and Microprocessors Page 82

% INTCON3

Bit 7 Bit0
INT2 INT1 _ INT2 INT1 _ INT2 INT1 INTCON3
P P IE IE IF IF

bit 7 INT2IP: IMNTZ External Interrupt Pricrity bit
1 = High pricrity
a = Low priority
bit & INTHIP: INT1 External Interrupt Pricrity bit
1 = High priarity
o= Low priority
bit & Unimplemented: Read as ‘o
bit 4 INTZ2IE: INTZ External Interrupt Enabile bit
1 = Enables the INTZ external interrupt
a = Disables the IMT2 external interrupt
bit 2 INTHIE: INT1 External Interrupt Enabile bit
1 = Enablas the INT1 external interrupt
a = Disables the IMT1 external interrupt
bit 2 Unimplemented: Read as ‘o
bit 1 INT2IF: INTZ External Interrupt Flag bit
1 = The INTZ external interrupt occurred (must be cleared in software)
a = The INTZ external interrupt did not occur
bit O INTHIF: INT1 External Interrupt Flag bit

1= The INT1 external interrupt oceurred (must be cleared in software)
a= The INT1 external interrupt did not ocour

It is also recommended that the Microchip header files supplied with MPLAB® IDE be used for the
symbolic bit names in these and other registers. This allows the assembler/compiler to automatically take
care of the placement of these bits within the specified register. For Assembly code, use the following
statement at the top of your assembly code to include all SFR addresses and bit names as specified in
the appendix:

include p18f1220.inc

There are three external interrupts available on PICmicro (INTO-Pin 8, INT1-Pin9 and INT2-Pin 17 on the
PDIP package), three timers capable of generating interrupt and others to be discussed in the future.

Below is an example of connecting interrupt INTO to Event Signal. Anytime Event Signal goes from low to
high, a high priority interrupt is caused and PC is set to 000008h.

Computer Organization and Microprocessors Page 83

PICmicro

INTO Event Signal

Event Signal |

X

PC = “Any Value” PC =000008h

In general, each interrupt source has three bits to control its operation. The functions of these bits are:
» Flag bit to indicate that an interrupt event occurred.

> Enable bit that allows program execution to branch to the interrupt vector address when the flag
bit is set.

> Priority bit to select high priority or low priority (INTO has no priority bit and is always high priority)

The following 6 registers are used to configure Interrupt Enable, Flag and Priority:

“ IPR1, PIE1, PIR1

Bit 7 Bit0

_ ADIP | RCIP | TXIP _ CCP1 | TMR2 | TMR1 | |pR1
P P P

_ ADIE | RCIE | TXIE _ CCP1 | TMR2 | TMR1 | piE1
IE IE IE

_ ADIF | RCIF | TXIF _ CCP1 | TMR2 | TMR1 | p|r1
IF IF IF

% IPR2, PIE2, PIR2

Bit 7 Bit0

OSCF . L EEIP . LVD | TMR3 | pr2
P P P

OSCF . L EEIE L LVD | TMR3 | P2
IE IE IE

OSCF . . EEIF . LVD | TMR3 | pR2
IF IF IF

The interrupt priority feature is enabled by setting the IPEN bit (RCON<7>). When interrupt priority is
enabled, there are two bits which enable interrupts globally. Setting the GIEH bit (INTCON<7>) enables
all interrupts that have the priority bit set (high priority). Setting the GIEL bit (INTCON<6>) enables all
interrupts that have the priority bit cleared (low priority). When the interrupt flag, enable bit and
appropriate global interrupt enable bit are set, the interrupt will vector immediately to address 000008h or
000018h, depending on the priority bit setting. Individual interrupts can be disabled through their
corresponding enable bits.

Computer Organization and Microprocessors Page 84

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are
compatible with PICmicro mid-range devices. In Compatibility mode, the interrupt priority bits for each
source have no effect. INTCON<6> is the PEIE bit, which enables/disables all peripheral interrupt
sources. INTCON<7> is the GIE bit, which enables/disables all interrupt sources. All interrupts branch to
address 000008h in Compatibility mode.

When an interrupt is responded to, the global interrupt enable bit is cleared to disable further interrupts. If
the IPEN bit is cleared, this is the GIE bit. If interrupt priority levels are used, this will be either the GIEH
or GIEL bit. High priority interrupt sources can interrupt a low priority interrupt. Low priority interrupts are
not processed while high priority interrupts are in progress.

The return address is pushed onto the stack and the PC is loaded with the interrupt vector address
(000008h or 000018h). Once in the Interrupt Service Routine, the source(s) of the interrupt can be
determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before re-
enabling interrupts to avoid recursive interrupts.

The “return from interrupt” instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or
GIEL, if priority levels are used), which re-enables interrupts.

For external interrupt events, such as the INT pins or the PORTB input change interrupt, the interrupt
latency will be three to four instruction cycles. The exact latency is the same for one or two-cycle
instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding enable bit
or the GIE bit.

Note: Do not use the MOVFF instruction to modify any of the interrupt control registers while any interrupt
is enabled. Doing so may cause erratic microcontroller behavior.

Computer Organization and Microprocessors Page 85

+« Returning from interrupt handling code

At the time of interrupt, the value PC+2 (pointer to the next instruction) is pushed on the stack. Once
the interrupt handling code has finished, it can return to the instruction the program was at before the
interrupt occurred by popping the stack and using the top of stack value as the PC.

The instruction RETFIE, when executed, will automatically enable all interrupts and return the
program back to the location of the next instruction before the interrupt.

‘0

% RETFIE Instruction

RETFIE Return from Interrupt
Synitax: [label] RETFIE [s]
Cperands: se [0,1]
Cperation: (Tos) — PC,
1 — GIE/GIEH or PEIE/GIEL,
fe=1
|:IIJFIJIS:| — I\."l.".
(STATUISS) — Status,
(BSRS) — BSR,

PCLATLU, PCLATH are unchanged.

Status Affected: GIE/GIEH, PEIE/GIEL.

Encoding: | aaqao I LW | o0l I nons |

Description: Return from intemrupt. Stack is

popped and Top-of-Stack (TOS) is

loaded into the PC. Interrupts are
enabled by setting sither the high
or low priority global intemrupt

enable bit. If 's" = 1, the contents of

the shadow registers, Ws,
STATUSS and BERS, are loaded
into their cores ponding registers,
W, Status and BSE. If 5" = a, no
update of these registers ooours

Notes:

Example — High priority interrupt and return
code.

Solution:

Address Content

0x008 MVLW 23

0x00A ADDWF 0x90, 1,0
0x00C CLRF 0x89

0x00E RETFIE

0x126 MVLW 23
0x128 ADDWEF 0x90, 1,0
0x12A CLRF 0x89

A high Priority Interrupt occurs
when instruction at location 0x128
is being executed, so PC+2 is
equal to 0x12A.

(default).
Words: 1
Cycles: 2
0 Cyecle Activity: STKPTR<4:0> —»p 0x12A
Q1 02 03 04 “Value of PC before
Decoda Mo Mo Pop PC interrupt”
oparation operation | from stack
Set GIEH or
GIEL STACK
Mo Mo Mo [la]
operation oparafion operation oparation
Example: RETFIE 1
After Interrupt
PC = TOS
W = WS
BSR = BSRS
Status = STATUSE
GIE/GIEH, PEIE/GIEL = 1
Computer Organization and Microprocessors Page 86

7
*

% Example — Event Handling using Interrupts

Write an interrupt handling code to implement a 3-way intersection traffic light controller. Inputs are
Lane A (highest priority), Lane B, and Lane C (lowest priority) where “1” indicates presence of a car in
the lane... Set Wreg to ASCII A (0x41), ASCII B (0x42) or ASCII C (0x43) indicating the highest

Priority Lane that is occupied.
Solutions:

Partial Schematic

PIC 18F1220
Lane A —8 IntO0
Lane B —9 Int 1
Lane C —17 Int 2

Flow Chart for Reset, Int0, Int 1 and Int 2 handling

Low Priority Interrupt
Location: 0x18

High Priority Interrupt
Location: 0x08

Reset
Location: 0x00

v
Initialize: WREG € 0x41
WREG € 0x00 Clear flag l
Set bit 7 of RCON
Set bits 7,6,4 of INTCON ¢ WREG < 0x42 No

Set bits 4,5,6 of INTCON2
Set bits 3,4 of INTCON3 WREG < 0x43

»
»

Clear flag

v
Clear flag ¢

l

Computer Organization and Microprocessors Page 87

Sample code for Reset, Int0, Int 1 and Int 2 handling
Refer to Lab documentation.

Computer Organization and Microprocessors Page 88

4.5. Clock and Oscillator

PICmicro is much more flexible than typical microprocessors when it comes to selecting the system clock.
It provides over 10 different options. Most processors have a range of speed, and an external oscillator
will be required for proper operation and generation of system Clock. PICmicro allows for external crystal,
RC or internal oscillators.

PICmicro’s internal oscillator block can generate two different clock signals; either one can be used as the
system clock.

The main output (INTOSC) is an 8 MHz clock source, which can be used to directly drive the system
clock. It also drives a post scalar, which can provide a range of clock frequencies from 125 kHz to 4 MHz.
The INTOSC output is enabled when a system clock frequency from 125 kHz to 8 MHz is selected.

The other clock source is the internal RC oscillator (INTRC), which provides a 31 kHz output. The INTRC
oscillator is enabled by selecting the internal oscillator block as the system clock source, or when one of
the following is enabled: Power-up Timer, Fail-Safe Clock Monitor, Timer or Two-Speed Start-up.

< INTIO Modes
Using the internal oscillator as the clock source can eliminate the need for up to two external
oscillator pins, which can then be used for digital I/O. Two distinct configurations are available:

» In INTIO1 mode (Default Setting), the OSC2 pin outputs FOSC/4, while OSC1 functions as RA7
for digital input and output.

» In INTIO2 mode, OSC1 functions as RA7 and OSC2 functions as RAG, both for digital input and
output.

Default oscillator setting, INTIO1 mode, will be assumed throughout the remainder of this document.
In this mode, the internal oscillator is used as the system clock. Additionally, the clock (FOSC/4) is
accessible via OSC2 pin (pin# 15 on PDIP package). It is important to note that this pin will not be
available for other uses such as RA6.

Another point to consider is that each instruction cycle is made up of 4 system clock or Oscillator
cycles (Tosc) as shown below:

< Instruction Cycle >
< Q1 R Q2 » < Q3 > < Q4 >

As discussed earlier, the internal clock frequency is set at 31 kHz which means each clock period is
Tosc = 1/f = 32 ysec. Therefore, an instruction cycle is 4*Tosc = 128 usec.

Computer Organization and Microprocessors Page 89

«» OSCCON Register
This SFR register is used to configure the oscillator and the system clock.

RAN-0 RAN-O RAV-0 RAN-O R R-0 RAN-0 RAN-O
[DLEM IRCF2 IRCFA IRCFO OsTs [OFS 5051 3CE0
bit ¥ bit 0

bit 7 IDLEN: Idle Enable bits

1 = |dle mode enabled; CPU core is not clocked in power managed modes
a = Run mode enabled; CPLU core is clocked in Bun modes, but not Sleep modea

bit -4 IRCF2:IRCFOQ: Internal Oscillator Frequency Select bits
111 =8 MHz (8 MHz source drives clock directly)

110 =4 MHz
101 =2MHz
100 =1MHz
011 =500 kHz
a1o =260 kHz
001 =125 kHz

aao =21 kKHz (INTRC source drives clock directly)

bit 3 QS5TS: Oscillator Start-up Time-out Status bit
1 = Oacillator Start-up Timer time-out has expired; primany oscillator is running
0 = Oscillator Start-up Timer time-out is running; primary oscillator is not ready
bit 2 IOFS: INTOSC Frequency Stable bit
1= INTOSC frequency is stable
0= INTOSC frequency is not stable
bit 1-0 SCS1:5CS0: Bystem Clock Select bits
1x = Internal oscillator block (RC modes)

a1l = Timer1 oscillator {Secondary modes)
a0 = Primary oscillator (Sleep and PRI_IDLE modes)

®,

« Example - PIC micro is running with a 32 psec internal clock. How long would it take to execute “Call
Delay”? Given:

Delay:
CLRF Wreg
intL: INCF Wreg
BNZ intL
RETURN

Solution:

Computer Organization and Microprocessors Page 90

®,

« Example - PIC micro is running with a 32 psec internal clock. How long would it take to execute the
following function?

Delay: MOVLW 0x00
MOVWF 0x80
Loop: MOVFF PORTB, PORTA

NOP

INCF 0x80
BNC Loop
RETURN

Solution:

Computer Organization and Microprocessors Page 91

4.6. Timers

Timers allow the designer to set a duration which, at its end, the timer will set a flag and cause an
interrupt if configured. PICmicro has four timer modules (Timer0 through timer3). Each with a set of
unique features which are outlined in the next few pages.

Timers may be configured to generate either low or high priority interrupt. In general, configuring a timer
is a three-step process:

1) Configure the interrupt registers
2) Set the value of Timer’s Low and High registers
3) Configure the timer control registered.

The following pages outline each timer module and associated registers.

Computer Organization and Microprocessors Page 92

o

«» Timer 0 Module

Timer 0 may be set to 8-bit or 16-bit mode. In 8-bit mode, interrupt is generated on overflow from
FFh to 00h. In 16-bit mode, interrupt is generated on overflow from FFFFh to 0000h.

TOCON register controls all aspects of Timer0. TOCON is readable and writable.

bit 7

bit &

bit &

bit 4

bit 3

bit 2-

0

|'.|Jr||||' 1

WL

|'.|Jr|||| - 1

R/ 1

RIW-1

A1

RAW-1 -1

[TMROON | T0SBIT |

T0CS |

TOSE

P=A

| ToPsz2 | ToPS1 | TOPSO

kit 7

TMROON: TimerD OnfOff Contral bit
1 = Enables Timerd
o = Stops Timer(
TOBBIT: Tirmer(8-bit/16-bit Contral bit
1 = Timer0 is configurad as an 8-bit time rlcounter
o = Timer0 is configurad as a 16-bit time rlcounter
TOCS: TimerD Clock Source Select bit

1 = Transition on TOCK! pin

o = Internal instruction cycle clozk (CLKO)
TOSE: Timerl Source Edoe Selact bit

1 = Increment on high-to-low transition on TOCK] pin
o = Increment on low-to-high transition on TOCK] pin

PSA: Timerl Prescaler Assianment bit

1 = TlmerQ prescaler is NOT assigned. Timer) clock input bypasses prescaler.
o = Timer0 prescaler is assigned. Timer0 clock input comes from prescaler out put.

TOPS2:TOPS(: Timer(Prescaler Select bits

Prescale value
Prescale value
Prescale value
Prescale value
Prescale value
Prescale value
Prescale value
Prescale value

kit O

111 = 1:256
110 = 1:128
101 = 1:64
100 =122
o011 =116
o010 =18
ool = 1:4
ooo =1:2
Lagend:

R = Readable hit
-n = Value at POR

W = Writable bit

1" =Bitis set

LI = Unimplemented bit, read as 0

" =Bitis cleared

¥ = Bit is unknown

Timer0 Block Diagram in 8-bit:

RALTOCK]

pin

Mote:

Fos=cid

D_ :

TOSE

TOPSZ, TOPS1, TOPS0

TOCS

Programmable
Prescaler

3

PSA

Sync with
Internal
Clocks

(2 Toy Didlay)

Diata Bus
3
TMRO
Set Intarrupt
Flag bit TMROIF
on Crearflow

Upon Rasat, TimerD is enablad in 8-bit mode with clock input from TOCKI maximum prascalea.

Computer Organization and Microprocessors

Page 93

« Example - In a PICmirco system, TIMERQO is set to 8-bit mode with pre-scale 1:256 using internal RC
clock. What values of TOCON, TMROL & TMROH results in approximately one second to next TIMER
0 interrupt?
Solution:
TOCON =*“110x 0111”7
Time/Count = 32 psec/ Tosc X 4 cycle/Tins X 256 = 32,768 psec
counts for one second = 1,000,000 psec / 32,768 psec = 30.5 - 31 counts

TMROL = (256 — 31) = 225 - “1110 0001”

TMROH 2> “XXXX XXXX”

» Extension — How would the value of TOCON and TMRO change if we want to use TIMER 0 in 16-
bit mode.
Solutions:

+ Example — In a PICmicro system, register TOCON is set to 0x92, TMROH is set to OxFF and TMROL
is set to OxFO. How long in seconds before Timer 0 interrupt occurs?

Solution:
Enable Enable
TMRO\ Scaler
A ™
TOCON 17001 0010
——
—
Internal 1:8
RC clock '

Timer is set to “OxFFFQ0” - 16 count to interrupt

Which means that the values of high timer 0 register (TMROH) is set to OxFF and low timer O register
(TMROL) is set to OxFO.

Each Count = 32 psec/Tosc X 4 cycle/Tins X 8 = 1024 psec.

Duration to next interrupt = 16 count x 1,024 usec / count = 16,384 psec. = 0.016384 seconds

Computer Organization and Microprocessors Page 94

« Example —Given that TOCON is set to “0x87”, how long does it take to increment TMRO by 1 (a single
tick) and what value should be loaded in TMROL and TMROH if interrupt is expected in 640 msec?

Solutions:

% Given that Timer0 is enabled and TOCON is set to “10010100”, TMROL is set to “10000000” and
TMROH is set to “11110000”, Find:
a) How long does each tick (TMROL increment) takes in seconds?
b) How many ticks before TMRO interrupts?
¢) How many seconds before TMRO Interrupt?

Computer Organization and Microprocessors Page 95

% Timer 1 Module
Timer1 is a 16-bit timer/count using two 8-bit registers (TMR1H and TMR1L). Both registers are
readable and writable.

T1CON register controls all aspects of Timer1. T1CON is readable and writable.

RW-0 R0 RMW-0 -0 RIW-0 M0 RMW-O RMW-0
[Ro1e | T1RuN [T1ckPst | T1ckPso | T1oscen | TTSYRC | TaR1cs | TMR1ON
bit 7 bit 0

bit 7 RD16: 16-bit Read/\Write Mode Enable bit
1 = Enables reqister readarite of Tlmer! in one 16-bit operation
o = Enables reqister readarite of Timerl in teo 8-bit operations
hit & TIRUN: Timer1 System Clock Status bit
1= System clock is derived from Timerl oscillator
o = System clock is derived from another sourcs
hit 5-4 T1CKPS1:T1CKPS0: Timerl Input Clock Prescale Selzct bits
11 = 1:8 Prescale value
10 = 1:4 Prescale value
01 = 1:2 Prescale value
oo = 1:1 Prescale value
bit 3 T1OSCEN: Timer1 Oscillator Enable bit
1= Timer1 oscillator is enablad
o= Timer1 oscillator is shut off
The oscillator inverter and feedback resistor are turned off to eliminate power drain.
bit 2 TISYNC: Timerl External Clock Input Synchronization Select bit
When TME1CS = 1.
1 = Do not synchronize external clock input
o = Synchronize external clock input
When THE1CS = o
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.
bit 1 TMRACS: Timer1 Clock Source Selact bit
1 = External clock from pin REG/PGCT1OST 13CKIP1C/KEIZ (on the rising edas)
o = Internal clock (Foscid)
bit 0 TMRA10M: Timer! On kit

1= Enables Timer1
o= Stops Timer1

Timer1 Block Diagram:

TMR1IF CCP Special Event Trigger

ﬁ*.-tgrrrfll-::l;.r TMRE1 | . Synechronized

Flag bit | CLR Clock Input
TMRIH | TMRIL —(_.I

TMR1OM
On/Of TIEYHC

I v 0
T13CKIT1O0S0 H T1DSCEM Proscaler Synchronize
Enable I (1,2, 4 8 t
Tiosl Oscillator 1 [0S0 } JI?B
Clack z Peripharal Clocks
T1CKPS1:T1CKPS0
TMR1CS

Computer Organization and Microprocessors Page 96

o

% Timer 2 Module

Timer 2 can be used as the Pulse Width Modulator (PWM) time base in the PWM mode of the CCP
module. The TMR2 register is readable and writable and is cleared by any device Reset. The input
clock (FOSC/4) has pre-scale options of 1:1, 1:4 or 1:16, selected by control bits,
T2CKPS1:T2CKPSO0 (T2CON<1:0>). Additionally, there are post scalar options of 1:1 to 1:16
selected by bits, TOUTPS3: TOUTPSO0 (T2CON<6:3>), that are applied to input clock in order to
increment TMR2 register content. Once TMR2 register reaches its maximum count, a Timer 2
interrupt (latched in flag bit, TMR2IF (PIR1<1>)) is generated..

The pre-scalar and post-scalar counters are cleared when any of the following occurs:

= A write to the TMR2 register

= A write to the T2CON register

= Any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out
Reset)

TMR2 is not cleared when T2CON is written. T2CON is the Timer2 Control Register and is
described below:

I_I'I:I |'.IJ'|JI'I:I H-'IINI‘\LI:I H-'IINI‘J'I:I H-'llil‘ir'O |'.IJ'|JI'I:I |"\I~\|I' I:I |'.IJ'|JI-I:I
| — | TOUTPS2 | TOUTPSZ | TOUTPST | TOUTPSO | TMR2OM | T2CKPS1 | T2CKPS0 |
bit 7 bit O
hit 7 Unimplemanted: Read as ‘0’

hit 6-3 TOUTPSZ:TOUTPSD: Timer? Output Postscale Select bits

o00a =1:1 Postscale
oool =1:2 Postscale

*®
*®

1111 = 1:1& Postscale
bit 2 TMR2CMN: TimerZ Cn bit
1= Timer? is on
0= Timer? is off
bit 1-0 T2ZCKPS1:T2ZCKPS0: Timer? Clock Prescale Select bits

00 = Prescaler is 1
01 = Prescaler is 4
1x = Prescaler is 16
« Example — Timers
T2CON is set to 45 hex. and is using internal RC clock.

a) How long does it take for a single timer tick, or to increment TMR2 by 1?
b) What value TMR2 (Low & High bytes) will cause Timer 2 interrupt after 60 msec?

Solution:

Computer Organization and Microprocessors Page 97

o

«» Timer 3 Module

Timer3 is a 16-bit timer/counter using two 8-bit registers (TMR3H and TMR3L). Both registers are

readable and writable.

Timer3 can operate in one of these modes:
= Asatimer
= As a synchronous counter
= As an asynchronous counter

The operating mode is determined by the clock select bit, TMR3CS (T3CON<1>).

When TMR3CS = 0, Timer3 increments every instruction cycle. When TMR3CS = 1, Timer3
increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if

enabled.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RB7/PGD/T10SI/P1D/KBI3 and
RB6/PGC/ T10SO/T13CKI/P1C/KBI2 pins become inputs. That is, the TRISB7:TRISB6 value is

ignored and the pins are read as ‘0’.

Below is a block diagram of Timer3:

TMR2IF
Crvarflow
Intarrupt
Flag bit CLR
TMR3H TMR3L
| o
T10S0/ T105C

T13CKI

T10OSCEN
Enabla

Internal
+ Oscillator!) Gjack

CCP Special Event Trigger
TACCPx

Synchronized
0| Clock Input
I E—
CniOf
| Prascaler Synchronize
1,2,4, _F det
2
TMR3CS Paripharal Clocks

TICKPS1:TICKPSO

Computer Organization and Microprocessors

Page 98

T3CON register controls all aspects of Timer3. T3CON is readable and writable.

RW-0 U0 RW-0 RW-0 RW-O RMWO RMWO RW-0
[Ro1e | — | Tackpst | Tackpso | Taccpt | T3sYRC | TMRacs | TMRaoN
bit 7 bit 0

bit 7 RO16: 16-bit ReadiVrite Mode Enable bit

1 = Enables register readiwrite of Timer3 in one 16-bit operation
0 = Enables reqister readiwrite of Timer3 in two 8-bit operations

bit & Unimplemented: Read as ‘0’

bit 54 TICKPS1:TICKPSO: Timer3 Input Clock Prescale Select bits
11 = 1:8 Prescale value
10 =14 Prescale valus
01 = 1:2 Prescale value
a0 = 1:1 Prescale value
bit 3 TICCP1: Timer? and Timerl to CCP1 Enable bits
1 =Timer3 is the clock source for compare/capture CCP module
0 =Timer! is the clock source for compare/capture CCP moduls
bit 2 TASYMNC: Timer2 External Clock Input Synchronization Control bit
(Mot usable if the system clock comes from Timer 1/Timer3.)
When TMR2CS =1:
1 = Do not synchronize external clock input
0 = Synchronize external clock input
I”hﬁl] :I'lEj E = i
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.
bit 1 TMR3ICS: Timer? Clock Source Select bit
1 = Esternal clock input from Timer! oscillator or T13CKI
{on the rising edge after the first falling edge)
0 = Internal clock (Fosc/d)
bit O TMR3ION: Timer3 COn bit
1 = Enables Timer3
0 = Stops Timer3

Computer Organization and Microprocessors Page 99

o

« Other Timer Related Registers

Other Registers that affect the performance of Timers are shown below (See Interrupt Section for

more detail):
Value on
Name | Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 FE'.";_'EE“;‘R all other
Resots
INTCOMN] GIE/GIEH [PEIE/GIEL] TMROEE | INTOIE REIE | TMROIF | INTOIF | RBIF |oooo coox
PIR1T — ADIF RCIF TXIF — CCP1IF | TMR2IF | TMR1IE |-oa0 -ooo
PIE1 — ADIE RCIE TXIE — CCP1IE | TMR2IE | TMR1IE |-n00 -coo
IPR1 — ADIP RCIP THIP — CCP1IP | TMR2IP | TMR1IP [-111 -111
TMREZ | Timer2 Module Register oooa oooo | oooo
12con | — | Toutesa |Toutesz|TouTest [TouTPso| TmMRzoM | T2CKPS1 | T2CKPS0 | 000 oooo
PRz Timar2 Period Ragister 1111 1111)1111 1111

Lagend:

7

= = unknown, u = unchanged, — = unimplamanted, read as “o'. Shaded calls are not used by the Timer2 module.

« Example — Timers

Use Timer 0 to flash an LED once every 2 seconds (1 second on, 1 second off).

Solution:

« Example — Timers

Write pseudo code and assembly code to set up Timer 0 to interrupt after 256 msec & upon interrupt,
set Wreg to 35 and disable timers. (set Timer 0 for highest possible precision).

Solution:

Computer Organization and Microprocessors

Page 100

4.7. Power Management

In addition to normal operation, PICmicro, like most of today’s processors, has low-power modes to save
power. Below are the three categories of power management:

= Sleep mode
= |dle modes
= Run modes

Each of these modes disables or reduces the clock speed for a given portion of the processor circuits in
order to reduce power. The Run and Idle modes may use any of the three available clock sources
(primary, secondary or INTOSC multiplexer); the Sleep mode does not use a clock source.

Computer Organization and Microprocessors Page 101

4.8. Reset

Reset is required to start the processor into a known state. You can use the hardware or software reset to
return the processor to a known state. PICmicro handles resets from various sources which are listed
below:

Power-on Reset (POR)

MCLR Reset during normal operation

MCLR Reset during Sleep

Watchdog Timer (WDT) Reset (during execution)
Programmable Brown-out Reset (BOR)

RESET Instruction

Stack Full Reset

Stack Underflow Reset

Most registers are unaffected by a Reset which means the status of registers are unknown during Power
On Reset (POR). Therefore, it is important to initialize registers during the reset handling section of the
start up to ensure known starting values. Some registers are forced to a “Reset state”, depending on the
type of Reset that occurred.

Computer Organization and Microprocessors Page 102

4.9. Analog-to-Digital Converter

PICmicro has one 10-bit Analog-to-Digital (A/D) converter (ADC) module. The ADC will accept an analog
input signal and convert the value of the input signal voltage to a 10-bit number. This functionality allows
the user to relate analog signal to a digital value. The following figure is a graphical representation of the
ADC operation:

/ANO Channel 0

AN1
External Pin that | AN2
may be used for< AN3
the analog input | AN4

AN5
\AN6 Channel 6

A/D Convertor b0

(ADC) Module 10 bit digital value

corresponding to
the analog input

bg | signal.

Notice that there is only one ADC, but the user may acquire an analog input signal from one of seven
different pins (ANO through ANG).

PICmicro ADC has a programmable acquisition time which means that the amount of time required to
convert from analog to digital value can be changed.

GO/DONE bit (bit 1 of ADCONO) is used to indicate whether ADC is in the process of conversion or it has
completed the conversion. So the user has to wait until the conversion is completed as indicated by
GO/DONE before reading the value of the results.

The ADC module is controlled and monitored through five SFR registers as shown below:

» A/D Result High Register (ADRESH) & A/D Result Low Register (ADRESL)
Hold the value resulting from the A/D conversion.

A/D Result High Register (ADRESH) A/D Result Low Register (ADRESL)
b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0
S—_ i _
10-bit A/D Result Value 10-bit A/D Result Value
When Left Justified When Right Justified

Note that the contents of ADRESH/ADRESL registers are not modified during Power-on Reset
which means the contents of ADRESH and ADRESL are unknown after a Power-on Reset. The
user has to ensure that an acquisition has been completed before reading the contents of these
registers.

» A/D Control Register 0 (ADCONO)
ADCONO controls the operation of the A/D module.

» A/D Control Register 1 (ADCON1)
ADCON1 configures the functions of the external port pins.

» A/D Control Register 2 (ADCON2)
ADCON?2 configures the A/D clock source, programmed acquisition time and justification.

Computer Organization and Microprocessors Page 103

The following pages offer more detailed descriptions of the three control registers:

®
0.0

ADCONO “A/D Control Register 0”

bit 7-6

bit 1

bit O

RAW-0 RAN-0 u-o RAW-0 RANV-0 RAW-0 RAN-0 RANV-0
WVCFGA VCFGO — CHS2 CHSA CHS0 GO/DONE | ADON
bit 7 bit O

VCFG<1:0=: Voltage Reference Configuration bits

A/D VREF+ A/D VREF-
0o ANDD AWss
0l External VREF+ AWEE
10 AVDD External WREF-
11 External VREF+ External WREF-

Unimplemented: Read as ‘0’
CHS2:CHSO: Analog Channel Selact bits
000 = Channel 0 {AND)

001 = Channel 1 {AN1)

010 = Channel 2 {AN2)

011 = Channel 2 {AN3)

100 = Channel 4 {AN4)

101 = Channel 5 (AM5)

110 = Channel G (ANE)

111 = Unimplemented!)

GO/DONE: A/D Conversion Status bit
When ADOM = 1;

1 = A/D conversion in progress
0=A/D Ildle

ADON: A/D On bit

1 = A/D converter module is enabled
0 = A/D converter module is disabled

Note 1: Performing a conversion on unimplementad channels returns full-scale results.

Legend:
R = Readable bit W = Writable bit
-n =Valuz at POR ‘1" = Bit is set

L = Unimplemented bit, read as ‘0’

0" = Bitis cleared

¥ = Bit is unknown

Computer Organization and Microprocessors

Page 104

«» ADCON1 “A/D Control Register 1”

U-0 RAW-0 RAN-0 RO RAN-0 RAN-0 RAN-0 RAV-0
— PCFGH PCFG5 PCFG4 PCFG3 | PCFG2 | PCFG1 PCFGO
bit 7 bit O
bit 7 Unimplemented: Read as ‘¢’
bit 6 PCFG6&: A/D Port Configuration bit — ANG
1 = Pin configured as a digital port
0 = Pin configured as an analog channel — digital input disabled and reads ‘0’
bit 5 PCFG5: A/D Port Configuration bit — ANS
1 = Pin configured as a digital port
0 = Pin configured as an analog channel — digital input disabled and reads ‘o
bit 4 PCFG4: AD Port Configuration bit — AN4
1 = Pin configured as a digital port
0 = Pin configured as an analog channel — digital input disabled and reads ‘0
hit 3 PCFG3: A/D Port Configuration bit — AN3
1 = Pin configured as a digital port
0 = Pin configured as an analog channel — digital input disabled and reads ‘0’
bit 2 PCFG2: A/D Port Configuration bit — AN2Z
1 = Pin configured as a digital port
0 = Pin configured as an analog channel — digital input disabled and reads ‘0
bit 1 PCFG1: AD Port Configuration bit — AN1
1 = Pin configured as a digital port
0 = Pin configured as an analog channel — digital input disabled and reads ‘0
hit 0 PCFGO: AD Port Configuration bit — ANO
1 = Pin configured as a digital port
0 = Pin configured as an analog channel — digital input disabled and reads ‘0’
Computer Organization and Microprocessors Page 105

7
*

% ADCON2 “A/D Control Register 2"

RAN-0 -0 RAN-O RAW-0 RAW-0 RAN-0 RAN-0 RAW-0
ADFM — ACQTZ2 ACAT ACQTO ADCS2 ADCSA ADCS0
bit 7 bit O
bit 7 ADFM: A/D Result Format Select bit

1 = Right justified
0 = Left justified

bit 6 Unimplemented: Read as ‘0’
bit 5-3 ACQTZ2:ACQTO: A/D Acquisition Time Select bits
000 = 0 Tapt!)
001=2TaD
010 =4 TAD
011 =6TaD
100 =8 TaD
101 =12 TaD
110 =16 TaD
111 =20 TaD
bit 2-0 ADCS2:ADCS0: A/D Conversion Clock Select bits
000 = Fosci2
001 =Fosc/a

010 = Fosc/32

011 = FRC (clock derived from A/D RC oscillator)tV
100 = Fosci4

101 = Fosc/16

110 = FOsC/64

111 = FRC (clock derived from A/D RC oscillator)t!)

Note: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is
added before the A/D clock starts. This allows the SLEEP instruction to be executed
before starting a conversion.

®,

% Configuring ADC Module for Conversion

The analog reference voltage is software selectable. Meaning the user can set the high and low
voltage level range to either the supply voltage (AVDD and AVSS), or the voltage levels on the
RA3/AN3/VREF+ and RA2/AN2/VREF- pins. See the figure on the next page for a graphical
representation.

The ADC has a unique feature of being able to operate while the device is in Sleep mode. To operate
in Sleep, the ADC clock must be derived from the ADC'’s internal RC oscillator.

ADC module operates by sampling the analog input and holding that value during the conversion
time. This is referred to as “sample and hold”. The output of the “sample and hold” is the input to the
converter, which generates the digital results by successive approximation. Note that a power-on
reset will abort the conversion which means after a power-on reset the digital value in the results
registers is not valid.

Each external pin associated with the ADC can be configured as an analog input, or as a digital 1/O.
The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D
conversion is complete, the result is loaded into the ADRESH/ADRESL registers, the GO/DONE bit
(ADCONO register) is cleared and A/D Interrupt Flag bit, ADIF, is set. The following figure shows the
block diagram of the A/D module:

Computer Organization and Microprocessors Page 106

AVDD
CHS2:CHSO0

...... lLLL.....
E 1
. 110 . .
1 —Q : ANg()
" 101
B ane , ANS
. N 100 .
VAN " AN4
10-it (Input Voltage) ' o—2tl 1 g ANIVREF+
Converter . T 3
AD : 010 |
P ¢—o o———1—DX] Anzvrer-
- ' 001
‘-JCFG1|:‘-|JC:FGD ' o o2l AN
"""" Y . 000 |
: : AVDD N \D 0r . @ ANO
r—— —-—- 1 3 B
VREFH . Tl
I Reference :"-”’—c %
!_ Voltage VREFL : =

After the A/D module has been configured as desired, the selected channel must be acquired before
the conversion is started. The analog input channels must have their corresponding TRIS bits
selected as inputs. After this acquisition time has elapsed, the A/D conversion can be started. An
acquisition time can be programmed to occur between setting the GO/DONE’ bit and the actual start
of the conversion.

Below are the steps to configure the A/D Converter:

1. Configure the A/D module:

Select external pin (channel) that will be used as the analog (use bits 2 to 4 of ADCONO)
Configure analog pins as input (Bits 0-6 of TRISA)

Set the voltage reference (Bits 6 and 7 of ADCONO)

Select A/D acquisition time (Bits 3-5 of ADCON2)

Select A/D conversion clock (Bits 0-2 of ADCONZ2)

Turn on A/D module (Bit 0 of ADCONO)

2. Configure A/D interrupts (if desired):
In registers INTCON, IPR1, PIR1 and PIE1, perform the following modifications:

= Set GIE bit

= Clear ADIF bit
= Set ADIE bit

= Set ADIP bit

3. Wait the required acquisition time (refer to next section “A/D Acquisition Requirements” for more
detail).

Computer Organization and Microprocessors Page 107

4. Start conversion:
= Set GO/DONE bit (ADCONO register)

5. Wait for A/D conversion to complete, by either:
= Polling for the GO/DONE’ bit to be cleared
= Waiting for the A/D interrupt

6. Read A/D Result registers (ADRESH:ADRESL); clear bit ADIF if required.

7. For the next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is
defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

» A/D Acquisition Requirements
For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must
be allowed to fully charge to the input channel voltage level. The analog input model is shown

below:
Voo i
Sampling
. N , Switch
vr=0ey L alaa..
Rc<tk 155 Res !
WM ——
R ILEAKAGE =~ CHowo=120pF
VT=08Y + 500 nA b
T'-Jss
Legend: CPIN = input capacitance
YT = threshold voltage &Y
ILEAKAGE = leakage current at the pin due to . 5V
various junctions VoD 4V
Ric = interconnect resistance S:’;
55 = sampling switch
CHoLp = sample'hold capacitance (from DAC) NN
Rss = sampling switch resistance :" é _' é 9;1:3 %1

Sampling Switch (ko)

Note: When the conversion is started, the holding capacitor is disconnected from the input pin.

The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the
time required to charge the capacitor Cyo.p. The sampling switch (Rss) impedance varies over
the device voltage (Vpp). The source impedance affects the offset voltage at the analog input
(due to pin leakage current). The maximum recommended impedance for analog

sources is Rg = 2.5 k. After the analog input channel is selected (changed), the channel must be
sampled for at least the minimum acquisition time before starting a conversion.

A/D acquisition time and minimum charging time are calculated as shown on the following page:

Computer Organization and Microprocessors Page 108

= System configuration for the calculation:

CHOLD = 120 pF

Rs = 25kQ

Conversion Error < 1/2 LSb

Vb = 5V ->RSS=7kQ
Temperature = 50°C (system max.)
VhoLp = ov @ time =0

= Acquisition Time (Taca)
Taca = Amplifier Settling Time + Holding Cap. Charging Time + Temp. Coefficient
Taca = Tawe + Tc + Tcorr

Note: This equation assumes that 1/2 LSb error is used (10-bits or 1024 steps for the A/D).
The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution

= A/D Minimum Charging Time
VHOLD = (AVREF _ (AVREF/2048)) . (1 _ e(-TC/CHOLD(RIC + RSS + RS)))
or
Tc = -(Chowp)(RIC + RSS + RS) In(1/2048)

= Calculating Minimum Required Acquisition Time
Taca = Tawp + Tc + Tcorr
Tawp =5 us
Tcorr = (Temp — 25°C)(0.05 ps/°C) = (50°C — 25°C)(0.05 us/°C) = 1.25 us

Temperature coefficient is only required for temp. > 25°C. Below 25°C, T¢orr = 0 us.
Tc = -(Chop)(RIC + RSS + RS) In(1/2047) us

-(120 pF) (1 kQ + 7 kQ + 2.5 kQ) In(0.0004883) us

9.61 ps

Tacg=5us +1.25 us + 9.61 us = 12.86 pus “minimum acquisition time”

» A/D Vger+ and Vger. References
PICmicro may be configured to use external voltage references instead of the internal AVDD and
AVSS sources. If external sources are used, the source impedance of the VREF+ and VREF-
voltage sources must be considered. The maximum recommended impedance of the VREF+
and VREF- external reference voltage sources is 250Q..

» Automatic Acquisition Time
The ADCONZ2 register allows the user to select an acquisition time that occurs each time the
‘GO/DONE’ bit is set. When the ‘GO/DONE’ bit is set, sampling is stopped and a conversion
begins. The user is responsible for ensuring the required acquisition time has passed between
selecting the desired input channel and setting the GO/DONE’ bit. This occurs when the
ACQT2:ACQTO bits (ADCON2<5:3>) remain in their Reset state (‘000’) and is compatible with
devices that do not offer programmable acquisition times.

If desired, the ACQT bits can be set to select a programmable acquisition time for the A/D
module. When the GO/DONE’ bit is set, the A/D module continues to sample the input for the
selected acquisition time, then automatically begins a conversion. Since the acquisition time is
programmed, there may be no need to wait for an acquisition time between selecting a channel
and setting the GO/DONE’ bit. For cases in which the GO/DONE’ bit is cleared when the
conversion is completed, the ADIF flag is set and the A/D begins sampling the currently selected
channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition
time has ended or if the conversion has begun.

Computer Organization and Microprocessors Page 109

» Selecting A/D Conversion Clock
The A/D conversion time per bit is defined as TAD. The A/D conversion requires 11 TAD per 10-bit
conversion. The source of the A/D conversion clock is software selectable. There are seven possible
options for TAD:

A/D Clock (Tap) ADCS2:ADSCO Bits Max. Fosc=1/Tosc

2* Tosc 000 1.25 Mhz
4 * Tosc 100 2.50 Mhz
8 * Tosc 001 5.00 Mhz
16 * Tosc 101 10.0 Mhz
32 * Tosc 010 20.0 Mhz
64 * Tosc 110 40.0 Mhz

rRc™ x11 1.00 Mhz

Note: "The internal RC source has a typical TAD time of 4 ps.

» Operation in Low-Power Modes
The selection of the automatic acquisition time and the A/D conversion clock is determined, in
part, by the low-power mode clock source and frequency while in a low-power mode.

If the A/D is expected to operate while the device is in a low-power mode, the ACQT2:ACQTO0
and ADCS2:ADCSO0 bits in ADCON2 should be updated in accordance with the low-power mode
clock that will be used. After the low-power mode is entered (from either of the Run modes), an
A/D acquisition or conversion may be started. Once an acquisition or conversion is started, the
device should continue to be clocked by the same low-power mode clock source until the
conversion has been completed. If desired, the device may be placed into the corresponding low-
power (ANY)_IDLE mode during the conversion.

If the low-power mode clock frequency is less than 1 MHz, the A/D RC clock source should be
selected. Operation in the Low-Power Sleep mode requires the A/D RC clock to be selected. If
bits ACQT2:ACQTO are set to ‘000’ and a conversion is started, the conversion will be delayed
one instruction cycle to allow execution of the SLEEP instruction and entry to Low-Power Sleep
mode. The IDLEN and SCS bits in the OSCCON register must have already been cleared prior to
starting the conversion.

» Configuring Analog Port Pins
The ADCON1, TRISA and TRISB registers are used to configure the A/D port pins. The port pins
needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is
cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHSO bits and the TRIS bits.

Notes:

1) When reading the Port register, all pins configured as analog input channels will read as
cleared (a low level). Pins configured as digital inputs will convert an analog input to a
high or a low level.

2) Analog levels on any pin defined as a digital input may cause the digital input buffer to
consume current out of the device’s specification limits.

Computer Organization and Microprocessors Page 110

» A/D Conversion timing
The following diagram shows the operation of the A/D converter after the GO bit has been set
and the ACQT2:ACQTO bits are cleared:

A/D CONVERSION Tpp Cycle (ACQT<2:0>=000, Taco=0)
JC¥ —TAD Tap1 Tap2 Tap3 Tand Tap5, Tap6 Tan7 TADE Tap9 TAD10 Tanid

T " b9 b8 b7 b6 b5 b4 b3 b2 bl bO

Conversion Starts

Holding capacitor is disconnected from analog input (typically 100 ns)

Set GO hit l

MNext 04: ADRESH/ADRESL is loaded, GO bit is cleared,
ADIF bit is set, holding capacitor is connected to analog input.

The following diagram shows the operation of the A/D converter after the GO bit has been set,
the ACQT2:ACQTO bits have been set to ‘010’ and a 4 TAD acquisition time has been selected
before the conversion starts:

A/D CONVERSION Tpp Cycle (ACQT<2:0>=010, Taco=4Tap)

ll— TacoT Cycles TAD Cycles -
1 2 3 4] 1 2 , 3 4 5 6 7 8 9 10 1
& b& b8 by b& b5 b4 b3 b2 b1 b0
-— Automatic —PT
Hr:c11_u|5|t|on Conversion Starts
ime

i(Holding capacitor is disconnected)

Set GO hit i
{Helding capacitor continues
acquiring input) Mext Q4: ADRESH:ADRESL is loaded, GO bitis cleared,

ADIF kit is set, halding capacitar is reconnected to analog input.

Clearing the GO/DONE’ bit during a conversion will abort the current conversion. The A/D Result
register pair will NOT be updated with the partially completed A/D conversion sample. This
means the ADRESH:ADRESL registers will continue to contain the value of the last completed
conversion (or the last value written to the ADRESH:ADRESL registers).

After the A/D conversion is completed or aborted, a 2 TAD wait is required before the next
acquisition can be started. After this wait, acquisition on the selected
channel is automatically started.

Note: The GO/DONE’ bit should NOT be set in the same instruction that turns on the A/D.

» Use of the CCP1 Trigger
An A/D conversion can be started by the “special event trigger” of the CCP1 module. This
requires that the CCP1M3:CCP1MO bits (CCP1CON<3:0>) be programmed as ‘1011’ and that
the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE’ bit will be
set, starting the A/D acquisition and conversion, and the Timer1 (or Timer3) counter will be reset

Computer Organization and Microprocessors Page 111

to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with
minimal software overhead (moving ADRESH/ADRESL to the desired location). The appropriate
analog input channel must be selected, and the minimum acquisition period is either timed by the
user, or an appropriate Tacq time selected before the “special event trigger” sets the GO/DONE
bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the “special event trigger” will be ignored by the
A/D module, but will still reset the Timer1 (or Timer3) counter.

» Summary of A/D Registers

. Value on Value on
Name Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR, BOR all other
Resets
INTCOMN GIE/ FEIE/ | TMROIE | INTOIE REIE | TMROIF | INTOIF RBIF | ocooo oooo | oooo oooo
GIEH GIEL

PIR1 — ADIF RCIF TXIF — CCP1IF | TMR2IF | TMR1IF | -000 -ooo | -000 -000
PIE1 — ADIE RCIE TXIE — CCP1IE | TMRZIE | TMRI1IE | -000 -000 | -000 -000
IPR1 — ADIP RCIP TXIP — CCP1IP | TMRZIF | TMR1IP | -111 -111| -111 -111
PIRZ OSCFIF — — EEIF — LVDIF | TMR3IF — 0--0 -00-|0--0 -00-
PIEZ2 OSCFIE — — EEIE — LVDIE | TMR3IE — 0--0 -00-| 0--0 -00-
IPR2 OSCFIP — — EEIP — LVDIP | TMR3IP — 1--1 -11-|1--1 -11-
ADRESH | A/D Result Register High Byte XK XEHX | uuuu unuu
ADRESL | A/D Result Register Low Byte XX 2 | uunu uuua
ADCONO | VCFG1 | VCFGO — CHS2 | CHS1 | CHS0 |GOMDONE| ADON |oo-0 oooo| co-o oooo
ADCONA — PCFGE | PCFGS PCFG4 | PCRFG3 | PCRG2 PCFG1 PCFG0 | -oo0 oooo | -oo00 oodo
ADCONZ ADFM — ACQTZ ACOTT | ACQTO | ADCS2 | ADCSH ADCS0 | 0-00 oooo| ©-00 Q00D
PORTA rRa7@® | Ras@ | Rasil RA4 RA3 RA2 RA1 RAD | qqox 0000 | uuou cooo
TRISA | TRISA7S [TRISA6Z] — |PORTA Data Direction Register gg-1 1111 [11-1 1111
PORTE |Read PORTE pins, Write LATE Latch XK XEHX | uuuu unuu
TRISE PORTE Data Direction Register 1111 1111|1111 1111
LATE PORTE Output Data Latch XX 2 | uunu uuua
Legend: x = unknown, u=unchanged, g = depends on CONFIGTH=3:0>, — = unimplemented, read as ‘o',

Shaded cells are not used for A/ID conversion.
Note 1: RAS port bit is available only as an input pin when the MCLRE hit in the configuration registeris ‘o’
2: RA& and TRISAG are available only when the primary oscillator mode selection offers RAS as a port pin; ctherwize, RAB
always reads ‘0', TRISAG always reads 1" and writes to bath are ignored {see CONFIGTH=3:0=).
3: RAT and TRISAT are available only when the internal RC oscillator is configured as the primary oscillator in
CONFIG1H=3:0=; atherwise, RAT always reads ‘0, TRISAT always reads ‘L and writes to baoth are ignared.

Computer Organization and Microprocessors Page 112

«» Example — Channel 0 is enabled, PICmicro is configured as an A/D convertor and the range is set
from AVss to AVdd. What is the value of the A/D convertor output?

#125v 11 Ano
l75 AVss
+5v __14_ AVdd

PICmicro

Solution:

A/D has 10-bit output which means there are 2'° counts between 0 and 5 v.

voltage/count = (5-0) / (2'%) = 5/ (2"%)

Output countat 1.25= 1.25 {5/ (2'°)} = 256

10 bit A/D output > “01 0000 0000”

When 10-bit A/D Result is Left Justified:

A/D Result High Register (ADRESH)

A/D Result Low Register (ADRESL)

0 1 0 0 0 0 0 0 0 0
N _
N
10-bit A/D Output
When 10-bit A/D Result is Right Justified:
A/D Result High Register (ADRESH A/D Result Low Register (ADRESL)
0 1 0 0 0 0 0 0 0 0
S~ -
e
10-bit A/D Output
Computer Organization and Microprocessors Page 113

4.10. Pulse Width Modulation (PWM)

Pulse Width Modulation(PWM) uses a square wave whose duty cycle is modulated resulting in the
variation of the average power delivered by the waveform. Modulating duty cycle means changing the
percentage of the period that is at high voltage (not zero). This technique is used to control power levels
in electrical devices such as Light source, DC motor and other devices.

For example, in the following diagram, waveform A delivers twice as much average power as waveform

B. This is useful in modulating electrical device performance. One of the important uses of PWM is in DC
motor speed control.

PWM Output pulse Definition:

Period

On-time
<+—>

PWM Output Waveform (duty Cyle = 100*(on-time/period)%

Examples:
1mS 0.5mS
1mS ’_—l 1.5mS ’_—‘
Waveform A. 50% Duty Cycle Waveform B. 25% Duty Cycle

PWM is implemented in PICmicro as one of the three features of the Enhance Capture/Compare/PWM
(ECCP) module. Below is a list of ECCP key features::

One, two or four PWM outputs

Selectable polarity

Programmable dead time (Low)

Auto-Shutdown and Auto-Restart

Capture is 16-bit, max resolution 6.25 ns (T¢y/16)
Compare is 16-bit, max resolution 100 ns (Tcy)

Below are high-level steps to set up a Pulse-Wide-Modulation
1) Set PR2 (PWMperiod = ((PR2)+1)*4 * TOSC * (TMR2 Prescale Value))
2) Configure and Clear Timer2 (T2CON, 2)
3) Setup PWM Duty Cyle (CCPR1L & CCP1CON)
4) Set mode (CCP1CON)

Computer Organization and Microprocessors Page 114

» CCP1CON register controls ECCP operation

RAW-0 RAW-0 RAW-0 RAW-0 RW-0 RAW-0 RAW-0 RAW-0
P11 P10 DC1B1 DC1BO | CCPIM3 | CCPIMZ | CCPIMT | CCP1MO
bit 7 bit O

bit 7-6 PAM1:PAMO: PW Output Configuration bits
FCCPIM=32>= 00, 01, 10:
xx = P1A assigned as Capture/Compare input; P1B, P1C, P1D assigned as port pins
fCCPIM=32>=11:
00 = Single output; P1A modulated; P1B, P1C, P10 assigned as port pins
01 = Full-bridge output forward; P10 modulated; P1A active; P1E, P1C inactive
10 = Half-bridge output; P1A, P1B modulated with dead-band control; P1C, P10 assigned as
port pins
11 = Full-bridge output reverse; P1B modulated; P1C active; P14, P10 inactive
bit 5-4 DC1B1:DC1BO: PWM Duty Cycle Least Significant bits

Capture mode:
Unused.

Compare mode:
Unusead.
Wi mode:
These bits are the two LShs of the PWM duty cyele. The eight MSbs are found in CCPRI1L.

bit 2-0 CCP1M3:CCP1MO0: ECCP1 Mode Select bits

0000 = Captura/Compare/PWM off (resets ECCP module)

0001 = Unused (reserved)

0010 = Compare mode, toggle output on match (ECCP1IF bit is set)

0011 = Unused (reserved)

0100 = Capture mode, every falling edge

0101 = Capture mode, every rising edge

0110 = Capture mode, every 4th rising edge

0111 = Capture mode, every 16th rising edge

1000 = Compare mode, set output on match (ECCP1IF kit is set)

1001 = Compare mode, clear output on match (ECCP1IF bit is set)

1010 = Compare mode, generate software interrupt on match (ECCP1IF bit is set,
ECCP1 pin returns to port pin operation)

1011 = Compare mode, trigger special event (ECCP1IF bit is set; ECCP rasets TMR1 or
TMR3 and starts an A/D conversion if the A/D module is enabled)

1100 = PWM mode; P1A, P1C active-high; P1E, P1D active-high

1101 = PWM mode; P1A, P1C active-high; P1B, P1D active-low

1110 = PWM mode; P14, P1C active-low; P1B, P10 active-high

1111 = PWM mode; P1A, P1C active-low; P1B, P10 active-low

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0"
-n =Value at POR 1" = Bit is set ‘' = Bit is clearad ¥ = Bitis unknown

Note: PWM only uses Timer 2.

The Enhanced PWM Mode provides additional PWM output options for a broader range of control
applications. The module is an upwardly compatible version of the standard CCP module and offers
up to four outputs, designated P1A through P1D. Users are also able to select the polarity of the
signal (either active-high or active-low). The module’s output mode and polarity are configured by
setting the P1M1:P1M0 and CCP1M3:CCP1MO bits of the CCP1CON register (CCP1CON<7:6> and
CCP1CON<3:0>, respectively).

Computer Organization and Microprocessors Page 115

>

The following figure shows a simplified block diagram of PWM operation.

. CCP1CON<=5:4> PN <1.0> CCPIM<3:0>
Duty Cycle Reqgisters f"" 7 {4

| CCPRIL | |

CCP1/P1A RBI/CCP1P1A
TRISE<3=

CCPR1H (Slave) |
| '-{;“E-' i P1B RBZ/P1B/NTZ
R 0 Output TRISB=2

]
| Comparator [Controller

REG/PGCT10SOMI 3K
THR? {Nete 1) e PICIKBI2
| . |Nere 1) —s TRISB<6
P10 ﬁ—g RE7/PGDIT 10SIIP1D/KEI3
Clear Timer, P
sat CCP1 pin and 7y TRISB

latch D.C
CCP1DEL

Note: The 8-bit TMRZ2 reqgister is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler to create the
10-bit time base.

+

All control registers are double-buffered and are loaded at the beginning of a new PWM cycle (the
period boundary when Timer2 resets) in order to prevent glitches on any of the outputs. The
exception is the PWM Delay register, ECCP1DEL, which is loaded at either the duty cycle boundary
or the boundary period (whichever comes first). Because of the buffering, the module waits until the
assigned timer resets instead of starting immediately. This means that Enhanced PWM waveforms
do not exactly match the standard PWM waveforms, but are instead offset by one full instruction
cycle (4 TOSC).

As before, the user must manually configure the appropriate TRIS bits for output.

PWM Period
The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using
the equation:

PWM Period = [(PR2) + 1] * 4 » TOSC * (TMR2 Prescale Value)

PWM frequency is defined as 1/[PWM period]. When TMR2 is equal to PR2, the following three
events occur on the next increment cycle:

= TMR2is cleared
= The CCP1 pin is set (if PWM duty cycle = 0%, the CCP1 pin will not be set)
= The PWM duty cycle is copied from CCPR1L into CCPR1H

Note that The Timer2 postscaler is not used in the determination of the PWM frequency.

Computer Organization and Microprocessors Page 116

» PWM Duty Cycle
The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4>
bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the
CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by
CCPR1L:CCP1CON<5:4>. The PWM duty cycle is calculated by the equation:

PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) « TOSC + (TMR2 Prescale Value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not
copied into CCPR1H until a match between PR2 and TMR2 occurs (i.e., the period is complete).
In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle.
This double-buffering is essential for glitch-less PWM operation. When the CCPR1H and 2-bit
latch match TMR2, concatenated with an internal 2-bit Q clock or two bits of the TMR2 pre-scalar,
the CCP1 pin is cleared. The maximum PWM resolution (bits) for a given PWM frequency is
given by the equation:

Iog(l:OSC J
F .
PWM Resolution = ————"M Z hjts
log(2)
Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be

cleared.

» PWM Output Configuration
The P1M1:P1MO bits in the CCP1CON register allow one of four configurations:

Single Output

Half-Bridge Output

Full-Bridge Output, Forward mode
Full-Bridge Output, Reverse mode

Computer Organization and Microprocessors Page 117

[]
» Example — Determine register values to set up PWM of PICmicro to generate a signal on P1A pin
(use internal RC clock) that has a period of 6 msec. and 30% duty cycle.
Solution:

Signal to be generated

2mS 2mS
4mS 4 mS

1) Use the following equations:

PWM Period = [(PR2) + 1] * 4 « TOSC * (TMR2 Prescale Value)
Tosc = 32 usec. for internal RC clock

to set the values of PR2 and the TMR2 Prescale.
2) Use the following equation:
PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) « TOSC * (TMR2 Prescale Value)
to Calculate and set the value for registers CCPR1L:CCP1CON<5:4>.
3) Configure & Clear Timer 2
TMR2 = 0 and PIR1=0 and TMR2IF=0

» Example — Write a code segment to configure and use a single channel PWM to control a DC motor.

Solution:
Refer to Lab documentation.

Computer Organization and Microprocessors Page 118

4.11. Additional Resources

« Staff. Microchip PIC 18F1220/1320 Data Sheet. (2004) Microchip Technology Incorporated.

% Huang,. PIC Microcontroller: An Introduction to Software & Hardware Interfacing, (2004) Thomson.

+ Reese. Microprocessor: From Assembly Language to C using the PIC18Fxxx2. (2003) Course
Technology.

« Peterson. Computer Organization and Design, (2007) Elsevier Service.

Computer Organization and Microprocessors Page 119

4.12. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Computer Organization and Microprocessors Page 120

CHAPTER 5. ARITHMETIC & LOGIC OPERATIONS

Key concepts and Overview

« Arithmetic Operations

% Move, Set and Clear Operations
% Logic Operations

% Branch Operations

% Specialty Operations

% |EEE Standards for Floating Point

+ Additional Resources

Computer Organization and Microprocessors Page 121

5.1. Arithmetic Operations

PICmicro offers a wide range of arithmetic operations as do the majority of the processors on the market.
In this section each of the arithmetic instructions are described in detail.

It is recommended that the reader utilize the PICmicro development and simulation tools to verify and
explore the full operation of these instructions.

The remainder of this section covers Add, Increment, Multiply and Subtract operations.

7

% ADDLW literal and WREG

ADDLW ADD literal ta W = Example — Given Wreg=25 and the
following statement is executed:
Synitax: [lzbal] ADDLW Kk
Operands: 0<k< 255 ADDLW OxF5
Opearation: Wi+ k— W What are the status bit values?
Sfatus Affected: W OV, C DC 2)
Solution:
Encoding: pDoo | 1111 | kkkk | Kkkk N OV CDC Z
Dascription: The conterts of W are added to the o 11 10
B-bit IrtE_-raI ,.H and the resuilt is Note: DC is carry over from lower
placed in W. .
nibble.
Wiords: 1
Cydes: 1
Y o = What value of Wreg and K will cause “Z”
Q Cyde Activity: & “C” to be set to zero when ADDLW
1 Q2 o3 (T} instruction is executed.
Dacodsa Read Process Wit to W .
ltsral ‘K Data Solution:
Exampler ADDLW OX15
Before Instruction
W= 010
After Instruction
W= Dx2b

Computer Organization and Microprocessors Page 122

% Add WREG and f

ADDWF ADD W te f
Syntax: [labof |ADDWE f[d[a]]
Operands: 0=f=255
de [0,1]
ae [0,1]
Ciperation: (W) + (f) — dest
Status Affected:. MW, OV, C,DC, Z
Encoding: I oo1a | 0laa I IIrE I IIre I
Dascription: Add W to register 'f. If 'd"is ‘07, the
resultis stored inW. If 'd"is ‘17, the
result is stored back in register
(default). If 'a’ is "0°, the Accoss
Bank will be selected. If ‘a"is "1,
the BSRis usad.
Words: 1
Cydes: 1
0 Cyole Activity:
) Q2 Q3 24
Decode Read Process Wrils 1o
resgistar ' Diata destinatian
Example; ADTHF RES,
Eefore Instruction
W = 017
RES = 02
After Instruction
W = OxDS
REG = D2

Notes:

Computer Organization and Microprocessors

Page 123

< Add WREG and Carry bit to f

ADDWFC ADD W and Carry bit to f Notes:
Syntax: [label | ADDWFC f[d [a]l = Write an Assembly code segment that
0 s 0<f<? add A (location 0x10) and B (location
perands: Us1=255 0x12) and stores the results in
de[01] C(location 0x14).
ac [01]
Operation: Wi+ (f + (C) = dest Solution:
Status Affected: N, OV, C,DC, £
Encoding: | D010 | onda | EEEF | EEFE |
Description: Add W, the Carry flag and data
memory location T, 1f'd" is ‘o', the
result is placed in W, If 'd"is "1, the
IFEE"'l.t 1= '?.laﬁe'j " dalm;lmémry = Write a C code segment that uses
':":E't"?"j I8 1 "0, the Access pointers to add A (location 0x10) and B
Bank will be selected. If 'a'is "1, the (location 0x12) and stores the results in
ESR will not be overridden. C(location 0x14).
Waords: 1
Cveles: ’ /Hint:
yeks: /IThe following code declares and
2 Cycle Activity: /l initializes px to 0x12 and pointer
'S 1 03 d I to integer (16 bit)
Decode Raad Procass Write to .-)
register ‘T Data destination Int *px =0x12;
*px = 25; /Iset reg. 0x12 to 25
Example: ADDWFC RES, W
Before Instruction
Carrybit = 1
REG = [x02
W = xdD
After Instruction
Carrybit = 0
REG = 0x02
W = 0Oxs0

Computer Organization and Microprocessors

Page 124

« Example — Write a function “Add16” that accepts two 15-bit input (Op1 and Op2) and places the 16-bit result
from the addition of Op1 & Op2 into res:

81h | 80h
Op1 |
83h | 82h
Op2 [
85h | 84h
Res

Write pseudo code before writing the assembly code for the function “Add16”.

Solution:

Computer Organization and Microprocessors Page 125

% Decrement f

DECF Decrament f
Syntax: [f=bs!] DECF f[d[a]
Ciperands: 0= f= 255
de [01]
ge [01]
Ciperation: ifi-1—dest
Status Affedted: O, DC, N, OW Z
Encoding: opoon | Dlda | free | EEEf
Deszription: Decrement register . 1F 7 is '07,
the result is stored in W, F'd is 'L,
the result is stored back in regster
T (default). f 2" is '0°, the Access
Bank will b= s=l=cted, ovarriding
the BSR valus. If 'a" = 1, thenthe
Ea nk will b= s=lected as per the
BSR value {default).
Wiords: 1
Cyclas: 1
2 Cyde Adtivity:
21 2 2 2
Cacdde Raad Procass Wik o
ragshar T Data daslinalion
Lamdle: CECE T
B=fore Instruction
CHT = =i
Fra = a
After [retruction
ENT = Iil:-:III

Notes:

Computer Organization and Microprocessors

Page 126

< Decrement f, Skip if 0

DECFS? Decrement f, skip if 0 = Example - Write an Assembly code
m— —— - segment to implement the functionality

Syntax: [tebel] DECFSZ f[d [e]] of the following C code segment:
Cipsrands: 0= f< 255

de [01] Unsigned char * pcount;

ae 0] pcount = (unsigned char *) 0x80;
Cipsration: ifi—1 — dest,

skip if result =0 *ncount = *pcount -1;
Status Affected: Mone if ("pcount I=0) {
Encoding: | ooro | 1ama | eeer | orrer | pcount = 0x00;
Description: The contents of register F ars /

dezremented. [fd" is '07, the result Solution

s placed in W, F'd"is °1", the result =0tion

is placed back in register '

default). pcount equ 0x80;

If the resultis “0', the nextinstruc-

tion, which is already fetched, is L1: DECFSZ pcount

dizcarded and a HOP is executed CLRF pcount

irst=ad, making it a two-cycle Done:

imstrudtion. If 'a’is “0', the Access
Bark will b= s=lect=d, overriding
the BSR value. If a” = 1, thenthe
ke nk will b= s=lect=d as per the

BSR valus {d=fault).
Wonds: 1
Cycles: 12)

Mote: 2 cydes if skip and followed
by a 2-aord instruction.

2 Cydle Activity:
)| e 3 2
Dacods Rad Procass | Wik ko
ragshar T Oaa dasliralion
If skip:
21 2 a3 24
Mo Hia i e i e

cperstion | operalion | operation | operation
If skip and followed by 2-word instruction:

21 Q2 a3 24
Mo Hia i s] i s]
operation | operalion | operation | operation
Mo Hia i s] i s]

cperdion | operslion | operalion | operalion

Examde: HERE DECFEZ CHT
GOTO LoOp
CONTINUE
Before Instruction
PC = Addiess [HERE)
After Irsfruction
CNT = CNT -1
NCHT = 0
PC = Addiess [CONTINUE]
NCHT = 0

PC Addiess [HERE + 21

Computer Organization and Microprocessors Page 127

< Decrement f, Skip if Not 0

DCFSME Decrement f, skip if nat 0
Syntax: [lzbs!] DCFSNZ f[d [a]]
Cpsrands: 0= f= 265
de [01]
ae [01]
Ciperation: ifi—1 — dest,
skip if result= 0
Status Afected: None
Encoding: I 0140 I 11da | rEEs I rrfe |
Desaription: The contents of register T are
desremented. If°d iz ‘07, the result
is Paced in W, Fd'is “1°, the result
i5 flaced back in register 'F
(default).
If the resultis not 0, the nex
irstrudtion, which i already
fatched, is discarded and a HOF is
executed instsad, making it a twe-
cyde imstruction. f'a’is °0°, the
Access Bank will be selected,
cwarriding the BSR valus. 1fa' =1,
then the bark will b= sslected as
p=r the BSR valus (default).
Viords: 1
Cyeles: 12}
Mate: 3 eydes if skip and followed
by a 2-word instruction.
I Cydde Activity:
) 2 e 24
Dacode Rasd Frooass Wrike b
ragyskar T Oata dasliralion
If skip:
5] 2 2 24
g [x] Mo Mo Mo
op=ralion | opembion | opsraton | opsraion
If skip ard followed by Z-word i nstruction:
) 2] 24
Mo 8 [x} Mo Mo
oparaion | opembion | opsmaton | opsraion
Mo 8 [x} Mo Mo
oparaion | opembion | opsraton | opsraion
Exampls: HERE DCFSNE TEND

ZERD
HEERD

B=fore Instruction

TEMF

After Instruction

TEMP

N TEMF
P

N TEMF
PC

TEMP -1,
a:

Address [ZERS)
a;
Address [NZERD)

Example - Write an Assembly code
segment that uses DCFSNZ to
implement the functionality of the
following C code segment:

Unsigned char *pcount, i;
pcount = (unsigned char *) 0x80;
for (i=50; iz 0 ; i--) {

*pcount = i;
}

Solution

Computer Organization and Microprocessors

Page 128

« Increment f

INCF Increment f Notes:
Eyntax: [f=bal] INCF f[d[a]] .
Cperands: 0= f< 255
de [01]
ae [01]
Ciperation; ifi+1— dest
Status Affected: G, DC, M, OV, Z
Encoding: | oono | 1oma | rree | eeer |
Description: The contenis of register F ars

incremented. IFd"is ‘07, the result
i5 placed in W. If d'is “1", the result
i5 placed back in recister F
[defaulty. If 's’is °0°, the Access
Bank will b= s=lected | overriding
the BSR wvalug. If 'a” = 1, then the
Eank will b= s=l=cted as per the

BSR value {d=fault).
Wonds 1
Cyeles: i
3 Cyde Adtivity:
) | o2 o o
Cacode Reag Frooass Wik ko
ragishar ‘T Data daslinalon
ﬂﬂlﬂdﬁ: IHNCF CHT
Before Instruction
CHT = O=FF
z = 1
[= T
nc = T
After Instruction
CHT = OEQD
Z = i
c = i
o = i

Computer Organization and Microprocessors Page 129

< Increment f, Skip if 0

INCFSZ Increment f, skip if 0 Notes:
Syntax: [fabsl] INCFSZ f[d [a]] = Write an Assembly code segment to
Diperands: 0= f= 265 implement the functionality of the
de [01] following C code segment:
ae [31]
Operation: if) + 1 — dest, Unsigned char *pcount;
skip if result=1 int i;
Satus Affected: MNone pcount = (unsigned char *) 0x80;
E o - for (i=25; i<256 ; i++) {
neoding: [oonn | aama | eeee | eeer | . _ .)
pcount++ =(unsigned char)i;
Description: The contents of register T ars
incrementad. If " is ‘07, the result
is placed in W, If id'"is “1", the result .
B E:an:ed beck in ragister ' Solution
id=fault).
If the resultis ‘0", the nextinstruc- pcount equ 0x80;
tion, which is already fetched, is
discarded and a HOP is execuled MOVLW 25
instead, making it & two-oycle MOVWF pcount
istrudion. If 'a’is “0’, the Access
Bark will b= seleated, overriding L1: INFSZ pcount,1
the BSR valus. Ifa” = 1, thenthe BRA L1
tea nk will b= eslected as per the
ESR value (default), DECF pcount
Wonds: 1
Cyeles: 12)
MNite: 3 cydes if skip and followead
by a 2-ord instruction.
2 Cydde Activity:
()| e 3 4
Deazioda Rasd Frooass Wik o
ragslar T Daka daslinallon
If skip:
()| [3 4
Mo B [x] Mo Mo
cparation | opsration | oparaton | opaaion
If ekip and followed by 2-word instruction:
()| [3 4
Mo B [x] Mo Mo
cparation | opsration | oparaton | opaation
Mo B [x] Mo Mo
cparation | opsration | oparaton | opaaion
Example: :?:E:- INCFSE CHT
ZERD

Before Instruction

P = Address [HERE)
After Instruction

CNT = CHNT +1

HCNT = a;

PC = Address [ZERD)

NCHT = O

P = Address [HZERD)

Computer Organization and Microprocessors Page 130

Increment f, Skip if Not O

IMFSNZ Increment f, skip if not 0 Notes:
Syntax: [izb=] INFSMZ FLd [a] .
Cipsrands: 0= f< 255
de [01]
ae [0,1]
Cipsration: ifi +1 —dest,
skip if result= 0
Status Affected: Mone
Encoding: | vioo | 1coa | rree | eeer |
Description: The contents of register T are
incremented. If5d"is '0°, the result
iz placed in W. If d"is 1", the result
iz placed back in register F
{default).
If the resultis not °0°, the next
irstru dion, which is already
fetched, is discarded and a NOF is
exacuted irstead, making it a
two-cyele instruction. If 'a’ is ‘o', the
Access Bank will be selected, ower-
riding the BSR valus. [f5a’ = 1, then
the bark will be s=lected as per the
BSR value {d=fault).
Wilords 1
Cycles: 12)
Mote: 3 aycles if skip and followsd
by a 2-word instruction.
2 Cycle Adtivity:
()| [3 4
Dacode Rasd Frooass Wik b
ragshar T Oaa daslinalion
If skip:
()| [3 4
Mo B [x] Mo Mo
oparalion | opsmabon | opamion | oparaion
If skip and followed by 2-word instruction:
()| [3 4
Mo B [x] Mo Mo
oparalion | opsmabon | opamion | oparaion
Mo B [x] Mo Mo
oparalion | opsmabon | opamion | oparaion
Examde: ;gg INFSNE REQ
HEZERD
Before Instruction
PC = Addiess [HERE)
After Instruction
REG = REG+1
TREG = 0
PC = Addiess [NZERD)
TREG = 0
PC = Addiess [ZERD)

Computer Organization and Microprocessors

Page 131

% Multiply WREG with f

MLILLYY Multipby Litesral with W
Swyntax: [fabsf] MULLW Kk
Operands: 0=k= 25
Ciperation; Wi x k — PRODH; PROCL
Status Affected: Mone
Encoding: ooon | 1191 | kkkk | kkrk
Description: An unsigned multiplization is
carried out between the contents
of W and the B-bitliteral &', The
16-bit resultis placed inths
PRODOH:PROOL register pair.
PRODOH contains the high byte.
W is undhanged.
Mone of the Stalus flags are
affectad.
Maote that nisither Cverflow nor
Carry is possible in this opera-
tizn. A Zeroresultis possible but
not detected.
Vilards: 1
Cycles; 1
O Cycle Activity:
21 2 23 24
Cazoda Raad Frosass Vinle
literd ¥ Oaka reqislars
FPROOH:
PROOL
Example: HULLY x4
B=fore Instruction
W = EEZ
PROOH = 7
PROOL = 7
After Instruction
W = OxEZ2
PROOH = O=&l
PROIOL = Oxi&

Computer Organization and Microprocessors

Page 132

% Multiply WREG with f

MULWF Klultiphy W with f
Syntae: [fabsi] MULWFE f[a]
Ciperands: 0=f= 255
ae [01]
Ciperation: (W' = (F) = PRODH; FRODL
Status Affedted: None
Encoding: po0d | oola | EELE EELE
Desaription: An unsigned multiplication is
caried out betweaa n the contants
of W and the register file location
T. The 16-bit result is stored in
the PROOH:PRODOL recister
pair. PRODH contains the high
byta.
Bioth W and T are unchanged.
Mone of thie Status flags are
affectad.
Mote that neither Overflow nor
Zarry is possible in this opera-
tion. A Zero result is possibles,
but not detected. If 'a"is 0, the
Apcass Bank will be selectsd,
cwerriding the BSR value. K
‘a' = 1, then the bank will be
selected as per the BER valus
(default].
Vilords: 1
Cycles: 1
2 Cyde Adtivity:
%) 2 3 24
Lacode Raad Frocass Wil
ragistar T Data registans
PRIOORH:
PROOL
Ezxample: MULWF REC
Before Instruction
W = miCd
REG = (=BE
PROGH = 7
PRODCL = 7
After Instruction
W = (=4
RES = (=BE
PROGH = (B,
PROOL = 0xby

Notes:

Computer Organization and Microprocessors

Page 133

< Subtract f from WREG with borrow

SUBFWE Subtract f from W with borrow Notes:
Syntax; [labet] SUBFWE TLdLal] .
Op=rands: O=f =255
de [0.1]
ac [0.1]
Ciperation: (W)= 1F) = () — dest
Status Affected: N, OV C, DC, Z
Enzoding: IEENIEESN TS
Description: Subtract recister T and Carryflag

{bormew) from W (2s complement
method). If 'd7is o', the resultis
stared in'W. Fd'is ‘1, the resdt is
stored in registar T (defadt). If ‘2" is
‘0%, the Access Bank wil bs
selected, ovemiding the BSR vale.
Fsa'is“1’, then the bank will be

selected a5 per the BSR vale
{default).
VWilords: 1
Cyeles: 1
3 Cyde Adtivity:
i 2 e 24
D e Read Process Vnla o
regIsler T Dala deslnaion
Examp= 1 SUBFWE REZ
B=fore Insiruction
REG = OE0E
W = OEDZ
c = i
After Irstruction
REG = =EFF
W = =02
[= (=00
Z = Q=00
M =

=i s rasull B negathea

Ezampl=2: SUBFWE REZ, 0, O

Before Instruction
REG
W
[

After Instruction
REG
W
c
Z
M ; rasul | poskiva

ﬂmﬂ; SUBFKE REZ, 1, 2

Before Instruction
REG
W
C =
After Instruction
REG
W
[
Z
M

[T
—_ kI

I nn
L i g

[l [}
2k -

s 1asul B ran

I nn
L e b]

Computer Organization and Microprocessors Page 134

< Subtract WREG from f

SUBWF Substract W from f
Syntax: [l=bsl] SUBWF f[d[a]
Cipsrands: O=f=25h
de [01]
ae [01]
Ciperation: ifj — (W) — dest
Status Affected: W, oW, C,DC,Z
Encoding: IEESNESEEEE
Description: Subtract W from register F (25

complemeant method). 1F5d7is 07,
the result is stored in W. If 'd'is
‘L', the resultis stored back in
register T (default). If 2" is “0°, the
Access Bank will be selected,
cwerriding the BSR value. 15" is
“1', then the bank will be seladted
as per the BSR valus [default).

Words: 1
Cycles: 1
2 Cyde Adtivity:
] o2 e 4
Cacode Raad Frosass Wik o
ragshar ' Oaa daslinallon
ﬂmﬂﬂ; SUEWF REZ
Before Instruction
REG = 3
W = 2
c = 7
After Instruction
REG = 1
W = 2
c = 1 s 1asul B posithe
Z = 4
M = d
ﬂmﬁ: SUEWF RES, W
Before Instruction
REG = 2
W = 2
c = 7
After Instruction
REG = 2
W = d
C = 1 | sl s 2ans
Z = 1
¥ = a
w SUEWF REZ
Before Instruction
REG = =i
W = O=lZ
[= 7
After Instruction
REG = @=FFh (%= complament)
W = =iz
C = =il resullis nagalve
z = 0= 00
M = =i

Computer Organization and Microprocessors

Page 135

«»» Subtract WREG from f with borrow

SUBWFE Subtract W from f with Bormow Notes:
Syntax: [labei] SUBWFB fd[Lall n
Operands: 0<f<255
d e [0.1]
ae [0.1]
Operation: {f) = (W) = (C) — dest
Status Affected: M, OV, C,DC, Z
Encoding: [o101 | 10da | peee | eeer |
Description: Subtract W and the Camy flag
{bamow) from regester F (2's comple-

ment method). If 'd s '0°, the result is
stored in W. i 'd" is "1, the result is
stored back in register T (default). If
‘a’ i 0, the Access Bank will be
selecied, overtiding the BSR value. If
‘a’ is "1, then the bank wil be
selected as per the BSR value

(default).
Words: 1
Cycles: 1
Q Cycle Activity
a1 Qz a3 (]
Decoce Read Process Wirte to
regester T Da= destination
Exampls 1- EUBNFE RBE3. 1, O
Bafore Instruction
REG = [l {0001 1001)
w = udD {0000 1181)
c = Ol
After Instructon
REG = [WOC {0000 1011}
W = [iD (000G 1101)
c = w1
F = =00
N = D0 . result is positive
Examole 2: FUWNFE #EG, 9, 0

Before Instruction

REG = B (00Ol 1011)
w = {xlA {0001 1010)
c = DD
After Instructon
REG = kiB {0001 1011}
w = (DD
c = D=l
Z = i1 - resalt is zem
N = [wDD
Example 3: COBNFE REG, 1, D

Beafore Instruction

REG = 33 {0000 O01L)
W = [lE {DDDE 1101)

c = 01

After Instruction
REG = [FS {1111 01g90)
s

W = [DE (Dooo 1101)

c = DD

I = DD

N = =1 - result is negative

Computer Organization and Microprocessors Page 136

«» Subtract WREG from literal

SUBLW Subtract W from literal Notes:
Synitac [label] SUBLW Kk .
Operands: D=k =255
Operation: k=(W) =W
Status Affected: M.OV.C,DC, Z
Encoding: | 0000 | 1000 I kkkik | kkkk I
Description: W is subtracted from the eight-bit
literal &' The result is placed
n'W.
Words: 1
Cycles: 1
Q Cycle Activity:
an a2 Q3 o4
Decode Read Process Wite to W
literal 'K Data
Example 1: EURLW 0x02
Before Instruction
w = 1
C = 7
After Instruction
W = i
C =1 resultis positive
Z = 0 pos
N = 0
Example 2 CUBLW 0x02
Before Instruction
w = 2
C = 7
After Instruction
W = 0
G = i : result is zem
F4 = 1
N = 0
Exzampls 3 EURLW 0x02
Before Instruction
w = 3
C = 7
After Instruction
W = FF ;{2's complement)
C = 0 result is negative
Z = 0
N = 1

Computer Organization and Microprocessors Page 137

5.2. Move, Set and Clear Operations
Most applications require an efficient movement of data from one memory location to another.

Processors in general have instructions dedicated to this type of operation. PICmicro also offers a wide

range of operations to move, set and clear data as do other processors.

The remainder of this section provides detailed description of Clear, Complement, Compare, Move,

Negate, Set, Table (block move) and Swap instructions.

% Clearf

CLRF Clear f

Syntax: [labsl] CLRF Tla)]

Operands: 0= f= 255
ae [0,1]

Cipsration: ooh — f
1=Z

Status Affected: Z

Encoding: [oo | aoaa | reee | eeer |

Description: Clears the contents of the spacified
register. [f5a"is '0°, the Access
Bark will b= s=lected, overriding
the BER value. Ifa” = 1, then the
tank will b= s=lected as per the
BSR value {default).

Wonds: 1

Cycles: 1

2 Cydle Activity:

i [3 4
Dacoda Rasd Frooass Winle

ragistar T BEE] ragistar T

ﬂmﬁg: TLRF FLRG_REG

Before Instruction

FLAG REG = OxB&

After Instruction

FLAG_REG = Ox00

Computer Organization and Microprocessors

Page 138

« Complement f

COMF Complement f
Byntax: [l=b=d] COMF f[d[a]l
Cipsrands: 0= f= 255
de [01]
ae [01]
Operation: if — dest
Status Affected: N, Z
Ercading: | ooor | ansa | eeee | eeee |
Description: The contents of register T are
complementsd. If 'd' is 0, the
result is stored in'W. f 'd is 1, the
result is stored back in register 'F
(default). If ‘a'is °0°, the Access
Bark will b= sslested, overriding
the BSR walue. Ifa” = 1, then the
bank will b= eslested as per the
BER value (default).
Wonds: 1
Cyeles: 1
2 Cyole Aclivity:
i [3 24
Ceacioda Raad Frocass Wil o
ragslar ‘I Oata daslinalion
ﬂmﬁg: CONF REZ, K
Bafore Instruction
RES = =13
After Iretruction
REG = =13
W = (EEC

Computer Organization and Microprocessors

Page 139

.

Compare f with WREG, skip

CPFSEQ Compare f with W, skip iff= W Notes:
Eyntax: [lzbs!] CPFSEQ f[a] .
Cperands: 0= f= 255
ae [01]
Ciperation: () = (W,
skip if (f) = (W)
{unsigned comparison)
Status Affected: Mone
Encoding: I 011n I nola | IEEE | EEEE |
Description: Compares the contents of data
memory lozation ' to the contents
of W by performing an ursignad
subtrachion.
I 'F = W, then the fetched
irstrudion is discarded and a HoP
iz execuled irstzad, making this a
twocyele instruction. I 'a’is '0°, the
Aczess Bank will be selacted,
owarriding the BSR value. Ifa' =1,
then the bark will ke s=lected as
psr the BSR valus (default).
Vionds: 1
Cycles: 12)
Motz 3 eyeles if skip and followsd
by a Z-word i nsiruztion.
3 Cyde Adivity:
i 22 23 24
Cacde Raad Frocass Mo
ragishar T Dda cps=ration
If ekip:
) Q2 23 24
Mo Mo Hao (§ 4]
oparabon | operston | operalion | operation
If gkip ard followed by 2-ward i netrustion:
i Q2 Q3 24
Mo Mo Hao (§ 4]
oparaton | operstion | operalion | operation
Mo Mo Hao (§ 4]
oparaton | operstion | operalion | operation
Ezamde: HERE CPFFEEZ REZ
HEQUAL
EQIAL
B=fare Instruction
PCAIess = HERE
W = 7
REG = 7
After Irstruction
I REG = W,
P = AddiEss (EQUAL)
II'REG = MW
P = Address (HEQUALD

Computer Organization and Microprocessors

Page 140

« Compare f with WREG, skip if >

CPFSGT Compare f with W, skip if f = W
Syntax: [l=bs!] CPFSGET f[a]
Ciperands: 0= f= 265
ae [01]
Ciperation: ifj = i),
skip if (f) = (W)
{unsigned comparison)
Status Affected: Mons
Encoding: IERH EEEE R
Description: Compares the contents of data
memory lezation ' to the contents
of W by performing an ursigned
subtradion.
If the contents of F are greater than
the contznts of WRES, then the
fetched instruction is discarded and
aNoF is execuled instead, making
this a two-cyele instruction. If 'a’ is
‘', the Access Bark will b=
selected, overriding the BSR valua.
If'a' = 1, then the bank will be
selected as per the BSR valus
{default).
VWonds: 1
Cyeles: 12
Mote: 3 cyeles if skip and followsd
by a 2-word i rstruction.
2 Cydle Activity:
i s 2 4
Dacoda Rasd Frooass Mo
ragistar ‘T Daka opsaration
If skip:
i s 2 4
Mo (¢ [x] Mo Mo
op=ration | opsrabion | ops@bon | oparation
If ekip and followed by 2-word instruction:
i s 2 4
Mo (¢ [x] Mo Mo
oparalion | opsmabion | ops@bon | oparalion
Mo (¢ [x] Mo Mo
op=ration | opsrabion | ops@bon | oparation
Examde: HERE CPFEST REG
NEREATER
CREATER
Bafore Instruction
PC = Address [(HERE)
W - 7
After Irstruction
TREG = W
P = Address [CREATER)
TREG = W
PC = Address (HEREATER)

Notes:

Computer Organization and Microprocessors

Page 141

*

« Compare f with WREG, skip if <

CPFSLT Cormpars f with W, skip if f < W
Syntae: [lzba!] CPFSLT f[4)
Ciperands: 0= f= 255
ae [01]
Cipsration: i) — (%),
skip if (F) = (%)
{unsigned comparison)
Shalus Affedted: MNone
Encoding: [oo | oooa | eeee | erer |
Description: Compares the contents of data
memary lozation 'F to the contents
of W by performing an ursigned
subtraction.
If the contents of F are less than
the contents of W, thenthe fetched
irstrudion is discarded and a HOP
iv executed instsad, making this a
tworoyele instruction. If 'a' is ‘0", the
Acoess Bank will be selected. 1f5a°
iz ‘1, the BSR will not be
owvarridden {default),
Words: 1
Cyaoles: 12
Maote: 2 cydes if skip and followsd
by a Zeword instruction.
2 Cydle Adtivity:
) 2 2 4
Cacoede Riasd Froass Mo
ragstar T Daa cp=ralian
If skip:
) 2 2 4
Mo Mo Mo Mo
oparation | opambion | oparalion | opsraion
If skip and followed by 2-word i restrustion:
)| 2 2 24
Mo Mo Mo Mo
oparation | opambon | oparablon | opsraion
Mo Mo Mo Mo
oparation | opambon | oparablon | opsraion
Examps: HERE CEFELT REQ
HLEEE
LESE
Bafore Instruction
!-:'-.:: = .:.-:l-:lrea-s [HERE)

After Instruction

I REG
PC

IIREG
PC

W
Addrass [LEEE)
W

Address [HLEES)

([

Notes:

Computer Organization and Microprocessors

Page 142

< Move f

MZVE Feliove f
Syntax; [lzbet] MOWE T Ld La]]
Ciperands: 0= f= 255
de [0,1]
ae [01]
Cipsration: f—dest
Statuz Affected: M Z
Encoding: I 0101 I noda I IIEE | EEES I
Desaription; The contznts of register T ars
moved to a d estination dependent
upzn the status of ' f'd"is T, the
result is placsd in W, Ifd"is T, the
result is placed back in register F
(default). Location T can be any-
where inthe 256-byle bank. If ' is
‘0, the Access Bank will b=
selactad, overriding the BSR valus.
If‘a’ = 1, then the bank will be
selectad as par the BSR valus
(default).
Words: 1
Cycles: 1
O Cydde Activity:
=] 2 3 24
Dacode Faad Frocass ke W
regshar T Daa
ﬂmﬁg: WoVE REZ, W
Bafore Instruction
REG = ImE
W - OmFF
After Instruction
REG = O
W = &

Notes:

Selecting the destination register:

/I If d=0, the value in register 0x21 is
placed in W register

“(W) € (0x21)”

MOVF 0x21, 0

/[If d=1, the value in register 0x21 is
placed back in the same register
“(0x21) €« (0x21)”

MOVF 0x21, 1

/I If d is not specified, it defaults to 1, so
the value in register 0x21 is placed back
in the same register

“(0x21) €« (0x21)™

MOVF 0x21

Computer Organization and Microprocessors

Page 143

« Move fs (source) to 1st word, fd (destination) 2nd word

MOVEF

Mowve f to f

Syntax;
Cipsrands:

Oiperation:

Status Affeced:
Encoding:

1at word {scurce)
2rd word [destin)

[labet] WMOVFF iy

0= f, = 4005
b= fy = 4005

(fe) — Ty
Mone

1100 C
1111 E

CIL IICE
ELff i o

errEg
Errfy

D& saription:

The contents of scurce registar '
are moved to destination register
fy’. Location of sourcs 'f;' can bs
armywhere in the 408E-byts data
spacs (000h to FFFh) ard location
of destiration fy' can also b=
armwhers from O00h o FFFh.
Eithar sourcs or destination can be
W {a useful spedal situation).
HOUEF is particularly useful far
transferring a data mamory loeation
to a peripheral register (such as the
transmit buffer or an 'O port).

The HOVFF instruction cannot uss

the PCL, TOSU, TOSH or TOSEL as
the destination register.

The HCUFF instruction should not
b= used tomodify intsrmupt ssttings
while any interrupt is enabled (ses

Wilards:

Cycles:

) Cyde Activity:
)|

page 730
2
203)

2

3

2

Lz ode

Rad
ragiskar T
(5T

Prooass
Dda

MO
oparalion

Lz ode

M

oparalion
Mo dumrmy
read

MO
opsaralion

Wille
ragiskar T
(esty

Lxampls:

HCAVFF EEG1, FREGZ

Befare Instruction

REG
REG2

A3
=i

After |nstruction

REG
REG2

A5

3,

Notes:

Computer Organization and Microprocessors

Page 144

< Move literal to BSR<3:0>

MOVLE Mive literal to kew nibkle in BSR
Syntax; [laber] MOWLE K
Cpsrands: 0=k= 255
Cip=ration: k — B3R
Status Affected: Mons
Encoding: | Q000 I noal | kkkk I nkkk |
Dlescripticn: The 8-hit literal 'k is loaded inlo
the Bank Select Register { BSR).
Wilords: 1
Cyelas: 1
) Cydle Adivty:
i i 3 24
Dacode Readlileral Frooass Wnle
k Oaa lieral 'k 1o
BSR
Exampe: HOVLE &
B=fore Instruction
BSRregelar = OxiE
After Irstruction
BSRregeler = OxiE
% Move literal to WREG
MCWLW Moo literal to W
Eynta: EEEED MOVLW K
Oipsrands: 0=k = 255
Cip=ration: k— W
Status Affected: Mone
Ercoding: [oooo | aaio | weme | meew |
Description: The =ighit-bit literal 'k is loaded
irrho W
Words: 1
Cycles: 1
2 Cyde Activity:
21 22 23 24
Deazida Rasd Frocass Wrile koW
Ikard ‘K Daka
Exampe: MOV I®EA

After Instruction

W

= OEEA

Notes:

Notes:

Computer Organization and Microprocessors

Page 145

< Move WREG to f

MCWWE Mowe W to f
Syntax: [labs!] MOVWFE fla]
Operands: 0= f= 255
ae [01]
Operation: (W) —f
Status Affected: Mone
Encoding: | o11n | 11la | £444 | ECEr |
Dasaription: Move data from W o register 'F.
Location f can be anywhers in the
256-byb= bank. If 'a’is °0°, the
Access Bank will be selected, owver-
riding the BSR valus. If 2’ = 1,1hen
the bark will be s=lected as per the
BSR value {default).
Words: 1
Cyelas: 1
) Cyde Ativity:
=] Q2 23 2
Dacode Razd Frocass Wi it
ragistar T Dala ragistar T
ﬂm; VR REG
B=fore Instruction
W = OmdF
REG = o=FF
After Instruction
W = =dF
REG = O=dF
% Negate f
NEGF MNegate f
Tyntax; [l=bel] MEGF TLa]
Ciperands: 0= f= 265
ae [0,1]
Cipration: i+t
Status Affected: N, OV, C, DT, Z
Enzoding: | n1io | 110a | 544 | LEEs |
Deseription: Lezation T is negated using tac's
complement. Theresultis placed in
the data memory loeation 'F. Fa”is
‘", the Access Bark will b=
selected, overriding the BSR value.
If'a’ = 1, then the bank will be
selecled as per the BSR valus.
Words: 1
Cyales: 1
O Cyde Activity:
=] o2 23 4
Dacoda Razd Frocass Wit
ragistar T BEE] ragiskar '
Example: WEQF REG, 1

Before Instruction

REG

= 0011 1010 [QE3A]

After Irstruction

REG

= 1100 0110 [QECE]

Notes:

Notes:

Computer Organization and Microprocessors

Page 146

< Setf

S5ETF Set f
Syntax; [lsbel] SETF T Lal
Operands: 0= f= 255
ae [0,1]
Cipration: FFh —
Status Affected: Mone
Encoding: | 011o | 100a | ILee | cres |
Description: The contents of the specifisd
resgisber are set to FFh. [f9a" s '0°,
the Acosss Bank will be seleched,
owverriding the BER value. K" is
‘1", then the bank will be seleded
5 par the BSR value (default).
Words: 1
Cyeles: 1
2 Cyde Adtivity:
21 e 3 24
Dacide Raad Procass Wile
ragiskar T Data ragkstar T
Example: EETF REZ
Before Instruction
REG = =BA
After Imstruction
REG = =FF

Computer Organization and Microprocessors

Page 147

« Table Read “TBLRD”
The Memory-Block Transfer reads and/or writes to a range of memory locations. The following two bullets
show all the various options for table read “TBLRD” and table write “TBLWT”.

TELRD

Table Read

Syntax:
Operands:
Operation:

Stabus Affected:

Encoding:

Description:

Wiords:
Cycles:

[fabel] TELRD [*; *+; *-; +*)
KNorne

if TELRD *,

(Prog Mem (TELPTR)) — TABLAT,
TELPTR — Mo Change;

if TBELRD *+,

(Prog Mem (TBLPFTR)) — TABLAT,
(TBLPTR}) + 1 — TELPTR;

if TBLRD *-,

(Prog Mem (TBLPFTR)) — TABLAT,
{(TBLPTE) -1 — TBLPTR;

if TBLRD +*,

{(TBLPTR} + 1 — TELPTR;

(Frog Mem (TBLFTR)) — TAELAT,;

Mone

ooan aaoo aaoo 10nn
nn = oO#%
- 1F 4

Zw

-

- A4

This instruction is usad to read the
contents of Program Memory (PN, To
address the program memory, a pointer
called Table Poimnter (TELPTR) is usad.
The TELFTR (a 21-bit pointer) points
to each byte inthe program memory.
TELFTR has a 2-Mbyte address
rarnge.

TEBLPTRE[O] = 0 Least Significant
Byte of Program
femory Word

TEBLFTRE[O] = 1: Most Significant
Byte of Program
femory Word

The TELED instrnuction can modify the
value of TELPTR as follows:

= no change

+ post-increment

post-decrement

pra-increment

1
2

0 Cycle Activity:

21

Q2 Q3 24

Decaods

M M M
operation op=ration operation

Mia
ops=ration

Mo oparation Mo
{R=ad Pmgram | opsration
Memony]

Mo aparation
{ Wit

TELRD Tabla Raad {Continuad)
Example 1: TELRD *+ ;
Before Instruction
TABLAT = 55
TBELFTR = e00AZEE
MEMORY (e D0AIEGE) = he34
After Instruction
TABLAT = he34
TELFTR = e D0AZET
Exarmpls 2 TELRD +¥ ;
Before Instruction
TAELAT = Al
TELFTR = 01 AZET
MEMORY (c01A3IET) = 12
MEMORY {01A358) = the34
After Instruction
TABLAT = he34
TBELFTR = 014258
Note:

“TBLPTR” value is stored in three registers:

TBLPTRU

TBLPTRH

TBLPTRL

Program memory

TABLAT

After executing of TBLRD instruction, the
content of TBLPTR location is stored in

TABLAT

Computer Organization and Microprocessors

Page 148

o,

3

s’

Table Write “TBLWT”
TBLWT instruction performs the reverse of the TBLRD instruction by moving the content of register TABLAT to
the location pointed to by the TBLPTR in memory.

TELWT Table Write TELWT Table Write (Continued)
Syntax: [fzbal] TBLWT (" "+ "~ +%) Words: 1
Operands: More Cycles: 2
Dperation: if TBLAWT®, 2 Cyele Activity:
(TABLAT) — Holding Reqistar;
TELPTR — No Change: Q1 Q2 3 Q4
if TELWT "+, Decods Mo Mo Mo
(TABLAT) — Holding Register; operation | operation | operation
(TELFTR) + 1 — TELPTR; Mo Mo Mo Mo
if TBLWT®-) . .)
fi i i i
(TABLAT) —s Holding Register: FprEien ”'?;r:;; no| epsrERen ?Lﬁ'f’;
ITBLF'THI —_ 1 —F TBLF'TH. TAE-LAT:I Hddil‘lg
'_f TBLWT'_" 1 Ragistar)
(TELFTR) + 1 — TBLPTR;
(TABELAT) — Holding Register; Exampla 1 TELWT *+;
Status Affacted: Mone Before Instruction
. TABLAT = Ox55
Encoding: poaa | ooan | ooad 1lnn TELFTR = Ox00A356G
nn = D HIZOLOING REGISTER
- 14 {Ce00AZEE) = O»FF
- - After Instructions (table write completion)
= 14 TABLAT = 0Ox55
Cescription: This instruction uses the 3 L5Bs of L%.I]Eﬁ,a REGISTER OxBOARST
TELPTR to determine which of the (DD0A3EE) = [Ox55
& holding registers the TABLAT is Example Z: TELWT +%;
written to. The holding registers are .
used to program the contents of Before Instruction)
Program Mamory (P.W.). (Rafar %ﬂ;#; z 3:3?339.-&
to Section 6.0 “Flash Program HOLDING REGISTER
it i (0] 385A) = OxFF
Mamory ft:nr additional de-tal!s on HOLDING REGISTER
programming Flash memaory.) {0%01389E) = OxFF
The TBLFTR {a 21-bit painter) points After Instruction (table write complation)
to each byte inthe program memory. TAELAT = oxad
TELPTRE has a 2-Mbyte address TELFTR = 0x01329B
HIZLOING REGISTER
range. Thg LSk of the TELFTR (001 3894] = OsEF
salects which tl'f.l'tE' of the program HOLDIMG REGISTER
memory |location to access. (001 385E) = (Ox34
TBELPTR[D] = 0: Least Significant
Evte of Program
e mory Word
TBLFTRIO = 1:Most Significant
Evte of Program
Memory Word
Tha TELWT instruction can modify the
value of TELPTR as follows:
* no change
« postincrement
+ post-decrement
+ predncrament
Computer Organization and Microprocessors Page 149

*,

% Swap nibbles in f

SWaPF Swap f
Syntax: [lzbal] SWAPF f[d[a]]
Cperands; 0= f< 255
de [01]
ae [0,1]
Cipsration: (fed:0=] — dest<T 4=
(Ffd=] — dest<3 (=
Status Affected: None
Enzoding; | 0oLl | 10da | LLEE | EEEE |
Description: The uppsr and lower ribbles of
redister F are exchanged. F ' is
‘0", the result iz placsd in W.IF4" is
‘1", the result is placed in register T
(default). If ‘s’ is °0°, the Access
Bank will b= s=lected, overniding
the BSR walue. If 'a"is ‘17, then the
ke nk will b= s=lected as per the
BSR valus {d=fault).
Wilords: 1
Cycles: 1
3 Cydle Activity:
%] 2 3 4
Desnde Fead Process Writa 1o
regIster T Dala destnaion
ﬂﬁmﬂg; EWRDF REQ
Bafare Instruction
REG = OEE3
After [retruction
REG = OE35

Computer Organization and Microprocessors

Page 150

5.3. Logical Operation

Programs require the ability to test for validity of certain conditions based on the last operation executed
or the contents of two memory locations, so processors provide a set of logical instructions that may be
used to test validity of certain conditions.

PICmicro also offers a wide range of logical operations. These operations are used for modifying data as
well as setting flags based on the results. These flags can be used later for decision making.

The remainder of this section will describe in detail the logical operation of AND, Bit Set/Clear/Test, OR,
XOR, Rotate and Test for PICmirco.

% AND Literal with WREG

ANDLW AND literal with W Notes:
Syntax: [fabal] AMOLW Kk .
Cperands: 0zk= 255
Ciperation: (W AND. ke — W
Status Affected: M, Z
Encoding: | a0ao | 1011 | kkkk I kkkk I
Description: The contents of W are AMND ed with
the S-bit literal k. The result is
placzd in W,

Yords: 1
Cyicles: 1
2 Cyele Activity:

21 o2 03 %)

Decode Read literal Process Wit to W
K Data
Example: ANDLW DxEF
Before Instruction
W = (xA3
After Instruction
W = 03

Computer Organization and Microprocessors Page 151

% AND WREG with f

ANDWF AND W with £
Syntax; [fabel] ANOWE f[d [a]]
Ciperands: O=f= 2585
de [0,1]
ae [0,1]
Oiperation: (W AND. ify — dest
Status Affected: M, £
Encoding: | ooal | o1da | FEff | FEFE |
Description: The contents of W are AND'ed with

register T, If d"is ‘0, the result is

stored inW. If 'd"is ‘1", the result is

stored back in register 'f (default).
If ‘a' is ‘0, the Access Bank will be
selected, If 'a" is "1, the BSE will
not be overidden (default).

Words: 1
Cycles: 1
2 Cycle Activity:
21 2 o3 g
Dacode Read Procass Write o
ragister 'F DCata dastination
LErample; ANDWF REG, W
Before Instruction
W = 0xi7
REG = OxC2
After Instruction
W = (Ox02
REG = OxC2

Computer Organization and Microprocessors

Page 152

« BitClearf

BCF Bit Clear f
Syntax: [fabel] BCF fb[.a]
Operands: 0=f=258
O0=zb=z7
ac [01]
Operation: 0 — fahbo
Status Affected: Mone
Encoding: | 1001 | bbba | EEEF | Ffff |
Description: Bit ‘b" in register 'f is cleared. If "a
is ‘0, the Access Bank will b=
selected, overriding the BER value.
If ‘@' = 1, thenthe bank will be
selected as per the BSR valus
(default).
Words: 1
Cycles: 1
2 Cyele Activity:
1 [Q3 24
Decode Read Procass Writa
reqister ‘f Data register T
Example: BOF FLAG REG,

Before Instruction

FLAG_REG

After Instruction

FLAG REG

0xC7

Oxd7

Computer Organization and Microprocessors

Page 153

% BitSetf

B3F Bit St f
Syntax; [lzbe| BSF Tblal
Operands: 0= f= 265
Oeb=7
ae [0.1]
Oiperation: 1 — fch
Status Affedted: None
Enzoding: | 1000 I bhba I LLEE | EEEE I
Description: Bit b' in register ' is set. Fa™is 07,
the Access Bank will be selacted,
owvarriding the BSR valus. f 2’ = 1,
then the bark will b= s=lectsd as
per the BSR value.
Whords: 1
Cycles: 1
2 Cycle Adtivity:
5] 2 2 4
[Dacode Faad Frocass Wenle
ragskar T Dda ragistar ‘T
ﬂﬂmﬂg: ESF FLAG_REZ,
B=fore Instruction
FLAG_REG = O£D&
After [rstruction
FLAG_REG = O=EB&

Computer Organization and Microprocessors

Page 154

« Bit Test f, Skip if Clear

BTFSC Bit Test File, Skip if Clear Notes:
Syntax: [d=bel] BTFSZ fb[a] .
Cperands: 0= f< 255
l=b=T
ae [1.1]
Ciperation: skip if (f<b=) =0
Status Affected: Mone
Encoding: IESNESEEEES
Deseription: If bit ‘b’ in register T is “0°, then the
rext instruction is skippsd.
If bit ‘b is ‘0", then the next
irstru dion fetched during the current
irstrudion exscution is discarded
ard a NOP is executed instaad,
making this 3 two-cyels instruction. f
‘a" iz '0°, the Access Bank will be
selected, overriding the BSR value.
‘a"= 1, then the bank will b= selactad
& par the BSR valus (default).
Wilonds: 1
Cyeles: 1(2)
MNote: 3 eyeles if skip ard followed
by a Z-word irstruction.
3 Cyde Aclivity:
21) 23 24
Dacode Raad Process Mo
ragistar ‘T ala operaion
If ekip:
21) 23 24
Ho Mo 8] Mo
operalion | oparation aperation cperatian
If ekip and followed by 2-woard instruction:
21) 23 24
Ho Mo 8] Mo
operalion | oparation aperation cperatian
Hia {[x] {e] Mo
operalion | oparation aperation cperatian
Ezamde: HERE BIFEC FLAZ, 1
FRLEE
TRUE

Before Instruction

P = address (HERE]
After Instruction
N FLAG] = = 0
PC = ddrass (TRUE]
NFLAG=I> = 1;
P - addrass (FALEE)

Computer Organization and Microprocessors

Page 155

< Bit Test f, Skip if Set

ETF55 Bit Test File, Skip if Set
Syntax; [lzbsl| BTFSE fbla)
Cipsrands: 0=f< 255
O=b=<T
ae= [01]
Ciperation: skip if (fab=) =1
Status Affected: Mone
Ercoding: | 1010 | toba | £33+ | EEEL |
Description: If bit ‘b’ in register F is ‘1, then the

next instruction is skippsd.

If bit ‘b iz “1', then the next

irstrudion fetched during the current

irstmudion execution is discarded
ard a NOP is executed instead,

making this a tao-cyds instrudtion. if

‘3" ig '0°, the Access Bank will be

selacted, owarriding the BSR valus . if
2" = 1, then the ka rk wil be szlactad

& par the BSR walue (default).

Wilords: 1
Cycles: 12

Maote: 3 aycles if skip and followed

by a 2-word instruction.

) Cydle Adivity:
21 [3 24
Dacnde R Process Mo
registar ‘T Cata operation
If kip:
21 [3 24
M M L) Mo
operglion | op=rEtion aperalion cperatian
If skip ard followed by Z-word imstrustion:
21 [3 24
M M L) Mo
operglion | op=rEtion aperalion cperatian
Hi M M Mo
operglion | oparation aperallon operation

Example: HERE
FRLEE
TRUE

Before Instruction
PC

After Instruction
T FLAG=1 =
PC
N FLAIG=] =
PC

mwonn
—_

BTFEE FLRAZ,

addrass (HERE]

addiess (FRLEE)

aodiass [TRIE)

Computer Organization and Microprocessors

Page 156

o,

« Bit Toggle f

ETG Bit Toggle f
Syntae: [l=bel] BTG Tola]
Cipsrands: 0= f= 255
D=b=T
ae [01]
Cipsration: {Teh) — fochie
Status Affected: MNone
Encoding: [oair | roma | reee | reee |
Description: Bit &' in data memory lozation ' is
imvarted. If ‘s is ', the Access Bank
will b= s=lected, owverriding the BSR
value. If @' = 1, then the bark will be
selectad as per the BSRE valus
(default).
Vilards: 1
Cyecles: 1
O Cyde Activity:
(]| [3 24
Do Raad Frosass Wirle
register T Daa registar T
ﬂmﬁg: ETG FORTE, 4
Bafare Instruction:
PORTE = 011l 010l [Qe75]
After [retruction:
PORTE = 0l1lo 010l [OEES|

Computer Organization and Microprocessors

Page 157

¢ Exclusive OR literal with WREG

KORLW Exclusive OR literal with W Notes:
Syntax: [labed] XORLW k "
Opsrands: Ok =255
Operation: (W) KOR. Kk —'W
Status Affected: N, Z
Encoding: | noog | 1010 | kkkk | KRR |
Description; The contents of W are XOR ed
with the 8-bit litaral 'k". The result
iz placedinW.
Words: 1
Cyecles: 1
) Cydle Activity:
(] 2 23 [T
Dacode Razd Frooass VT ile 1o'WW
LT A Oaka
Exampls: XORLW OxAF
Before Instruction
W = EBE
After Instruction
W = A

Computer Organization and Microprocessors Page 158

+» Exclusive OR WREG with f

KORWF Exclusive OR W with f
Syntax: [labal] XORWF f[d [a]]
Ciperands; 0= f< 2565
de [31]
ae [01]
Ciperation: (WA XOR. () — dest
Shatus Affected: N, I
Encoding: | maol | 1oda | LLEE | EEEE |
Desaription: Exclusive OR the contants of W
with register . [f d' is ‘0", the resuli
iz stored in W, If 'd’ is ‘1, the resuli
iz stored back in the register T
(default). f 'a’ is 0", the Access
Bark will b= s=l=cted, overriding
the B5R value, [f5a”is '17, then the
ka nik will b= s=lected as per the
BER valus {dsfault).
Wilords: i
Cycles: 1
2 Cyde Activity:
)| 2 3 24
[z Faad Frosass Wik b
ragskar Oaka daslinalion
ﬂﬁmﬂg; XORENF EES
Bafars Instruction
REG = IxAF
i = xBE
After |retruction
REG = IXiA
W = (xBHE

Computer Organization and Microprocessors

Page 159

< Inclusive OR literal with WREG

ICORLW Inclusive OR literal with W

Syntax: [labet] IORLW k

Cipsrands: 0=k = 255

Ciperation: (W OR. k='W

Status Affected: N, Z

Encoding: | 0oan I 1001 I KKER | kkkk I

Desaription; The contenls of W are OR'ed with
the eighi-bit literal 'k". The result is
Haced in W.

Wards: 1

Cyelas: 1

O Cyele Activity:

1 2 3 a4
[Deacoda Faad Frooass WWrike bo W

lilera DA

ﬂﬁmﬂg: ToRLW x5

Before Instruction

W

= Ox8n

After Iretruction

W

= =BF

Computer Organization and Microprocessors

Page 160

< Inclusive OR WREG with f

I3RWF Inclusive OR W with
Synitax: [}=b=!] 1ORWF f[d [a]
Ciperands: 0= f< 265
de [0,1]
ae [01]
Ciperation; (W ORI — dest
Status Affected: N, Z
Ercading: | ooor | ooas | reee | eeer |
Deseription: Incdusive OR W with register T, If
s ‘0, the result is placad in W, If
i “1’, the result is placed backin
register T (default). F'a’ is ‘07, the
Ancess Bank will be selectad, over-
riding the BESR walus. [f53' =1, then
this biark will be selected as per the
BSR valus (default).
Wilards: 1
Cyeles: 1
) Cydle Activity:
)| [3 234
Cactde Fasd Frosass rila o
ragetar T Oaka daslinalion
Examtle: ICHNF REEULT, M
Bafare Instruction
RESULT = 0x13
W = e
After Irstruction
RESULT = =13
W = OmEd

Computer Organization and Microprocessors

Page 161

o,

+ Rotate Left f through Carry

RLCF Rotate Laft f through Carry
Syntax: [f=bs!] ELCF f[d[a]
Ciperands: 0= f= 255
de [0,1]
ae [0,1]
Ciperation: i(fon=) — dest<n + 1=,
ifcf=) = C,
(C) — dest=0=
EStatus Affected: oM Z
Erncoding: o1l | olda | frEE | EEff
Description: The contents of register T are
rotabed one bit to the left through
the Carry flag. f 'd’ is °07, the result
iz Pacedin W, If 'd" iz '1", the rasult
iz stored back in register T
idefault). If 'a'is 07, the Access
Bark will b= s=lacted, overniding
the BER valus. If 2" = 1, then the
keank will b= sslected as per the
BER wvalue {default).
| regslet |
Vilords: 1
Cycles: 1
Q) Cyde Adtivity:
%) 2 (mE] 24
Dacode Raad Prooass Wik b
regshar T Data daslinalion
Exampls: BLCF BED, W
Bafore Instruction
REG = 1110 01l@
c = a
After Instruction
REG = 1110 §l1l@
W = 1180 1108
c = 1

Notes:

Computer Organization and Microprocessors

Page 162

+ Rotate Left f (No Carry)

RLHCF Rotate Left f (no carry)
Synitax: [t=be!] RLMCF f[.d [a]]
Ciperands: 0= f= 255
d e [0,1]
ae [0,1]
Cipsration; (fne=) — dest=n + 1=,
(fi=) — destals
Status Affected: M, Z
Encoding: op1co0 | oiga | free | Eefr
Desaription: The conterts of register T ars
rotated one bit o the left. Ifd7is 07,
the result is placed in W, f 'd"is '1",
the result is stored back in register
T idefault). F 2’ & °0', the Access
Bark will b= selested, overriding
the BER value. If 2" is ‘1", then the
Eark will b= selected as per the
BER value {default).
Vilards: 1
Cycles: 1
i Cyde Activity:
i1 2 (e 24
Dz Read Frocass il o
ragshar T Data daslinalion
Ezxample: RLHCF REZ

Bafore Instruction

REG

= 1010 1011

After Instruction

REG

0121 011l

Notes:

Computer Organization and Microprocessors

Page 163

o,

+ Rotate Right f through Carry

RRCF Ratate Right f through Carry
Synitax: [zb=s!] RRCF f[d[a]]
Cipsrands: 0= f= 255
de [01]
ae= [01]
Cipsration: (fenz=) — desten — 1,
(fcz) — 1,
(C)] — dest=T=
Status Affected: C N, Z
Enzoding: [oonr | ooda | reee | eeer |
Description: The contents of registar T ars
ratated one kit to the right through
the Carry flag. F'd"is ‘0, the result
iz placedin W. If d'is 1", the result
v paced back in register '
(default). If 'a’"is °0°, the Access
Bank will b= selected, awverriding
the BSR valua. If'a”is ‘17, then the
ke nk will b= s=lected as per the
BSR walue {default).
| regiierr |
Words: 1
Cycles: 1
3 Cye Adivity:
=] [3 et
[acde Rasd Frocass Wik o
regskar T Daa daslinalion
Example: RRCF REZ, W
Bafore Instruction
RES = 111& 0119
C = 1
After Instruction
REG = 1119 0110
W = 0111 0oll
o = a

Notes:

Computer Organization and Microprocessors

Page 164

+ Rotate Right f (No Carry)

RRHCF Ratate Right f (no carry)
Syntax: [l2bs!] RREMWCF f[d[a]]
Ciperands: 0= f= 265
de [01]
ae [01]
Operation: (fenz=) — desten — 1=,
(facilz=) — degt<T=
Status Affected: MW, Z
Encoding: op1oo0 | ooda | oreee | EcEsf
Description: The contents of register F are
rotated one Bt to the nght. IF4° is
‘o', the result is placsd in W. 1f 4" is
1", the resultis placed back in
register T (defaull). f 'a iz “07, the
Acoess Bank will be selected,
averriding the BSR valua. 153 is
‘1", then the bank will be selacted
&8 per the BSR value [default).
Vilords: 1
Cyeolas: 1
) Cyde Activity:
() 22 3 24
[Dacioda Raad Frooass Wrika b
ragiekar T Daka dasliralion
Examde 1: RRHCF REZ, 1, @
B=fore Instruction
REG = 1101 0111
After Instruction
REG = 1110 1811
Examde 2 RRHCF REZ, W
B=fore Instruction
W = 7
REG = 1101 0111
After Instruction
W = 1110 14811
REG = 1101 0111

Notes:

Computer Organization and Microprocessors

Page 165

< Testf, skipif 0

TSTFSZ Testf, skip if 0 Notes:
Syntax; [l=ba!] TESTFEZ f[.a] = Write a C code segment and an
. . Assembly code segment that sort the

8] reds: 0= f= 255

pera G [S 1] content of locations 0x120, 0x122, and

] o 0x124 such that 0x120 contains the
Oiperation: skipiff =10 smallest value and 0x124 contains the
Status Affeded: HNone largest value.
Encoding: | 011o | olla | LEET | § 444 | Solution
Descripticon: If 'f = 0, the next instruction,
fetchad during the current

instrudion exscution is discarded
and a HaF is executed, making this
a bwo-oyd e instruction. 15" is 07,
the Access Bank will be selectad,
owverriding the BSR value. If53" is
‘1", then the bank will be selach=d
& par the BSR valus (default).

Words: i

Cycles; W2}
Mote: 3 eyeles if skip and followed
by a Zowiord instruction.

3 Cyele Activity:
)| [23 24
Dacooa Fazd Frocass Mo
ragiskar T Daka opsralion
If skip:
)| [23 24
Mo] Mo Mo

oparation | opesm@ton | opem@bon | opsraion
If skip ard followed by 2-ward instruction :

[2 22 2
Mo [[] Mo Mo
oparation | opambon | opamton | oparaion
Mo [[e] Mo Mo

oparation | opamlion | opamtion | oparalion

Example: HERE TSTFEE CHT
MZIERD
ZERD
Before Instruction
P = Address [HERED
After Irstruction
NCHT = i,
P = Address [ZERC)
NCHT s 000,
Pz = Address (mEERD)

Computer Organization and Microprocessors Page 166

5.4. Branch Operations

Processors execute one instruction after another unless interrupted or redirected. In order to implement
high level language constructs such as conditional statements (i.e. If-Then-Else, Switch) or loop
statements (i.e. For, While), processors provide an ability to branch to other locations in program memory
based on conditions. Branch instructions allow the PC value to be redirected to locations in memory
other than the next instruction (PC + 2). In other words, in normal execution, once an instruction is
executed, the PC is changed to PC+2. But if the condition for the branch is true, then the PC will be
changed to the new location specified by the branch instruction.

PICmicro provides a set of branch and GOTO instructions. The remainder of this section covers branch
instructions that redirect PC based on status of Carry, Overflow, Negative, Zero flags, or unconditionally.

< Branch if Carry

BC Branch if Carry Notes:
Syntax: [labef] BC n .
Dperands: 2B n= 127

Cperation: if Carry bit is "1

(PCi+2+2n = PC
Status Affected: Mone

Encoding: | 1110 | oo1D | nnon | nnnn |

Description: If the Camy bit is 1", then the

program will branch.

The 2's complement number ‘2n'is
added to the PC. Since the PC will
have incrementsd to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then
a two-cycle instruction.

Wards: 1
Cycles: 1(2)
2 Cycle Activity:
If Jurmp:
a1 Q2 o3 24
Decode Read literal Procass Wirite to PC
i Data
M Mo M Mo
operation aparation operation oparation
If Mo Jump:
21 2 13 24
Decode Read literal Procass Mo
n Data oparation
LExample: HEHE BC JUME

Before Instruction

PC

= address (HERE)

After Instruction

If Camy
PC

1;
address [(JUME]

If Camy d;
PC address (HERE + 2)

Computer Organization and Microprocessors Page 167

o,

« Branch if Negative

BM Branch if Negative Notes:
Syntax: [labei] BN n .
Operands: 2R =n= 127
Cperation: if Meqative bit is ‘1
(PCIH+2+ 2n = PC
Status Affectsd: Mone
Encoding: | 1110 | olLo | nnnn | nnnn |
Description: If the Megative bitis ‘1, then the
program will branch.
The 2's complement number '2n’ is
added to the PC. Since the PC will
have incrementzad to fetch the nesxt
instruction, the new address will be
PC + 2 + 2n. This instruction is then
a two-cycle instruction,
Words: 1
Cycles: 12
2 Cycle Activity:
If Jump:
21 2 3 24
Decode Read litzral Process Wirite to PC
n Data
Mo Mo Mo Mo
operation oparation operation oparation
If Mo Jump:
21 2 3 24
Decode Read litzral Process Mo
n Data oparation
Example: HERE BN Jump
Before Instruction
PC = address (HERE]
After Instruction
If Ne%ative = 1,
C = address (Jump)
If Ne%ative = ;
C = address (HERE + 2]

Computer Organization and Microprocessors

Page 168

o,
o

Branch if Not Carry

BEMC Branch if Not Carry Notes:
Syntax: [lzbel] BEMC n .
O perands: 28 =n= 127
O peration: if Carry bit is ‘@
(PCi+ 2 +2n—= PC
Status Affected: None
Encoding: | 1110 | 0011 | nnon | nnnn |
Description: If the Camy bit is ‘0", then the
program will branch.
The 2's complement number 2n’ is
added to the PC. Since the PC will
have incremented to fetch the nest
instruction, the new address will be
PC+ 2+ 2n. This instruction is then
a two-cycle instuction.
Words: 1
Cycles: 102)
2 Cyale Activity:
If Jump:
21 2 3 2
Decoda Fead litaral Process Writa to PC
‘n Data
Mo Mo Mo Mo
operation operation operation oparation
If Mo Jump:
21 oz Q3 24
Decods Read litaral Process Mo
n DCata oparation
Example: HERE BNC Jump
Before Instruction
PC = addmess [(HERE]
ARer Instruction
If Carry = 0
PC = address (Jump)
If Carry = ;
PC = address (HERE + 2)

Computer Organization and Microprocessors

Page 169

o,

« Branch if Not Negative

BMN Branch if Not Negative Notes:
Syntax: [fzbel] BMH n .
Operands: 1282 n= 127
Cperation: if Megative bit is 0’
(PCI+ 2 +2n— PC
Status Affected: Mone
Encoding: | 1110 | 0111 | nnnn | nnnn I
Description: If the Megative bit is ‘07, then the
program will branch.
The 2's complement number ‘2n" is
added to the PC. Sincs the PC will
have incrementad to fetch the next
instruction, the new addre ss will be
PC + 2 + 2n. This instruction is then
a two-cycle instruction.
Waords: 1
Cycles: (2]
2 Cyle Activity:
It Jurmp:
21 o2 3 4
Decode Read literal Procass White to PC
n Data
i Mo M Mo
operation oparation operation oparation
If Mo Jump:
21)] 3 2
Decode Read literal Procoss Mo
‘n Data oparation
Erample: HERE BNM Jump
Before Instruction
PC = address [(HERE]
After Instruction
If Ne%ative =
[= address [Jump)
If Ng%ati'm = 1;
C = address (HERE + 2}

Computer Organization and Microprocessors

Page 170

Branch if Not Overflow

BNOV Eranch if Not Overflow
Syntax: [label] BNOYV n

O perands: 128 =n =127
Operation: if Owerflow bit is ‘0’

(PCI+ 2 +2n —=PC
Status Affected: Mone

Encoding: | 1110 |-:-1-:-1 | nnnn | nnnn |

Description: If the Overflow bit is *o

program will branch.

The 2's complement number ‘2n’ is
added to the PC. Since the PC o will
have incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then
a two-cycle instruction.

. then the

Words: 1
Cycles: 102)
2 Cycle Activity:
If Jump:
1 [o3 24
Decode Fead literal Process | Writa to PC
n Data
Mo Mo Mo Mo
oparation oparation opearation oparation
If Mo Jump:
21) o3 a4
Dacode Read literal Procass Mo
n Data oparation
Example: HERE BHNCV Jump
Before Instruction
PC = address (HERE)
After Instruction
If Crvarflow =
PC = address (Jump)
If Ovarflow = ;
PC = address (HERE + 2}

Notes:

Computer Organization and Microprocessors

Page 171

< Branch if Not Zero

ENZ Branch if Not Zaro
Syntax: [l=bal] BNZ n
Operands: 128 =n=127
Operation: if Zero bit is ‘0
(PC1+2+2n = PC
Status Affected: Mone
Encoding: | 1110 | nonl | nnnn | MO |
Description: If the fero kit is “0°, then the
program will branch.
The 2's complement number 2n’ is
added to the PC. Since the PC will
have incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is then
a twio-cycle instruction,
Words: 1
Cyicles: 123
2 Cycle Activity:
If Jump:
N 2 o3 i
Decode Read literal Procass Wirite to PC
n Data
Mo Mo Mo Mo
operation operation operation operation
If Mo Jump:
21 2 o3 1
Decode Read literal Process Mo
n Diata opearation
Example: HERE BNZ Jump
Before Instruction
pC = address (HERE]
After Instruction
If Zero =
PC = address (Jump)
If Zaro = 1
PC = address (HERE + 2]

Computer Organization and Microprocessors

Page 172

o,

< Branch if Overflow

BOW Branch i Cwerflow
Syntax; [izb=] BOW N
Cp=rands: 128 < n< 127
Ciperation: if Crvarflow bitis 1

(PC]+ 2+ 2n — PC
Status Affected: Mone

Encading: | 1110 | 0100 | rmnn | nnnn |

Description: If the Crwerflow bit is ‘17,

program will branch,

The Z's complamsnt number 2n' i
added to the PC. Since the PC will
have incremented to fetzh the nesxt
irstru cion, the new addrass will be
FC+2+ 2n. Thisinstruction is then

a two-cyde instruction.

then the

Wonds: i
Cycles: W2)
) Cwle Adtivity:
If Jump:
o o2 o3 o4
Lacode Readlileral Frocsass Virlle 1o PC
™ Oaa
MO [([] MO MO
oparalion | operaion | opsmaton cparaion
If Mo Jurmp:
o o2 o2 4
Lacode Readlileral Procass Mo
o Daa cp=raion
Example: HERE ECV UMD
Before Instruclion
PC = addrass (HERE]
After Instruction
I Ol = 1
P = ddrass (JUHE)
I Ol = ;
PC = addiess (HERE + 2]

Computer Organization and Microprocessors

Page 173

< Branch Unconditionally

BERA Uncenditienal Branch Notes:
Syrtax: [label] BREA n .

O p=rands: 1024 = o= 1023

i peration: (PCi+ 2 +2n— PC

Status Affected. None

Encoding: 1101 | onnn | noom | oonn
Ciescription: Add the s complement number

Zn’ tothe PC. Since the PC owill
have incremented o fetch the nesxt
instruction, the new address will be
PC + 2 + 2n. This instruction is a

two-cycle instruction,

Words: 1
Cycles: 2
2 Cycle Activity:
21 [3 24
Decods Read litaral Process Wirite to PC
n Data
Mo Mo Mo Mo
operation oparation operation oparation

Exampls: HERE BRA Jump

Before Instruction

PC = address [(HERE)
After Instruction
PC = address [(Jump)

Computer Organization and Microprocessors

Page 174

o,

< Branch if Zero

BZ Eranch if Zero
Syntax; [lzbel] BZ N
Ciperands: 128 < n= 127
Ciperation: if Zero kitis ‘1
(PCI+2+2n—= PC
Status Affeded; Mons
Encoding: 1110 | @000 | rman | noen
Description; If the Zero bitis ‘17, then the
precram will branch.
The 2= complement rumber 2n’ i
added to the PC. Sincs the PCowill
have incrementad to fetch the next
irstruction, the new address will be
PC+2+ 2n. This irstructionis then
a bwo-cyde instruction,
Wilords; 1
Cycles: 102)
3 Cyde Activity:
If Jurnp:
() 2 () 24
[Cacoda Fead literal Procass Villle 1o PC
il Data
e} g [} e} Mo
oparaion | opsmabon | opa@ton | oparabion
I Mo Jump:
%) 2 2 4
Cacoda Fead literal Prosass Mo
ai Dala oparation
Examde: HERE BE Junp

Before Instruction

PC

= Addrass (HERE)]

After Instruction

M Zerm
p

| el =)
P

1;
addrass (Junpl
a:

ardress (HERE + 2

Computer Organization and Microprocessors

Page 175

< Go to address 1st word, 2nd word

GOTD Urnconditional Branch Notes:
Syntax: [laba!] SEOTO K -
Cipsrands: 0= k= 1048575

Cipsration: k— PC<20:1=

Skatus Affected: Mone

Encoding:

Tstword (k<¥:0=) | 1110 | 1211 | k-kxk | ®RER
2nd word(k=<19:8=)] 1111 % kRw] kkeR | RRER

Description: Q0T alows an unconditional
branzh amywhers within the 2ntire
2-Mbyte mamory range. The 20kt
value ¥’ is lcaded into PC<20:1,
GOTO s akwvays a tao-cyde

instruziion.
Wonds: 2
Cycles: 2
2 Cyde Activity:
%) 2 3 4
Dacoda Read lileral Mo Read lileral
WT O, opamation | k198,
VWil 1o PC
Mo Mo Mo Mo
opsraton | oparaton | opsmbon | ooparabion

Examole: 3070 THERE
After Irstruction
PC = Address [THERE)

Computer Organization and Microprocessors Page 176

5.5. Specialty Operations

This section contains detailed descriptions of PICmicro instructions that are useful, but do not fit into any
of the tradition instruction categories. The three instructions discussed here are “Decimal Adjust WREG,

DAW”, “No Operation, NOP” and “Software Device Reset, RESET".

+ Decimal Adjust WREG

(KA Decimal Adjust W Registar
Syntax: [labat] AW
Cipsrands: None
Cipsration: If [0 = D) or [DC = 1] then
(W3 0] + 6 — W30,
CEC)
(W3] — Wedile;
If [d=7 4= = D) or [T = 1] then
(WaTd=] + 6 — WaTid;
CEC]
[T do] — WeT 4
Status Affected: C,0C
Encoding: | voon | ooon | oooo | oau |
Description: oW adjusts the sight-bit valug in
W, resu lting from the earlisr addi-
tion of two variables (sachin
packsd BCD format) and producss
a ocomed packed BZD result. The
Carry bit may be s=t by DAW regard-
kess of its setting prior to the DRE
instruction.
Wonds: 1
Cycles: 1
2 Cycle Activity:
()| [3 4
Dacodda Rasd Frooass Winle
regishar ¥ Oaa W
Ezampe 1 D
B=fore Instruction
W = LAE
c = 0
oc = 0
After Instruction
W = =D
c = 1
oc = 0
Ezampe &
B=fore Instruction
W = (ECE
c = 0
oc = 0
After Instruction
W = 03
c = 1
oc = 0

Computer Organization and Microprocessors

Page 177

< No Operation

NOP Mo Opseration Notes:
Syntax. [lzbe] NOP .
Ciperands: MNone
Ciperation: Mo aperation
Stalus Affeded: None
Enzoding: i[elals o000 000
1111 KEXX b XEEX
Deseription: Mo opsration.
Wonds: 1
Cycles: 1
2 Cyde Adtivity:
] 2 3 et
Lacode Mo Mo Mo

opsration | opsration | opsraion

Example:

Mone.

3

< Software Device Reset

RESET Reset Notes:
Syntax; [lzbel]| RESET .
Ciperands: None

Cipsration: Res=t all registers and flags trat

are affectad by a TTCLR Reset.
Shatus Affected: Al

Encoding: [oooo | oooon | 1ian | 1aan |
Desaription: This instruction ?‘U-.'idE'E- & way bo
exacule a N Resetin softwars.
Words 1
Cycles: 1
2 Cycle Adtivity:
]| [[24
[Cacde San Mo Mo
Rasal oparation | oparaion
Lzamole: RESET

After Instruction

Reqislers = Resal Vale
FlaJs* = Resalvale

Computer Organization and Microprocessors Page 178

5.6. IEEE Standards for Floating Point

As much as we like integers, real world problems have fractions and decimals so we have to learn to deal
with real numbers. Here are a few real numbers.

n > 3.14159265...
e > 2.71828....

There are also large numbers that are not fractions, but still cannot be represented using the normal
variable sizes (i.e. 32-bit) to store them. For example:

436,972,000,000,000,000 > 4.36972 x 10"
This number is the normalized (no leading 0) scientific notation (d.ddddd x 10").

The need to represent real numbers and extremely large or small numbers has lead to the need for
floating point representation. IEEE 754 floating-point standards, which are found in virtually every
computer system since 1980, address these requirements.

Some microprocessors have floating point instructions built-in standard, while in others it has to been
implemented in software. PICmicro does not have built-in floating point support, but the floating point
operation may be implemented using the available instructions.

The remainder of this section discusses the IEEE 754 floating-point standards.
«» Computer representation
Real numbers are represented as binary Floating Point format which is shown below:
1 FFFFFEFF x 2°°°°°°
Where:
fffffff is the binary number representing the fractions
eeee is the binary number representing the exponent

The 1 before the decimal point is assumed in floating point and it is not explicitly stored.

The benefits of always using Floating Point (Normalized Scientific notation in binary) are:
» Simplifies exchange of data — no conversion required

» Simplifies arithmetic algorithms — no conversion required

» Increases the accuracy of the stored number

7
0

Single Precision Floating Point (Float) Representation

The Floating Point designer must make tradeoffs between the size of the fraction and the size of the
exponent since word size is limited. In other words, the trade off is between precision (fraction), and
range (exponent).

In both Single and Double Precision Floating Point format a single bit is used to represent the sign of
fraction, where s=1 is negative and s=0 is positive.

Computer Organization and Microprocessors Page 179

®,
0.0

» Single Precision Format

Exponent Fraction
31130 | 29 23 | 22 1 0
s 8 bits of signed exponents 23 bits of fraction
(Bias = 127) 2" 2% 2%

Note: If we number the fraction bits from left to right fy, fz, fs, ... _
(-1)>x (1 + fraction) x 20°"M =P8 = () x {1 + (f; x 27) + (f, x 2%) + (f3 x 2°%) + . . .} x 2(*Ponentoias)

Example of binary word equivalent to floating point numbers:

-1.25x2" > 1 10010001 01000000000000000000000 or (C8 90 00 00)ey
1.25x2" > 0 01111110 01000000000000000000000 or (3F 10 00 00)pey

Note: The 1 left of decimal point (1.ffff) is implicit and is not represented in the binary format.

In floating point, the programmer has to watch out for errors with a focus on the exponents.
Below are the two error cases:
= Overflow

A situation in which a positive exponent becomes too large to fit in the exponent field.
= Underflow

A situation in which a negative exponent becomes too large to fit in the exponent field.

» Example — Given a single precision floating point “FEAO0 0000h” write its equivalent decimal real
number.

Solution:
1) Write in Binary equivalent > 1 111 1110 1010 0
2) convert to Decimal > - 1.25 x 2"

Double Precision Format

In order to represent larger numbers with more precision (reducing the possibility of underflow or
overflow), IEEE 754 double precision floating point format is used. Here is an outline of double
precision floating point format:

32-bit word 32-bit word
A~ A
— — —~
63 | 62 | 61 52 | 51 32 31 0
s 11 bits of exponents 52 bits of fraction
(Bias = 1023) 2! 2720 22! 52

Note: If we number the fraction bits from left to right fy, f,, f3, ... _
(-1)° x (1 + fraction) x 20%P°"M =22 = (1) x {1 + (f; x 27") + (f, x 27) + (f; x 27%) + . . .} x 2(Ponentoias)

Summary of IEEE 754 Floating-Point Standards
Since the 1 to the left of the decimal is implicit we could say that the precision is 24 bit for single
precision and 53 bits for the double precision floating point arithmetic.

For example, if we number the fraction bits from left to right f4, f;, f3, the value may be represented by:
(-1)° x (1 + fraction) x 27" = (-1)° x {1 + (1 x 27") + 2 x 22) + £3 x 2%) + . } x 2(exponentbias)
The following table outlines number ranges (valid and invalid) when using IEEE 754 floating point

Computer Organization and Microprocessors Page 180

format::

Single Precision Double Precision Object Represented
Exponent Fraction Exponent Fraction
0 0 0 0 0
0 nonzero 0 nonzero + de-normalized number
1-254 anything 1-2046 anything + floating —point number
255 0 2047 0 + infinity
255 nonzero 2047 nonzero Nan (Not a Number)

» Example - Single Precision
Convert -.75 to MIPS single precision binary format

0.75 = (-1)'x(1+1x27)(2") = (-1)°x {1+ (1 x2") +f2x 2%) + 3 x 2°) + .. .} x 2(*Ponentsied

for single precision bias is 127 - exponent — bias = -1 > exponent = 126 = (0111 1110),

Therefore:

0111 1110

100 0000 0000 0000 0000 0000

8 bits of signed exponents
(Bias = 127)

23 bits of fraction
2-23

» Example - Double Precision
Convert -.75 to MIPS Double precision binary format

0.75=(-1)'x(1+1x2")2") = (1) x {1+ (1 x 27") + 2 x 22) + f3 x 2°) + . . |} x 2(exwonentbias)

for single precision bias is 1023 - exponent — bias = -1 & exponent = 1023 = (0111 1110),

Therefore:
1 011 1111 1110 100 0000 0000 0000 0000 0000
s 11 bits of signed exponents 52 bits of fraction
(Bias = 1023) 2" 2%
» Example — Convert -5.25 x2? to single precision floating point binary format.
Solution:
“student exercise”
Computer Organization and Microprocessors Page 181

» Example — Covert 1.25 x10" to double precision floating point binary format.

Solution:
“student exercise”

» Example — Write the decimal equivalent of the single precision floating point “C5D8 0000”.

Solution:
“student exercise”

"Ans: -6912”

» Example — Write the single precision floating point binary equivalent for the decimal number
“258.6875".

Solution:
“student exercise”

”"Ans: 0100 0011 1000 0000 0000 0000 010 1011”

» Example — What's the largest and smallest possible number in:
a) Single Precision Floating point format.
b) Double Precision Floating point format.

Solution:
“student exercise”

Computer Organization and Microprocessors Page 182

o
°n

7
0

Floating-Point Addition
Here are the steps in the example of adding .1 and -.4375

Step 1. Adjust the smaller exponent to match the largest exponent (Fraction digit at the right place)

0.1 > 1.0x2" Unmodified
-0.4375 > -0.0111x2°> -1.11x22 > -0.111x 2"

Step 2. Add the adjusted significant (1.fffff)

Result Significant = 1.0 = 0.111 = 0.001
Step 3. Normalize the result

results =(1.000 x 2°°),

Step 4. Round any additional fraction to the number of bits available

Floating-Point Multiply
Here are the steps in the example of multiplying .1 > (1.000x2™"), and -.4375 > (-1.110x27?),.

Step 1. Add the exponents
If you are working with biased exponents that after adding subtract one bias out to correct for having
double amount of bias in the result.
“1+(-2)=-3
Step 2. Multiply the significant (1.fffff)
Result Significant = 1.000 x (1.110)= 1.110
Step 3. Normalize the result & Check for overflow
results =(1.110 x 2°),
Step 4. Round any additional fraction to the number of bits available

No changes

Step 5. Figure out the sign (if the operands’ signs are the same then the product is positive and if the
operands’ signs are different then the product is negative)

results = (-1.110 x 10°),

Computer Organization and Microprocessors Page 183

5.7. Additional Resources

% Staff. Microchip PIC 18F1220/1320 Data Sheet. (2004) Microchip Technology Incorporated.

% Huang,. PIC Microcontroller: An Introduction to Software & Hardware Interfacing, (2004) Thomson.

+ Reese. Microprocessor: From Assembly Language to C using the PIC18Fxxx2. (2003) Course
Technology.

« Peterson. Computer Organization and Design, (2007) Elsevier Service.

< |EEE Standard for Binary Floating-Point Arithmetic (IEEE 754-1985), (1985 with 2008 revision)
Institute of Electrical and Electronics Engineers.

Computer Organization and Microprocessors Page 184

5.8. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Computer Organization and Microprocessors Page 185

CHAPTER 6. C/ASSEMBLY/MACHINE LANGUAGE EQUIVALENCIES

Key concepts and Overview

0,
0.0

Introduction

Indirect Addressing
Functions/Procedures
Data Types

Program Flow Controls

Additional Resources

Computer Organization and Microprocessors

Page 186

6.1. Introduction

In previous chapters, the underlying processor structure, instructions and logical design has been
discussed. The objective of this chapter is to explore the compile process with specific focus on the
equivalency between high level language (C language) and Assembly language.

We will be using PICmicro as the target processor and MPLAB’s C18 as the compiler and development
environment, which will be used to demonstrate examples of programming environment and build
process. Refer to chapter 3 for step-by-step guide to installing, configuring and development using
MPLAB’s C18 IDE. Additional information regarding MPASM, C18 compiler and MPLAB IDE is available
through the “Help>Topics” menu of the MPLAB IDE.

As discussed earlier, the high level language is compiled to Assembly and then to Machine language.
The object code is combined with other pre-existing object codes to create the executable code that can
be downloaded to the processor’s program memory for execution. Although the steps described are
common across the various systems, each processor and development environment would have its own
unique file name and may combine one or more steps. Below are files that are generated during the build
process of a C program in PICmicro environment;:

o file.c
C program file containing the C language code. Although it is shown here as a single file, the
C program commonly consists of many files and directories.

C code typically includes files that define data and references required by the C program. In
PICmicro environment, each processor is defined through one such file. We are using
processor P18F1220 therefore including file “p18f1220.h” (default location is C:\MCC18\h)
would provide the register names, constants and other required definitions.

o file.lst
Listing file is generated after the compilation process and includes the ¢ program and the
corresponding assembly code. The listing file is placed in the same directory as the project
by default. A text editor such as notepad may be best tool to view file.Ist files.

Disassembly Listing which can be accessed from MPLAB IDE menu “View > Disassembly
Listing” is a good tool for viewing the relationship between C and corresponding Assembly
code. The rest of this chapter relies on this file to discuss the relationship between C and
Assembly code.

o file.map
Map file is generated by the linker and contains the symbols (variables, functions, ...) and
their value. This file provides detailed information about the allocation of data and code.

o file.o
Object file is generated after the assembly program and contains the machine code (Binary).
This code is combined with other object files required by the program to create the
executable code that is downloaded to program memory for execution.

In the next few pages, an example of each of the above files for a simple C program is presented. The
longer files have been truncated to show the type of content, and the reader is encouraged to use
MAPLAB ID to view each file in its entirety and become familiar with type of information provided by each
of these files.

Computer Organization and Microprocessors Page 187

« C program file (c2asm_into.c)

/***

* File: c2asm_into.c

* Project: c to Assembly Language Equivalency
* Author: Class

* Updated: 2/14/10

//Process Specific definitions
#include <pl18f1220.h>

// main() is the entry point to the program.
// PICmicro does not accept or return parameters.
void main(void)

{

int count;

count = count + 1;
} //main(Q)

“p18f1220.h” include file (default location is C:\MCC18\h).

Y 2
* $1d: p18f1220.h,v 1.11.2.1 2005/07/25 18:23:27 nairnj Exp $
* MPLAB-Cxx PIC18F1220 processor header
*
* (c) Copyright 1999-2005 Microchip Technology, All rights reserved
*

#ifndef _ 18F1220_H
#define __ 18F1220 H

extern volatile near unsigned char PORTA;
extern volatile near union {
struct {
unsigned RAO:
unsigned RA1:
unsigned RA2:
unsigned RA3:
unsigned RA4:
unsigned RA5:
unsigned RAG6:
unsigned RA7:
}:
struct {
unsigned ANO:1
unsigned AN1:1
1
1

RPRRPRRRRR

unsigned AN2:1;
unsigned AN3:
unsigned :1;
unsigned MCLR:1;
unsigned CLKO:1;
unsigned CLKI:1;

<<<<< MIDDLE SECTION OF THIS FILE HAS BEEN DELETED >>>>>

Computer Organization and Microprocessors Page 188

#define _CONFIG6H_DEFAULT OxEO

#define WRTB_ON_6H OXBF
#define _WRTB_OFF_6H OXFF
#define _WRTC_ON_6H OXDF
#define WRTC_OFF_6H OXFF
#define _WRTD_ON_6H OXT7F
#define _WRTD_OFF_6H OXFF
)
* CONFIG7L (0x30000c)
R e e e e e e e e */
#define _CONFIG7L_DEFAULT 0x03
#define _EBTRO_ON_7L OXFE
#define EBTRO_OFF_7L OXFF
#define EBTR1_ON 7L OXFD
#define _EBTR1_OFF_7L OXFF
/o
* CONFIG7H (0x30000d)
A e e e e */
#define _CONFIG7H_DEFAULT 0x40
#define EBTRB_ON_7H OXBF
#define _EBTRB_OFF 7H OXFF
#endif
Computer Organization and Microprocessors Page 189

« Listing file (c2asm_into.Ist)

Address Value

000000
000002

000004

000102
000104
000106
000108

00010a
POR

00010c

ef8l
000

0012

eell
080
ee20
080

6af8

9c01

Disassembly

GOTO 0x102
RETURN 0x0

LFSR 0x1,0x80
LFSR 0x2,0x80
CLRF 0x¥8,0x0
BCF 0x1,0x6,0x0

for floating point libs

00010e
000110

000112
000114

000116
000118

0000ba
0000bc

0000be
0000c0
0000c2
0000c4
0000c6

eclé6
000

ec65
000

d7¥d
0012

c0c9
fff8

0100
07c5
0e00
5bc6
d7bf

CALL

CALL

BRA
RETURN

<L

MOVFF

MOVLB
DECF
MOVLW
SUBWFB
BRA

0x2c,0x0

Oxca,0x0

0x112
0x0

Source

/* $1d: c018i.c,v 1.3.14.1 2006/01/24 14:50:12 rhinec

/* Copyright (c)1999 Microchip Technology */
/* MPLAB-C18 startup code, including initialized data

/* external reference to the user®s main routine */
extern void main (void);

/* prototype for the startup function */

void _entry (void);

void _startup (void);

/* prototype for the initialized data setup */

void _do_cinit (void);

extern volatile near unsigned long short TBLPTR;
extern near unsigned FSRO;

extern near char __ FPFLAGS;

#define RND 6

#pragma code _entry_scn=0x000000

void

_entry (void)

{

_asm goto _startup _endasm

}

#pragma code _startup_scn

void

_startup (void)

_asm

// Initialize the stack pointer
Ifsr 1, _stack

Ifsr 2, _stack
clrf TBLPTRU, 0 // 1st silicon doesn"t do this on
bcFf _ FPFLAGS,RND,O0 // Initialize rounding flag

_endasm
_do_cinit ;
loop:
// Call the user®s main routine

main ;

goto loop;
b /* end _startup() */

MIDDLE SECTION OF THIS FILE HAS BEEN DELETED >>>>>

0xc9,0xff8

0x0
0xc5,0x1,0x1
0x0
0xc6,0x1,0x1
0x46

/* next entry... */
curr_entry--;

goto test;
done:

Computer Organization and Microprocessors

Page 190

0000c8 0012 RETURN OxO 3

/
File: c2asm_into.

Project: c to Assembly Language
Author:

Updated: 2/14/

ok X %

//Process Specific definitions
#include <pl18f1220.h>

// main() is the entry point to the program and does
not accept or return parameters.

0000ca cfd9 MOVFF 0xfd9,0xfeb void main(void)
0000cc ffeb
0000ce cfel MOVFF Oxfel,OxFd9
0000d0 ffd9
0000d2 0e02 MOVLW 0x2
0000d4 26el ADDWF Oxel,0x1,0x0

{

int count;

0000d6 cfde MOVFF Oxfde,0x2 count = count + 1;
0000d8 002
0000da cfdd MOVFF Oxfdd,0x3
0000dc f003
0000de 0e01 MOVLW 0ox1
0000e0 2602 ADDWF 0x2,0x1,0x0
0000e2 0e00 MOVLW 0x0
0000e4 2203 ADDWFC 0x3,0x1,0x0
0000e6 c002 MOVFF 0x2,0xfde
0000e8 ffde
0000ea c003 MOVFF 0x3,0xfdd
0000ec ffdd
0000ee 0e02 MOVLW 0x2 3} //main()
0000f0 5cel SUBWF Oxel,0x0,0x0
00002 e202 BC 0xf8
0000f4 6ael CLRF Oxel,0x0
0000f6 52e5 MOVF 0xe5,0x1,0x0
0000f8 6eel MOVWF Oxel,0x0
0000fa 52e5 MOVF 0Oxe5,0x1,0x0
0000fc cfe7 MOVFF Oxfe7,0xfd9
0000fe fFfd9
000100 0012 RETURN 0x0

LIST P=18F1220

END

; RCS Header $1d: cmathl8.asm,v 1.4.12.1 2006/01/13
04:11:25 nairnj Exp $

; CMATH18 DATA DEFINITION FILE

; VARIABLE ALLOCATION - Core math library routines

MATH_DATA UDATA_

SIGN RES 1 ; save location for sign in
MSB

_ FPFLAGSbits

__ FPFLAGS RES 1 ; Floating point library

exception flags

GLOBAL SIGN, _ FPFLAGS, _

END

Computer Organization and Microprocessors Page 191

+ Disassembly Listing - MPLAB IDE menu “View > Disassembly Listing”
The remainder of this chapter, Disassembly Listing will be used to discuss the C program build
process and resulting machine code.

-- C:\MCC18\src\traditional\startup\cO18i.c ---—-———————————————————————

1: /* $1d: c018i.c,v 1.3.14.1 2006/01/24 14:50:12 rhinec Exp $ */
2:
3: /* Copyright (c)1999 Microchip Technology */
4:
5: /* MPLAB-C18 startup code, including initialized data */
6:
7: /* external reference to the user®s main routine */
8: extern void main (void);
9: /* prototype for the startup function */
10: void _entry (void);
11: void _startup (void);
12: /* prototype for the initialized data setup */
13: void _do_cinit (void);
14:
15: extern volatile near unsigned long short TBLPTR;
16: extern near unsigned FSRO;
17: extern near char __ FPFLAGS;
18: #define RND 6
19:
20: #pragma code _entry_scn=0x000000
21: void
22: _entry (void)
23: {
24: _asm goto _startup _endasm
000 EF81 GOTO 0x102
002 FO00 NOP
25:
26: }
004 0012 RETURN 0O
27: #pragma code _startup_scn
28: void
29: _startup (void)
30:
31: _asm
32: // Initialize the stack pointer
33: Ifsr 1, _stack
102 EE10 LFSR Ox1, 0x80
104 FO80 NOP
34: Ifsr 2, _stack
106 EE20 LFSR 0x2, 0x80
108 FO80 NOP
35:
36: clrf TBLPTRU, O // 1st silicon doesn"t do this on POR
10A 6AF8 CLRF Oxff8, ACCESS
37:
38: bcf _ FPFLAGS,RND,O0 // Initialize rounding flag for floating
point libs
10C 9Co1 BCF Ox1, Ox6, ACCESS
39:
40: _endasm
41: _do_cinit Q;

<<<<< MIDDLE SECTION OF THIS FILE HAS BEEN DELETED >>>>>

Computer Organization and Microprocessors Page 192

1: Y dalalaialaialaialaiolaioiaioiaioiaiolaloialolalolal

2: * File: c2asm_into.c
3: * Project: c to Assembly Language Equivalency
4: * Author: Class
5: * Updated: 2/14/10
(S 1 e sl siaiaiaiaiaiaiaiaisiaiaioialiaiasioiaioiaialaiaiaialatalalel /
7:
8: //Process Specific definitions
9: #include <p18f1220.h>
10:
11: // main() is the entry point to the program and does not accept or
return parameters.
12: void main(void)
OCA CFD9 MOVFF Oxfd9, Oxfe6
occ FFE6 NOP
OCE CFE1 MOVFF Oxfel, Oxfd9
0oD0 FFD9 NOP
0oDb2 OEO2 MOVLW 0x2
ob4 26E1 ADDWF Oxfel, F, ACCESS
13: {
14: int count;
15:
16: count = count + 1;
0D6 CFDE MOVFF Oxfde, 0x2
0oD8 FO02 NOP
ODA CFDD MOVFF Oxfdd, Ox3
obC FO03 NOP
ODE OEO1 MOVLW Ox1
OEO 2602 ADDWF Ox2, F, ACCESS
OE2 OEOO MOVLW O
OE4 2203 ADDWFC 0x3, F, ACCESS

OE6 C002 MOVFF 0x2, Oxfde
OE8 FFDE NOP
OEA C003 MOVFF 0x3, Oxfdd
OEC FFDD NOP

17:

18: } //main(Q)
OEE OEO2 MOVLW 0x2
OFO 5CE1 SUBWF Oxfel, W, ACCESS
OF2 E202 BC Oxf8
OF4 6AE1 CLRF Oxfel, ACCESS
OF6 52E5 MOVF Oxfe5, F, ACCESS
OF8 6EE1 MOVWF Oxfel, ACCESS
OFA 52E5 MOVF Oxfe5, F, ACCESS
OFC CFE7 MOVFF Oxfe7, Oxfd9
OFE FFD9 NOP
100 0012 RETURN O

Computer Organization and Microprocessors

Page 193

o

% Map file (c2asm_into.map)

MPLINK 4.02, Linker
Linker Map File - Created Sun Feb 28 15:10:08 2010

Section Info

Program Memory Usage
Start End

0x000000 0x000005
0x00002a 0x000119

Name Address Location
return_Ib100000 0x000004 program

return_Ibl00001 0x000118 program
return_Ib100002 0x0000c8 program

<<<<< MIDDLE SECTION OF THIS FILE

TBLPTRL 0x000Ff6 data
TBLPTR 0x000ff6 data
TBLPTRH 0x000FF7 data
TBLPTRU 0x000ff8 data
PCL 0x000Ff9 data

PC 0x000Fff9 data
PCLATH 0x000ffa data
PCLATU 0x000Fffb data
STKPTRbits 0x000ffc data
STKPTR 0x000ffc data
TOSL 0x000ffd data
TOS 0x000ffd data
TOSH 0x000ffe data
TOSU OX000fff data

Symbols - Sorted by Name

Section Type Address Location Size(Bytes)
_entry_scn code 0x000000 program 0x000006
.cinit romdata 0x00002a program 0x000002
_cinit_scn code 0x00002c program 0x00009e
.code_test.o code 0x0000ca program 0x000038
_startup_scn code 0x000102 program 0x000018
-idata_c018i.0_i romdata 0x0001la program 0x000000
-romdata_c018i.0 romdata 0x0001la program 0x000000
.code_c018i .0 code 0x00011a program 0x000000
.idata_test.o_1i romdata 0x0001la program 0x000000
-romdata_test.o romdata 0x0001lla program 0x000000
MATH_DATA udata 0x000000 data 0x000002
-tmpdata udata 0x000002 data 0x000002

.stack udata 0x000080 data 0x000040
-udata_c018i.0 udata 0x0000cO data 0x00000a
.idata c018i.0 idata 0x0000ca data 0x000000
-udata_test.o udata 0x0000ca data 0x000000
.idata_test.o idata 0x0000ca data 0x000000
SFR_UNBANKEDO udata 0x000f80 data 0x000080

Storage File

static
static
static

246 out of 4376 program addresses used, program memory utilization is 5%

HAS BEEN DELETED >>>>>

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

Computer Organization and Microprocessors

Page 194

6.2. Indirect Addressing (INDFn)

Compliers use Indirect addressing to generate relocatable code and dynamically change the memory
address to be accessed. This section outlines indirect addressing based on PICmicro’s implementation.

Indirect addressing uses FSRn registers (FSRO, FSR1, FSR2) as pointers to the data memory location
that is to be read or written. These register contain the address of the data memory being affected. The
size of memory on PICmicro is 4096 which means an address is 12 bits and requires two bytes to store.
The three sets of indirect addressing subsystems are addressed by:

e FSRO: composed of FSROH:FSROL “FEA : FE9”
e FSR1: composed of FSR1H:FSR1L “FE2: FE1”
e FSR2: composed of FSR2H:FSR2L “FDA : FD9”

Typically, FSRn is initialized by LFSR instruction as shown by the following example:

LFSR FSRO, 0x1065 ;Sets the initial address of indirect addressing subsystem 0 to
1065h

The data is read or written by accessing one of the special function registers associated with each FSRn.
The following list provides an overview of each of the special registers and their corresponding activity:

Indirectly access register (pointed to by FSRn), then do nothing else (no change) — INDFn
Indirectly access register, then auto-decrement FSRn (post-decrement) — POSTDECn
Indirectly access register, then auto-increment FSRn (post-increment) — POSTINCn
Auto-increment FSRn, then indirectly access register (pre-increment) — PREINCn

Use the value in the WREG register as an offset to FSRn. It will not modify the value of the
WREG or the FSRn register after an indirect access (nochange) — PLUSWn

Summary of all the Special Function Registers associated with each Indirect Addressing Subsystem
(IASn):

IAS 0 IAS 1 IAS 2

FSROH : FSROL FSR1H : FSR1L FSR2H :FSR2L
INDFO INDF1 INDF2
POSTDECO POSTDECA1 POSTDEC2
POSTINCO POSTINCA POSTINC2
PREINCO PREINC1 PREINC2
PLUSWO PLUSWA1 PLUSW2

% Example - Describe the function performed by the following Code Segment.

LFSR FSRO0,0x100
NEXT: SETF POSTINCO

BTFSS FSROH, 1

GOTO NEXT
CONT: BRA CONT

Solution:
Sets locations 0x100 through 0x1FF to the value OxFF

7
*

Example - Write a PICmicro code segment using indirect addressing to move content from location
100-150h to 2050-2000h.

Computer Organization and Microprocessors Page 195

Solution:
LFSR FSRO, 0x100
LFSR FSR1, 0x2050
MOVLW 0x51
MOVWEF 0x80

MOVE_IT:
MOVFF POSTINCO, POSTDECH
DECF 0x80
BNZ MOVE_IT

R/

< Example - Show the content of memory that has been changed by the following code segment and
their new contents.

MOVLW 12h
MOVWF FSROL
MOVLW 23h
MOVWF FSROH
MOVLW 15h
MOVWF POSTDECO
ADDLW 2h
MOVWF POSTINCO
ADDLW 5
MOVWF INDFO
Solution:
Location and content in Hex >
Location Content
2311 2
2312 5

Computer Organization and Microprocessors Page 196

6.3. Functions / Procedures

7
0

Code Entry Point, main()

» Syntax
/Il entry into the code
void main (void)

{
Statements
}
» Example - Disassembly Listing
1: /
2: * File: c2asm_into.c
3: * Project: c to Assembly Language Equivalency
4: * Author: Class
5: * Updated: 2/14/10
6:
7:
8: //Process Specific definitions
9: #include <p18f1220.h>
10:
11: // main() is the entry point to the program and does not accept or return
parameters.
12: void main(void)
OCA CFD9 MOVFF Oxfd9, Oxfe6
occ FFE6 NOP
OCE CFE1 MOVFF Oxfel, Oxfd9
0DO FFD9 NOP
oD2 OEO02 MOVLW 0Ox2
oD4 26E1 ADDWF Oxfel, F, ACCESS
13: {
14: int count;
15:
16: count count + 1;
0D6 CFDE MOVFF Oxfde, 0x2
0oD8 F002 NOP
ODA CFDD MOVFF Oxfdd, 0x3
obC F003 NOP
ODE OEO1 MOVLW Ox1
OEO 2602 ADDWF 0x2, F, ACCESS
OE2 OEOO MOVLW O
OE4 2203 ADDWFC 0x3, F, ACCESS
OE6 C002 MOVFF 0x2, Oxfde
OE8 FFDE NOP
OEA C003 MOVFF 0x3, Oxfdd
OEC FFDD NOP
17:
18: } //main(Q)
OEE OEO2 MOVLW 0Ox2
OF0 5CE1 SUBWF Oxfel, W, ACCESS
OF2 E202 BC Oxf8
OF4 6AE1 CLRF Oxfel, ACCESS
OF6 52E5 MOVF Oxfe5, F, ACCESS
OF8 6EE1 MOVWF Oxfel, ACCESS
OFA 52E5 MOVF Oxfe5, F, ACCESS
OFC CFE7 MOVFF Oxfe7, Oxfd9
OFE FFD9 NOP
100 0012 RETURN O

Computer Organization and Microprocessors

Page 197

o
°n

Function/Procedures

» Syntax

Call
name(argument list, if any);

Definition
name(argument list, if any)
argument declarations, if any

{
}

declarations and statements, if any

» Example - Disassembly Listing

14:

20:
21:

22:

24:

25:
26:

F:\1Mydata\lab\MPLAB\c2asm_intro\test.c

OCA
occC
OCE
0DO
0D2
0D4

0D6
0oD8
ODA
obC
ODE
OEO
OE2

OE4
OE6
OE8
OEA
OEC
OEE
OF0
OF2
OF4
OF6

OF8
OFA
OFC
OFE

100
102
104
106
108
10A
10C
10E
110
112
114
116

void main(void)

CFD9 MOVFF Oxfd9, Oxfe6
FFEG6 NOP
CFE1 MOVFF Oxfel, Oxfd9
FFD9 NOP
OEO2 MOVLW 0Ox2
26E1 ADDWF Oxfel, F, ACCESS

.

int count;

fun_add(count); // Call

CFDE MOVFF Oxfde, Oxfe6

FFE6 NOP

CFDD MOVFF Oxfdd, Oxfe6

FFE6 NOP

D80C RCALL Oxf8

52E5 MOVF Oxfe5, F, ACCESS

52E5 MOVF Oxfe5, F, ACCESS
} //main(Q)

OEO2 MOVLW 0Ox2

5CE1 SUBWF Oxfel, W, ACCESS

E202 BC Oxee

6AE1 CLRF Oxfel, ACCESS

52E5 MOVF Oxfe5, F, ACCESS

6EE1 MOVWF Oxfel, ACCESS

52E5 MOVF Oxfe5, F, ACCESS

CFE7 MOVFF Oxfe7, Oxfd9

FFD9 NOP

0012 RETURN O

// Tunction definition
int fun_add(int op)

CFD9 MOVFF 0xfd9, Oxfe6
FFE6 NOP
CFE1 MOVFF Oxfel, Oxfd9
FFD9 NOP
{

op =op + 1;
OEO1 MOVLW Ox1
6EE7 MOVWF Oxfe7, ACCESS
OEFD MOVLW Oxfd
CFDB MOVFF Oxfdb, 0x2
F002 NOP
OEFE MOVLW Oxfe
CFDB MOVFF Oxfdb, 0x3
F003 NOP
50E7 MOVF Oxfe7, W, ACCESS
2602 ADDWF 0x2, F, ACCESS
OEOO MOVLW O
2203 ADDWFC 0x3, F, ACCESS

Computer Organization and Microprocessors

Page 198

118
11A
11C
11E
120
122
27:
124
126
128
12A
12C
12E
130
132
134
136
138
28:
13A
13C
13E
140

OEFD
C002
FFDB
OEFE
C003
FFDB

OEFD
CFDB
FO02
OEFE
CFDB
FOO03
€002
FFF3
c003
FFF4
D000

52E5
CFE7
FFD9
0012

MOVLW Ox¥d
MOVFF 0x2, Oxfdb
NOP
MOVLW Oxfe
MOVFF 0x3, Oxfdb
NOP

return (op);
MOVLW Oxfd
MOVFF Oxfdb, 0x2
NOP
MOVLW Oxfe
MOVFF Oxfdb, 0x3
NOP
MOVFF 0x2, Oxff3
NOP
MOVFF 0x3, Oxff4
NOP
BRA 0x13a
} 7/ fun_add

MOVF Oxfe5, F, ACCESS
MOVFF Oxfe7, Oxfd9

NOP
RETURN O

Computer Organization and Microprocessors

Page 199

6.4. Data Types

«» Constant
» Syntax
#define CONSTANT_NAME Value

» Assembly Equivalent
CONSTANT_NAME equ Value

» Examples
= C Example
#define CONST_EX 10
#define CHAR_EX ‘n’

= Assembly Equivalent

CONST_EX equ 10
CHAR_EX equ ‘h’
+ Character
» Syntax
char ch_ex;

» Example — .Ist file

17: char ch_ex;
18:
19: ch_ex = "h";
OEC OE68 MOVLW 0Ox68
OEE 6EDF MOVWF Oxfdf, ACCESS
» String

String is a list of characters terminated by a null character \0'. C language does not support
string declaration as type different from Character.

7
*

Integer

» Syntax
int int_ex; /I typically size of int is equal to processor word size

» Example — Disassembly Listing (PIC micro implements integer in 16 bits)

14: int int_ex;
15:
16: int_ex = 0x29;
0D6 OE29 MOVLW 0x29
0oD8 6EDE MOVWF Oxfde, ACCESS
ODA 6ADD CLRF Oxfdd, ACCESS
17:

Computer Organization and Microprocessors Page 200

7
*

% Float “single-precision floating point” & Double “double-precision floating point”

PICmicro has implemented float and double based on IEEE single precision format discussed in
Chapter 5. The float range is shown below:

2716 =1.17549435 E —-38 to

» Syntax

float float_ex;

double double_ex;

/[uses IEEE Single precision format
/l uses IEEE Single precision format

» Example — Disassembly Listing

2128 % (2 _2715) = §,80564693 E + 38

Float
14: float flt_ex;
15:
16: flt_ex = 29.35;
0D6 OECD MOVLW Oxcd
0oD8 6EDE MOVWF Oxfde, ACCESS
ODA OECC MOVLW Oxcc
opcC 6EDE MOVWF Oxfde, ACCESS
ODE OEEA MOVLW Oxea
OEO 6EDE MOVWF Oxfde, ACCESS
OE2 OE41 MOVLW 0Ox41
OE4 6EDD MOVWF Oxfdd, ACCESS
OE6 52DD MOVF Oxfdd, F, ACCESS
OE8 52DD MOVF Oxfdd, F, ACCESS
17:
Double
14: double dbl_ex;
15:
16: dbl_ex = 29.35;
0D6 OECD MOVLW Oxcd
0oD8 6EDE MOVWF Oxfde, ACCESS
ODA OECC MOVLW Oxcc
opcC 6EDE MOVWF Oxfde, ACCESS
ODE OEEA MOVLW Oxea
OEO 6EDE MOVWF Oxfde, ACCESS
OE2 OE41 MOVLW 0x41
OE4 6EDD MOVWF Oxfdd, ACCESS
OE6 52DD MOVF Oxfdd, F, ACCESS
OE8 52DD MOVF Oxfdd, F, ACCESS
17:

Computer Organization and Microprocessors

Page 201

7
*

% Pointers

» Syntax
type *var_p; /I declares pointer to a variable of declared type
type var; /I declaring a variable of declared type
var= *var_p; /I Assign the content of the address pointed to by a pointer to a variable
var_p = &var; /I Assign address of variable to the pointer variable
» Example — Disassembly Listing
13: {
14: char chv; // decalre a variable
15: char *chp; // declare a pointer
16:
17: chv = "h"; // set variable to h
0b6 OE68 MOVLW 0x68
0b8 6EDF MOVWF Oxfdf, ACCESS
18: chp = &chv; // move content of pointer to variable
ODA CFD9 MOVFF Oxfd9, 0x2
obc FO002 NOP
ODE CFDA MOVFF Oxfda, 0x3
OEO FO03 NOP
OE2 OEO1 MOVLW Ox1
OE4 C002 MOVFF 0x2, Oxfdb
OE6 FFDB NOP
OE8 OEO2 MOVLW 0x2
OEA C003 MOVFF 0x3, Oxfdb
OEC FFDB NOP
19: *chp = "g*; // set the location pointed to by chp to g
OEE OEO1 MOVLW 0Ox1
OFO CFDB MOVFF Oxfdb, Oxfe9
OF2 FFE9 NOP
OF4 OEO2 MOVLW 0x2
OF6 CFDB MOVFF Oxfdb, Oxfea
OF8 FFEA NOP
OFA OE67 MOVLW 0Ox67
OFC 6EEF MOVWF Oxfef, ACCESS
20: chv = *chp; // move content of pointer to variable
OFE OEO1 MOVLW Ox1
100 CFDB MOVFF Oxfdb, Oxfe9
102 FFE9 NOP
104 OEO2 MOVLW 0x2
106 CFDB MOVFF Oxfdb, Oxfea
108 FFEA NOP
10A CFEF MOVFF Oxfef, Oxfdf
10C FFDF NOP
21:

Computer Organization and Microprocessors

Page 202

< Arrays

» Syntax

type ar_name([size dim1];

/I declare an array

» Example — Disassembly Listing

18:

OCA
occ
OCE
0DOo
0D2
0D4

0D6
0oD8

ODA
obC
ODE
OEO
OE2

CFD9
FFE6
CFE1
FFD9
OEOA
26E1

OE61
6EDF

OEGA
6EF3
OEO09
CFF3
FFDB

MOVFF
NOP
MOVFF
NOP
MOVLW
ADDWF

{

MOVLW
MOVWF

MOVLW
MOVWF
MOVLW
MOVFF
NOP

0Oxfd9, Oxfeb
Oxfel, Oxfd9

Oxa
Oxfel, F, ACCESS

char ch[10]; // decalre a variable

ch[0] = "a*; // set the first element to a
0x61
Oxfdf, ACCESS

ch[9] = "j~; // set the last element to j
Ox6a
Oxff3, ACCESS
0x9

Oxff3, Oxfdb

Computer Organization and Microprocessors

Page 203

«» Structures

» Syntax

Defining a new type

/I new type

struct new-type{
list of declarations

|3

struct new_type new_struct; // defines a variable new_struct of the type new_type

= Defining a new structure

/I new type
struct {

list of declarations
} new_struct1, new_struct2;

» Example — Disassembly Listing

12:
0OCA CFD9
occ FFE6
OCE CFE1
obo FFD9
0oD2 OEOF
0oD4 26E1

13:

14:

15:

16:

17:

18:

19:

20:

21:
0D6 OEO1
oD8 6EF3
ODA CFF3
obc FFDB
ODE OEO2
OEO 6ADB
OE2 50D9
OE4 0OF03
OE6 6EE9
OES8 CFDA
OEA FFEA
OEC OE47
OEE 6EEE
OFO 0E72
0F2 6EEE
OF4 OE65
OF6 6EEE
OF8 OE61
OFA 6EEE
OFC OE74
OFE 6EEE
100 6AEE
102 OE3E
104 6EEE
106 6EEE
108 6EEE
10A 6EEE
10C OE64
10E 6EF3

void main(void)
MOVFF Oxfd9, Oxfe6

NOP
MOVFF Oxfel, Oxfd9
NOP
MOVLW Oxf
ADDWF Oxfel, F, ACCESS
{
char name;
struct record
{
int id;
char name[10];
int grade;
};
struct record student = {1,"Great", 100};
MOVLW Ox1

MOVWF Oxff3, ACCESS
MOVFF Oxff3, Oxfdb
NOP

MOVLW 0x2

CLRF Oxfdb, ACCESS
MOVF Oxfd9, W, ACCESS
ADDLW 0x3

MOVWF Oxfe9, ACCESS
MOVFF Oxfda, Oxfea
NOP

MOVLW 0x47

MOVWF Oxfee, ACCESS
MOVLW 0Ox72

MOVWF Oxfee, ACCESS
MOVLW 0Ox65

MOVWF Oxfee, ACCESS
MOVLW 0Ox61

MOVWF Oxfee, ACCESS
MOVLW 0Ox74

MOVWF Oxfee, ACCESS
CLRF Oxfee, ACCESS
MOVLW Ox3e

MOVWF Oxfee, ACCESS
MOVWF Oxfee, ACCESS
MOVWF Oxfee, ACCESS
MOVWF Oxfee, ACCESS
MOVLW Ox64

MOVWF Oxff3, ACCESS

Computer Organization and Microprocessors

Page 204

110 OEOD MOVLW Oxd
112 CFF3 MOVFF Oxff3, Oxfdb
114 FFDB NOP
116 OEOE MOVLW Oxe
118 6ADB CLRF Oxfdb, ACCESS
22:
23: } //main(Q)
11A OEOF MOVLW OxfF
11C 5CE1 SUBWF Oxfel, W, ACCESS
11E E202 BC 0x124
120 6AE1 CLRF Oxfel, ACCESS
122 52E5 MOVF Oxfe5, F, ACCESS
124 6EE1 MOVWF Oxfel, ACCESS
126 52E5 MOVF Oxfe5, F, ACCESS
128 CFE7 MOVFF Oxfe7, Oxfd9
12A FFD9 NOP
12C 0012 RETURN O

Note: NOP instructions listed above are actually the second word of two-word instruction.

» Example — The following C program segment:

/I Available data memory start at 0x80

Struct {
char name[30]; /I 1 byte/char
int sid; /[integer is 2 bytes
char grade[2];

} Students [20];

a) Find the location of student[2].grade[1].
b) Find the location for student [9].sid;

Solutions

Computer Organization and Microprocessors

Page 205

6.5. Program Flow Controls
< If-Then-Else

» Syntax
if (condition) {
statements
}
else { /I else is optional
statements
}
» Example — Disassembly Listing
12: void main(void)
0CA CFD9 MOVFF Oxfd9, Oxfe6
occ FFE6 NOP
OCE CFE1 MOVFF Oxfel, Oxfd9
0DO0 FFD9 NOP
0D2 0EQ2 MOVLW 0x2
0D4 26E1 ADDWF Oxfel, F, ACCESS
13: {
14: int count=8;
0D6 0E08 MOVLW 0x8
0D8 6EDE MOVWF Oxfde, ACCESS
ODA 6ADD CLRF Oxfdd, ACCESS
15:
16: if (count < 5){
oDC CFDE MOVFF Oxfde, Ox2
ODE F002 NOP
0EOQ CFDD MOVFF Oxfdd, 0x3
0E2 FO03 NOP
OE4 90D8 BCF Oxfd8, 0, ACCESS
0E6 5003 MOVF 0x3, W, ACCESS
OE8 E604 BN Oxf2
OEA 0EO5 MOVLW 0x5
OEC 5C02 SUBWF 0x2, W, ACCESS
OEE 0EO0 MOVLW O
OFO0 5803 SUBWFB 0x3, W, ACCESS
OF2 E20D BC 0x10e
17: count =
OF4 CFDE MOVFF Oxfde, Ox2
OF6 F002 NOP
OF8 CFDD MOVFF Oxfdd, 0x3
OFA FO03 NOP
OFC 0EO5 MOVLW O0x5
OFE 2602 ADDWF Ox2, F, ACCESS
100 OE00 MOVLW O
102 2203 ADDWFC 0x3, F, ACCESS
104 €002 MOVFF 0x2, Oxfde
106 FFDE NOP
108 €003 MOVFF 0x3, Oxfdd
10A FFDD NOP
18: }
19: else{
10C DOOC BRA 0x126
20: count =
10E CFDE MOVFF Oxfde, 0x2
110 F002 NOP
112 CFDD MOVFF Oxfdd, Ox3
114 FO03 NOP
116 0EO5 MOVLW 0x5
118 5E02 SUBWF 0x2, F, ACCESS
11A 0EO0 MOVLW O
11C 5A03 SUBWFB 0x3, F, ACCESS
11E €002 MOVFF 0x2, Oxfde
120 FFDE NOP

count + 5;

count - 5;

Computer Organization and Microprocessors

Page 206

122
124

126
128
12A
12C
12E
130
132
134
136
138

C003
FFDD

OEO2
5CE1
E202
6AE1l
52E5
6EE1
52E5
CFE7
FFD9
0012

MOVFF 0x3, Oxfdd
NOP
}

} //main(Q)

MOVLW 0Ox2

SUBWF Oxfel, W, ACCESS
BC 0x130

CLRF Oxfel, ACCESS
MOVF Oxfe5, F, ACCESS
MOVWF Oxfel, ACCESS
MOVF Oxfe5, F, ACCESS
MOVFF Oxfe7, Oxfd9
NOP

RETURN O

Computer Organization and Microprocessors

Page 207

« While Loop

» Syntax
while (condition){
statements
}
» Example — Disassembly Listing
11: // main() is the entry point to the program and does not accept or return
parameters.
12: void main(void)
OCA CFD9 MOVFF Oxfd9, Oxfe6
occ FFE6 NOP
OCE CFE1 MOVFF Oxfel, Ox¥d9
obo FFD9 NOP
0oD2 OE02 MOVLW 0Ox2
0oD4 26E1 ADDWF Oxfel, F, ACCESS
13: {
14: int count;
15: while (count <= 10){
0D6 CFDE MOVFF Oxfde, 0x2
0D8 F002 NOP
ODA CFDD MOVFF Oxfdd, 0x3
oDC F003 NOP
ODE 3403 RLCF Ox3, W, ACCESS
OEO E204 BC Oxea
OE2 5002 MOVF 0Ox2, W, ACCESS
OE4 080A SUBLW Oxa
OE6 OEOO MOVLW O
OE8 5403 SUBFWB 0x3, W, ACCESS
OEA E305 BNC Oxf6
OF4 D7FO BRA 0xd6
16: count++;
OEC 2ADF INCF Oxfdf, F, ACCESS
OEE OEO1 MOVLW Ox1
OF0 E301 BNC Oxf4
OF2 2ADB INCF Oxfdb, F, ACCESS
17: }
18:
19:
20: } //main(Q)
OF6 OEO2 MOVLW 0x2
OF8 5CE1 SUBWF Oxfel, W, ACCESS
OFA E202 BC 0x100
OFC 6AE1 CLRF Oxfel, ACCESS
OFE 52E5 MOVF Oxfe5, F, ACCESS
100 6EE1 MOVWF Oxfel, ACCESS
102 52E5 MOVF Oxfe5, F, ACCESS
104 CFE7 MOVFF Oxfe7, Oxfd9
106 FFD9 NOP
108 0012 RETURN O

Computer Organization and Microprocessors

Page 208

7
*

% For Loop

» Syntax

for (Intializationgptional ;CONditioNggtional ; ActioNgptionar){
statements
}

» Example — Disassembly Listing

12: void main(void)
0CA CFD9 MOVFF Oxfd9, Oxfe6
occ FFEG6 NOP
OCE CFE1 MOVFF Oxfel, Oxfd9
obo FFD9 NOP
0D2 0OEO2 MOVLW 0x2
0oD4 26E1 ADDWF Oxfel, F, ACCESS

13: {

14: int count;

15: for (count=0; count<10 ; count++){
0Db6 6ADE CLRF Oxfde, ACCESS
0b8 6ADD CLRF Oxfdd, ACCESS
ODA CFDE MOVFF Oxfde, 0x2
oDC F002 NOP
ODE CFDD MOVFF Oxfdd, 0x3
OEO FO03 NOP
OE2 90D8 BCF Oxfd8, 0, ACCESS
OE4 5003 MOVF 0x3, W, ACCESS
OE6 E604 BN Oxf0
OES8 OEOA MOVLW Oxa
OEA 5C02 SUBWF 0x2, W, ACCESS
OEC OEOO MOVLW O
OEE 5803 SUBWFB 0x3, W, ACCESS
OF0 E205 BC Oxfc
OF2 2ADF INCF Oxfdf, F, ACCESS
OF4 OEO1 MOVLW Ox1
OF6 E301 BNC Oxfa
OF8 2ADB INCF Oxfdb, F, ACCESS
OFA D7EF BRA Oxda

16: }

17:

18:

19: } //main(Q)

Computer Organization and Microprocessors

Page 209

6.6. Additional Resources

.

« Kernighan & Ritchie. The C Programing Language, (1978) Prentice-Hall

o

« Peterson. Computer Organization and Design, (2007) Elsevier Service.

®

« Staff. Microchip PIC 18F1220/1320 Data Sheet. (2004) Microchip Technology Incorporated.

Computer Organization and Microprocessors Page 210

6.7. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Computer Organization and Microprocessors Page 211

CHAPTER 7. PERFORMANCE

Key concepts and Overview

« CPU Performance and Relating Factors
% Evaluating Performance and Bench Marking
% Performance Bench Marking Design

% Additional Resources

Computer Organization and Microprocessors Page 212

7.1. CPU Performance and Relating Factors

As discussed earlier, performance is growing in importance as criteria of microprocessor design. As the
memory size and functionality have grown, performance becomes one of the most important factors in
design of computer system.

The first step in understanding, analyzing and designing a system with respect to performance is to agree
on these key definitions.

R/
0.0

Defining Performance

Depending on your application, you may emphasize a subset of performance attributes in your
selection or design of computer systems. For example, if you are designing an enterprise system for
a fortune 500 corporation, you will have different needs than if you are designing a gaming computer
system for a hobbyist.

Here are a few terminologies to consider:

» Performance and Execution Time

It is common to use Performance and Execution Time to refer to the overall performance of a
system. The total time required for the computer to complete a task, including disk access,
memory access, I/O activities, Operating system overhead, CPU execution time and others may
be referred to as the execution time. As shown below, execution time is inversely proportional to
the performance as shown below:

1
Execution Time

Performance =

To maximize performance is to minimize the Execution time. If computer X runs faster than Y,
then it is said that computer X is n time faster than Y, when:

_ Performance, _ Execution Time,
Performance, Execution Time,

It can be confusing to use the terms “increasing” and “decreasing” in conjunction with
“performance” and “execution time” since they denote the opposites. For example, an increase in
performance is desirable. On the other hand, increased execution time is undesirable. So to
remove this confusion, the industry typically uses the words “Improve performance” or “Improve
Execution time “ instead of the terms “increase performance” or “decrease execution time”

Measuring Performance
Computer performance is measured in term of execution time in seconds per program.

= Elapsed Time
Elapsed Time is defined by the wall-clock time, elapsed time, also called “response time,”
refers to the time a program takes to execute from the start to the end of as is observed by
the user. This includes all aspects of activities such as memory, execution and delays.

= CPU Execution Time or CPU Time (corresponding to CPU performance)
A processor is typically shared amongst multiple programs. CPU execution time or CPU
time, is the time the processor, is actually executing the program. Note that in this case,
CPU time does not include activities such as memory access, disk access and others.

CPU time can be further classified as:

Computer Organization and Microprocessors Page 213

e User CPU Time
CPU time spent on the program

e System CPU Time
CPU time spent on the operating system performing tasks on behalf of the program.

= Clock or System Clock
Computer systems have a main clock. The Clock’s frequency (f) and period (T=1/f) are used
in discussion of bottom up performance.

As mentioned earlier, measuring performance depends on many factors and the type of applications
being considered. Therefore, there are a variety of techniques in measuring performance. In some
cases, the designer has to consider CPU performance in terms of number of instructions and number
of cycles per instruction. This method is referred to as the bottom up method.

On the other hand, there are cases when the underlying application and system code are not
available or are too complex for an instruction by instruction performance measurement. In these type
cases, benchmark performance measure will be used.

« CPU Performance Factors
When we have access to the code and the application is not too complex, we are able to do a
detailed analysis of the number of clock cycles the CPU takes to perform a specific task.

» CPU time in terms of CPU Clock is one the most basic measurements of performance.

CPU Execution time for a program =
(# of CPU Clock Cycle for a Program) * (Clock Cycle Time)
or

CPU Execution time for a program =
(# of CPU Clock Cycle for a Program) / (Clock freq. or rate)

So, to improve performance is to either use less clock cycles or reduce clock cycle time. But
many techniques to reduce number of clock cycles will also increase the clock cycle time.

= Example
Let’s say your computer is running GTW (Good Time Waster) game with a 1.2 second
response time.

Company VGC (Very Good Computer) is claiming that their new computer, VIC, instruction
set requires only half the clock cycles of your computer and the Clock Frequency is 20%
higher.

What would you expect the GTW game response time to be on VIC.

Solution:

For your computer, we have CPU Execution time = A/ B = 1.2 seconds where:
A is # of CPU cycles and
B is the CPU clock frequency

For VIC, we have CPU execution time = (A/2) /(1.2 B)
= (A/B)(1/2.4) = (1.2 sec)(1/2.4) = 0.5 Sec.

Computer Organization and Microprocessors Page 214

As a result, VIC would be a higher-performing computer compared to the current computer.

= Example — What's the execution time of PIC micro system with 10 Mhz clock running the
following code:

CLRF 0x30
Loop: MOVWF 0x29
DECF 0x30
ADDWF 0x31
BNZ Loop

Solution:

» Average Clock Cycle per Instruction
If you have access to the code but the application is becoming more complex, you can simplify
have your performance measure by using average Clock Cycles per Instruction (CPI) measure.
At the core, CPI is the average number of cycles to execute an instruction in a code segment.
CPI allows one to count # of instruction and not have the responsibility to know the number of
cycles required by each instruction.

Using the above Definition we can write the following relationships:

CPU Clock Cycles =
(# of instructions for a program) * (Average Clock Cycle Per Instruction, CPI)

Using the above relationship we can find the CPU Time:

CPU Time = (# CPU Clock Cycles) *(Clock Period)
= (# CPU Clock Cycles) / (Clock Frequency)

Therefore
CPU Time = (# Instruction per program) * (CPI) * (Clock Period)

Another way to write the same thing:

ICPU Time = (# Instruction per program) * (CPI) / (Clock Frequency)|

The above equation is especially useful, since it separates the three key factors (Number of
Instructions, CPI and Clock Frequency) that affect performance

Computer Organization and Microprocessors Page 215

» Time (CPU Time or CPU Execution Time) is the measure of performance

In general the following relationship can be used to figure out the performance:

_ Seconds _ Instructions , Clock Cycle , Seconds

~ Program Program Instruction Clock Cycle
Where:

Time

Components of Performance Units of Measure

CPU Execution time for a program (Time) Seconds per program

Instruction count Instructions executed for the program

Clock Cycles per instruction (CPI) Average number of clock cycles per instruction

Clock cycle time Seconds per clock cycle

Average CPI requires a fair amount of work to determine and it also varies from code segment to
code segment. For more accurate calculations at the time, you may need to use the following
formula:

n

CPU Clock Cycle = > (CPI;*C;) Where

i=1

Ci is the count of the number of instructions in Class |
CPI; is the average number of cycles per instruction for Class i
n is the number of instruction classes

Effect of Software Components on CPU Performance
Another way to study performance is understanding the effect of software development
components on the performance. The following table attempts to represent the relationship:

CPI

Software What is affected? How it is affected?
Components
Algorithm Instruction Count Algorithms say how the work is done at a

high level which affect the type of instruction
and number of instructions used

Programming

Instruction Count

Programming language will directly affect the

Language CPI instructions used.
Compiler Instruction Count Complier is the component that writes the
CPI assembly code so decisions here would also
have an effect on instruction count and CPI.
» Example

An algorithm for sorting has been designed and compiled using Java. The execution code
generated include three classes of code:

15 instruction of "A” class with 3 clocks cycles per instruction (3 CPIs)
12 instruction of "B” class with 5 clock cycles per instruction (5 CPls)
20 instruction of "C” class with 12 clock cycles per instruction (12 CPIs)

The same sorting algorithm has been designed and complied using C. The execution code
generated includes three classes of code:

30 instruction of "X” class with 2 clocks cycles per instruction (2 CPls)
8 instruction of "Y” class with 7 clock cycles per instruction (7 CPIs)

Computer Organization and Microprocessors

Page 216

15 instruction of “Z” class with 10 clock cycles per instruction (10 CPIs)

Which solution provide you with a better performance? And what is the total execution time for
the better performing solution if the code was running on a PICmicro with the clock speed of 8
MHz.

Solution:

n
For Java - CPU Clock Cycles = Z (CPI, *C,;) = (15x3) + (12x5) + (20x12) = 345 clock cycles

i=1

n

For C> CPU Clock Cycles = Z (CPI, *C,) = (30x2) + (8x7) + (15x10) = 266 clock cycles
i=1

C language solution has better performance

At clock frequency of f=8 MHz, Cycle time is T = 1/f=125* 10 Seconds.

Therefore: Total execution time = (CPU Clock Cycle) * T = 266 * (125*10°) seconds

» Example — Estimate execution time for a PICmicro processor with an 8 MHz external crystal to
sort an array with 1000 integers using bubble sort. Below is an example of Bubble Sort C code
segment:

swapped = 0;
while (swapped == 0){
for (i=0, i<(1000-2), i++){
if (Ai) > Ali+1)){

temp=A(i);
A(i) = A(i+1);
A(i+1) = temp;
swapped = 1;

}
} /N for
} //while

Solution:
“Student Exercise”

Computer Organization and Microprocessors Page 217

7.2. Evaluating Performance

Most users run a set of programs or applications on their computer systems to accomplish their tasks.
Their main interested is on the performance of the total system, not each piece individually. Additionally,
the user does not have access to the code for analysis, even if the user has the time and interest to do
so. Typically in this situation, the instruction by instruction or bottom up performance comparison is not
workable due to complexity and lack of access.

Most commonly, the application code is not available and there are multiple layers of application code,
which would require the user to run some standard set of tasks and compare the response time of the
system. For most types of solutions, there are a set of programs or instruction chosen to predict
performance for a particular work load and application. This type of performance measuring codes is
called benchmarks. Benchmarks are a good way for users to choose the appropriate type of computers
without having to analyze each individual component of the hardware and software.

So if you are planning to select a computer system for Computer Aided Design (CAD) application, then
your benchmark program should include common instructions used in CAD program. On the other hand,
if you plan to use the computer system for gaming, you may consider a different set of benchmarks for
example emphasis on graphics capability of the system.

One word of caution, companies understand this fact and continually work to show their products in the
best possible light. They may knowingly or unintentionally design benchmarks that are not representative
of the final performance for your specific need, so “Buyer beware”. Fortunately, most industries and
application have standard benchmarks which are unbiased.

Benchmarks may focus on a specific portion of the system or attempt to predict end-to-end performance
of a system. Some examples of Benchmarks include:

» SPEC23b99 benchmark
Designed to evaluate web Server performance

» EEMBC benchmark
Designed to evaluate embedded system performance

» SPEC CPU 2000 latest release of SPEC CPU
Designed to measure the CPU performance with respect to integer and floating point operations.

» Transaction Processing Performance Council
Designed to measure database and transaction processing performance. They even list cost
$/tpmec.

There are thousands of benchmarks. Each is designed for a specific set of applications and use. ltis
recommended that the user research additional benchmarks.

Computer Organization and Microprocessors Page 218

7.3. Performance Bench Marking Design

Bench marking is an important step in understanding performance need and selecting solution that meet
the required needs. The following three parameters are integral to the decision:

» Key attributes of Application/solution
» Scenarios that Exercises key attributes
» Run bench mark on all solutions

Computer Organization and Microprocessors Page 219

7.4. Additional Resources

% Stallins. Computer Organization & Architecture: Designing for Performance, (2003) Prentice Hall

« Peterson. Computer Organization and Design, (2007) Elsevier Service.

« Robertazzi. Computer Network and Systems: Queuing Theory & Performance Evaluation, (2008)
Springer

+« Lilja. Measuring Computer Performance, (2000) Cambridge University Press

Computer Organization and Microprocessors Page 220

7.5. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Computer Organization and Microprocessors Page 221

CHAPTER 8. MEMORY & STORAGE HIERARCHY

Key concepts and Overview

% Memory & Storage Basics
% Cache Memory

« Primary Memory

% Secondary Storage

+« Virtual Memory

+ Additional Resources

Computer Organization and Microprocessors Page 222

8.1. Memory & Storage Overview

Computer memory structure is driven by four main factors: size, speed, power and cost. It is rare if not
impossible to find a computer user who does not want the largest and fastest memory available. The
factors that limit the users are the cost and power requirements.

These factors has resulted in memory structures which attempt to minimize the size of high speed
memory used, while striving to maximize the utilization of the fast memory that’s available. Virtual
Memory Management attempts to map the slow memory into higher speed memory such as cache for
frequently executed instruction of data.

In a typical computer the following memory types are found:

Cache Memory (Kbytes to Mbytes)

"Fastest Memory” - Static RAM
Speed,

Power Req.
&

Cost/Bit

Primary Memory (Mbytes to Gbytes
"mid-range” - Dynamic RAM

Secondary Memory(Ghytes to Thytes)
"least Cost/bit” - "Optical, Magnetic, Elect.”
* Hard Disk
* CD &DVD
* Back up Tape

In a typical computer system, these three types of storage are related to each other as shown below:

Computer Organization and Microprocessors Page 223

Processor

Data
Read/Write

v . Primary Memory
Cache Memory | ..

................ Mapped to Cache

Secondary Memory

Computer Organization and Microprocessors

Page 224

8.2. Cache Memory

Cache contains a partial copy of primary memory content that can be accessed by the processor faster
than any other type of memory. If the processor can find the code/data needed in Cache (referred to as a
cache hit) resulting in improved performance. If the information is not in cache it has to be copied form
primary memory which is slower. Therefore, designers continually improve the Caching policy to
maximize the Cache hit rate (also known as hit ratio). In addition to policy, Cache type, cost and size is
continually changing.

To complete this section, the reader is expected to perform the following exploration exercise:

.

« Exploration Exercise
For your current PC, Identify the following Cache parameters:
= Memory Type and read/write time
= Cost/bit of the memory
= The size of the Cache
= Cache Policy

Solution:
Student Exercise

Computer Organization and Microprocessors Page 225

8.3. Primary Memory

Even though Primary Memory is typically orders of magnitude larger than Cache, it only contains a partial
copy of secondary storage content. In a typical computer, processor is unable to directly execute code
from secondary storage. Virtual Memory Manager (Software component) is responsible for ensuring that
the required data/program is copied into the primary memory for execution and access by the processor.
if the program/data is already in primary memory, the performance would be much better than when
information is in secondary memory and has to be copied to primary memory — this condition is referred to
as a miss.

To complete this section, the reader is expected to perform the following exploration exercise:

« Exploration Exercise
For your current PC, Identify the following Primary Memory parameters:
= Memory Type and read/write time
= Cost/bit of the memory
= The size of the Primary Memory (How does it compare to cache size)

Solution:
Student Exercise

Computer Organization and Microprocessors Page 226

8.4. Secondary Storage

Secondary storage contain all the programs and data that can be used by the computer but first they
have to be moved to primary memory and/or cache. Although Secondary storage technology is more
stable than other memory type, secondary storage has continued to become faster, larger in size and
lower cost/bit.

To complete this section, the reader is expected to perform the following exploration exercise:

®,

« Exploration Exercise

For your current PC, answer the following questions:
= How many secondary storage is installed in your PC?
= What are the cost/bit for each type of secondary storage types in your PC?
= What each of secondary storage types are used for?

Solution:
Student Exercise

Computer Organization and Microprocessors Page 227

8.5. Virtual Memory Management

Virtual Memory Manager allows each process/program to use all the space that is allocated to it from
primary and secondary storage seamlessly. In other words, the application running in a given process
can use all the space required without having to explicitly move data between the primary memory and
secondary storage. The Virtual Memory Mangier does all the work of moving data to create a continuous
memory transparently.

The simplest view of Virtual Memory Manager is a system program that bring in blocks of Secondary
Storage into primary memory as their content are required by the processor. If the system is running out
of primary memory, then a block that is no longer needed is over written by the new block.

The block to be over-written is chosen based on the Virtual Memory Manager’s Policy. Some common
ones are First-in-First-out (FIFO) or Last-In-First-Out (LIFO). Of course there are much more complex
policies based on the need and usage model of the system.

The following diagram shows the role of Virtual Memory Management in the context of memory types:

Processor
Secondary Memory
Virtual Memory
4 Manager S P
Data - Mapped
Read/Write ' to
’ Primary Memory
v Primary Memory

Cache Memory 3
................ Mapped to Cache } LT

To complete this section, the reader is expected to perform the following exploration exercise:

< Exploration Exercise
For your current PC, answer the following questions:
= What is the name of the Virtual Memory Manager and the vendor?
= What is the smallest block size that is copies?
= What is the replacement policy when Primary Memory is full?

Solution:
Student Exercise

Computer Organization and Microprocessors Page 228

8.6. Additional Resources

‘0

% Peterson. Computer Organization and Design, (2007) Elsevier Service.

%

% Gorman. Understanding the Linux Virtual Memory Manager, (2004) Prentice Hall

+« Staff. Microchip PIC 18F1220/1320 Data Sheet, (2004) Microchip Technology In.

Computer Organization and Microprocessors Page 229

8.7. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Computer Organization and Microprocessors Page 230

CHAPTER 9. CONCURRENCY IN COMPUTING

Key concepts and Overview

« Overview of Parallelism
% Pipelining

+ Multi-processing

% Multi-core Processors

% Multi-Processor Systems

+ Additional Resources

Computer Organization and Microprocessors Page 231

9.1. Overview of Parallelism

As the performance has become the key parameter used in selecting a computer system. The vendors
are increasing investment in development of parallel computing solutions in order achieve higher
performance has intensified.

One way to characterize the computer system parallelism options is outlined below:

» Pipelining
A pipelined processor is able to operate on multiple instruction concurrently. For example a single
processor fetching one instruction while executing another instruction.

» Multi-processing
A single processor allowing multiple processes to remain active by giving each process a portion
of time. A functioning multi-process will provide user with the impression that all processors are
running simultaneously.

» Multi-core Processors
In this case there are multiple processor cores but still within a single processor which allows for
multiple processes to run at the same time. Cores typically share peripherals and memory.

» Multi-Processor Systems
Many processors executing one or more programs simultaneously.

Although parallelism improves speed, it also adds complexity and overhead to the system. It is important
that sufficient performance improvement is gained to justify the additional complexity and cost associated
with the selected parallelism technique. Also, a given system design may incorporate one or more of the
above options.

Computer Organization and Microprocessors Page 232

9.2. Pipelining

An instruction pipeline is a technique used in the design of computer systems and processors to increase
performance. Pipelining reduces cycle time of a processor which leads to increased instruction
throughput, the number of instructions that can be executed in a unit of time. The instruction processing
is divided into four distinct phases:

1) Instruction fetch (IF)
2) Instruction decode (ID)
3) Execute (EXE)

4) Write Back (WB)

In a non-pipelined system, these phased are completed sequentially while in a pipelined system there is
some level of parallelism. If a system is able to execute a new instruction every cycle, it is said to be fully
pipelined. The following diagram show a fully pipelined system:

time .
Inst 1 IF ID EXE wB
Inst 2 IF ID EXE WB
Inst 3 IF ID EXE WB
Inst 4 IF ID EXE wWB

IF ID EXE wB
IF ID EXE wB
N J

Full Pipelining

The major Advantages of pipelining is reduction of cycle time of the processor leading to increased
instruction processing speed and performance. In achieving this improvement, designer have to be
aware and handle three of issues:

1) The processor executes only a single instruction at a time. This prevents branch delays (in effect,
every branch is delayed) and problems with serial instructions being executed concurrently.
Consequently the design is simpler and cheaper to manufacture.

2) The instruction latency in a non-pipelined processor is slightly lower than in a pipelined
equivalent. This is due to the fact that extra flip flops must be added to the data path of a
pipelined processor.

3) A non-pipelined processor will have a stable instruction bandwidth. The performance of a
pipelined processor is much harder to predict and may vary more widely between different
programs.

PICmicro is also a pipelined processor. But before discussing the pipelining, we need to talk about the
instruction cycles. The clock input (from OSC1) is internally divided by four to generate four non-
overlapping Quarter clocks, namely Q1, Q2, Q3 and Q4. Internally, the Program Counter (PC) is

Computer Organization and Microprocessors Page 233

incremented every Q1, the instruction is fetched from the program memory and latched into the
instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4.
The clocks and instruction execution flow are shown in the following figure:

1 Q1 | 02 | Q3 | ©4 1 Q1 | Q2| Q3| Q41 Q1 | Q2| Q3| Q4 1

05C1
al —\ y—\ |
.j,_i: o | ' } F I |nh§g§|
Q3 ' . — .
FC FC Pz Il PC g !

oscziclko A

(RC Mode! |

(RC Mode) —r emeTe—n | |

i Fetch INST (PC) Exeoute TNST (P0)

Fetch INST (HL + 2 Execute [Na T (HL + £
! Fetch NS T [PC 4

As mentioned earlier an “Instruction Cycle” consists of four Q cycles (Q1,Q2, Q3 and Q4). The instruction
fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute
takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in
one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are
required to complete the instruction.

In PICmirco, a fetch cycle begins with the Program Counter (PC) incrementing in Q1. In the execution
cycle, the fetched instruction is latched into the “Instruction Register” (IR) in cycle Q1. This instruction is
then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand
read) and written during Q4 (destination write).

An example of PICmicro pipelined instruction execution is shown in the following figure:

Tcyo Tev1 Tcy2 Tcy3 v | Tcys
1. MOVLW 55h [Fetch 1 Execute 1
Z. MOVWF PCRTE Fetch 2 Execute 2
1. BRE SUB_1 Fetch 3 Execute 3
4. BSF DORTR, BIT3 (Forced NOP) Fetch 4 | Flush (WoP)
5. Instruction @ address SUB_1 Fetch SUB_1| Execute SUB_1

Allinstructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction
is “flushed” from the pipeline, while the new instruction is being fetched and then executad.

When a programmer (or compiler) writes assembly code, they make the assumption that each instruction
is executed before execution of the subsequent instruction is begun. This assumption may be invalidated
by pipelining. When this causes a program to behave incorrectly, the situation is known as a hazard.
Various techniques for resolving hazards such as forwarding and stalling exist.

The instruction cycle is easy to implement, however, it is extremely inefficient. The answer to this
inefficiency is pipelining. Pipelining improves performance significantly in program code execution. This is
done by decreasing the time that any component inside the CPU is idle. Pipelining does not completely
cancel out idle time in a CPU but a significant impact is made. Processors with pipelining are organized
inside into (stages) which can semi-independently work on separate jobs. Each stage is organized and
linked into a 'chain' so each stage's output is inputted to another stage until the job is done. This
organization of the processor allows overall processing time to be significantly reduced.

Computer Organization and Microprocessors Page 234

Unfortunately, not all instructions are independent. In a simple pipeline, completing an instruction may
require 5 stages. To operate at full performance, this pipeline will need to run 4 subsequent independent
instructions while the first is completing. If 4 instructions that do not depend on the output of the first
instruction are not available, the pipeline control logic must insert a stall or wasted clock cycle into the
pipeline until the dependency is resolved. Fortunately, techniques such as forwarding can significantly
reduce the cases where stalling is required. While pipelining can in theory increase performance over an
unpopulated core by a factor of the number of stages (assuming the clock frequency also scales with the
number of stages), in reality, most code does not allow for ideal execution.

To complete this section, the reader is expected to perform the following exploration exercise:
« Exploration Exercise

For your current PC:

» ldentify the pipeline approach used

» Show the content of the full pipeline

Solution:
Student Exercise

Computer Organization and Microprocessors Page 235

9.3. Multi-processing

Commercially viable computer in today’s market including multi-processing capable operating systems
where multiple processes and applications may be active. The single available processor is shared
amongst the active processes which means at any point in time only one process is being executed.
From the user’s point of view, it seems that application are running simultaneously (Other the occasional
choppiness when the system is over used) since each process is given sufficient time to respond to user
commands frequently.

To complete this section, the reader is expected to perform the following exploration exercise:
« Exploration Exercise
For your current PC, answer the following::
= How many processes are active currently and which processor is using the highest
percentage of the processor (i.e. task manager on the Microsoft Windows has the needed
data)?
= What is the maximum number of processes that can be active at the same time?

Solution:
Student Exercise

Computer Organization and Microprocessors Page 236

9.4. Multi-core Processors

Today’s PCs have multi-core which basically means that there are multiple processor core embedded into
a single processor chip. With the help of coordinating software (typically part of operating system),
applications and/or processes are divided amongst the cores to execute. ldeally, multiple cores deliver
higher performance. This is not guaranteed since the management overhead may consume any gains
made from the multi-core set up.

To complete this section, the reader is expected to perform the following exploration exercise:

« Exploration Exercise
In the current PC market:
= |dentify a PC with multi-core processor.
= For the identified processor, what is function of each core and how are the cores managed?
= What is the expected performance improvement from the selected multi-core compared to an
equivalent single core system.

Solution:
Student Exercise

Computer Organization and Microprocessors Page 237

9.5. Multi-Processor Systems

Multi-Processor systems are typically used for specialized application that are highly processor intensive.
Over time, there has been various attempts to develop multi-processor systems that are able to efficiently
run any program. But we continue to see the best multi-processor performance for applications design
specifically for the multi-processor design.

To complete this section, the reader is expected to perform the following exploration exercise:

< Exploration Exercise
In the current market:
= |dentify a multi-processor system and the vendor
= For the identified system, what are the topology of processor (how are the processors
connected)?
= Does this system only runs specialized applications or is able to improve performance of
general purpose applications.

Solution:
Student Exercise

Computer Organization and Microprocessors Page 238

9.6. Additional Resources

« Jordan. Fundamentals of Parallel Processing, (2003) Prentice Hall

« Peterson. Computer Organization and Design, (2007) Elsevier Service.

+ Roosta. Parallel Processing and Parallel Algorithms, (1999) Springer-Verlag

Computer Organization and Microprocessors Page 239

9.7. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Computer Organization and Microprocessors Page 240

CHAPTER 10. NETWORKING

Key concepts and Overview

% Networking Overview & OSI Model
% Medial Layers (Physical, Link & Network)
% Host Layers (Transport, Session , Presentation and Application)

+ Additional Resources

Computer Organization and Microprocessors Page 241

10.1. Networking Overview & OSI Model

Networking is an integral part of computing world and numerous designs have been developed to meet
the needs of the computing industry. The best way to discuss networking is to use the abstract Open
System Interconnection Reference Model (OSI Model) developed as part of the Open System
Interconnection (OSI) initiative in 1970s by the International Organization for Standardization (ISO).

OSI Model groups the network functionality into seven layers. Each layer relies on the layers below to
complete its task. In communicating across the network, the two parties to the communication will have
defined protocol at each layer of the model as shown below between two networked devices (P & Q):

Application Layer |/ /APPlication—to-application communication »| Application Layer
Presentation Layer 46-'- _D_a_t_a _I_?_e d ?§(?[1Ea_thq ------------------------ »| Presentation Layer
- 5. host-to-host communication -
Session Layer L LT T L L LT T »| Session Layer
4. Reliable End-to-end connection
Transport Layer D T E T R »| Transport Layer
3. Logical addressing
Network Layer e »| Network Layer
) 2. Physical addressing
Data/Link Layer D » Data Layer

Physical Layer Physical Layer

T 1. physical connection between devices - Media, Signal and Binary Trans. j

Layers are typically divided into two groups based on where they are implemented, in the host or the
networking interface:

e Media Layers — Physical, Data/Link and Network Layers
e Host Layers — Transport, Session, Presentation and Application layers

The following sections provide additional description of each of the seven layers in the above two
categories with the most common implementation examples of each layer.

Computer Organization and Microprocessors Page 242

10.2. Medial Layers (Physical, Data/Link & Network)

Physical layer defines the electromagnetic and physical specifications for device connection to the
network. Items included in this description of this layer includes connector, voltage/current, timing and
other specifications.

Datal/Link layer is responsible for defining and packaging fixed size data that include physical address.
Also it has processes to ensure that a packet is reliability delivered by the physical layer to the intended
physical address. If not, then it would have steps to either flag an error or attempt to correct the problem
by re-transmission.

For examples of Data and Physical layer implementations refer to IEEE 802.3 (Wired LAN), IEEE 802.11
(wireless LAN) and IEEE 902.16 (WiMax) and IEEE 802.15 (Bluetooth-Personal Network).

Networking layer provides reliable transfer of variable length data sequences from one device to one or
more devices on the network. This layer performs the routing function for the devices. Router provides
functionality from physical to networking layer. The most commonly known Network layer implementation
is the Internet Protocol which is commonly refer to as IP. IP enable variable length data to travel through
multiple hops from source to the intended destination. Network layer also serve as the interface with Host
layers.

Computer Organization and Microprocessors Page 243

10.3. Host Layers (Transport, Session , Presentation and Application)

Transport layer is the lowest layer of the Host layers. It provides reliable data transfer services between
end users. It uses flow control, error control, segmentation, retransmission to ensure the end user data
has successfully been transmitted and received. Again the best known Transport layer implementation
example is Transmission Control Protocol (TCP) which is used in most systems. TCP/IP referring to
Transmission Control Protocol and Internet Protocol are one of the most popular implementation of
Network and Transport layer in use today.

Session Layer manages the connection between networked devices. Session layer uses the lower layers
of OSI to establish, manager and terminate connections between applications. Socket (also called
shared socket) is an example of Session layer implementation for TCP/IP environment. Sockets allows
devices to connection application across the network or within the same system. A process read from the
socket to receive the data from another process and the process sends data by writing into the socket.
Communicating processor may be on the same physical computer (Local) or across the network in
another physical computer and location (Remote).

Presentation layer allows mapping of different data format to be translated into session protocol data units
that can be transmitted through session layer services. MIME Protocol is a Session layer implementation
example which is designed to enable sending and receiving emails across variety of email applications.

Application layer is the highest level of OSI layer. As the name implies this is the layer that contain
software application which interfaces with the user. Hypertext Transfer Protocol (HTTP) and File Transfer
Protocol (FTP) are two examples of Application layer implementation.

The following section provide additional description of each layers into two groups:

« Exploration Exercise
In the current market:
= |dentify an network enabled application.
= Map the functionality/components of the selected application to the OSI model.

Solution:
Student Exercise

Computer Organization and Microprocessors Page 244

10.4 Additional Resources

< Kurose. Computing Networking, (2010) Addison-Wesley.

o

« Peterson. Computer Organization and Design, (2007) Elsevier Service.

« Lekkus. Network Processors, (2003) McGraw Hill.

Computer Organization and Microprocessors Page 245

10.5. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Computer Organization and Microprocessors Page 246

APPENDIX A. PICMICRO INSTRUCTION SET SUMMARY

Source: Microchip Data Sheet

Computer Organization and Microprocessors Page 247

Mnemonic, o 16-Bit Instruction Word Status

Operands Description Cycles . st Affected Motes
BYTE-ORIENTED FILE REGISTER OPERATIONS
ADDWF f d, a |Add WREG and f 1 ool olda £fff £fff |C,DC,Z 0OV, N|1, 2
ADDWFC f, d,a |Add WREG and Carry hitto f 1 oolo ooda £fff £fff |C,DC, Z 0V, N|1,2
AMDWF f d,a |AND WREG with f 1 0001 o0lda E£fff £fff |Z N 1,2
CLRF f,a Clearf 1 0110 101a ffff £fff (£ 2
COMF f.d, a [Complement f 1 o0l 11da ££fff £fff | N 1,2
CPFSEQ f a Compare fwith WREG, skip = 1(2or3)|o110 oo1a £fff f£fff (MNone 4
CPFSGT f.a Compare fwith WREG, skip = 1(2or3)|o110 o1oa f£fff f£fff (MNone 4
CPFSLT f a Compare fwith WREG, skip = 1(2or3)|o110 oooa £££ff £f£f£f (None 1,2
DECF f.d, a |Decrementf 1 o000 o01da E£fff ££ff (C,DC, Z OV N|1,2 3,4
DECFSZ f,d,a [Decremenif, Skipif0 1(2or3)|oo10 11da ££f£ff £fff (None 1,2,3,4
DCFSMZ 1, d,a [Decrementf, Skip if Mot O 1(2or3)|{o100 11da £fff £f£f [Mone 1,2
INCF f.d,a |Increment f 1 oolo 1oda £fff £f£ff |C, DC, Z OV N|1,2, 3,4
INCFSZ f . d,a [Increment f, Skip if O 1(2or3)|oo11 11da £fff f£fff |[MNone 4
INFSNZ . d, a [Increment f, Skip if Not O 1(2or3)| o100 10da f£fff f£fff [None 1,2
IORWF f.d, a |Inclusive OR WREG with T 1 o001 ooda Efff ££fff (£ N 1,2
MOVF f.d,a |Movef 1 0101 ooda ££fff £fff | N 1
MOVFF g, Ty [Mowve fg(source)to 1stword (2 1100 f£fff £fff E£f£f |None

fy (destination) 2nd word 1111 ffff ffff £ffff
MOVWE f a Move WREG to f 1 0110 111z f£fff ££f£ff |MNone
MULWF f.a Multiply WREG with f 1 o000 001a Efff £E£ff [Mone
MEGF f,a MNegate f 1 0110 11oa f£fff £££ff (C, DC, Z OV N|1,2
RLCF f,d, a |Rotate Left f through Carry 1 0011 o01da £fff £fff (C,Z N
RLMCF f.d, a |Rotate Left f (Mo Carry) 1 o100 olda £fff £fff | N 1,2
RRCF f,d,a |Rotate Right f through Carry 1 0011 ooda £fff Efff |C,Z N
RRMNCF f d, a |Rotate Right f (Mo Carry) 1 oloo ooda £fff £fff |4 N
SETF f.a Setf 1 0110 1ooa ffff £E£ff [Mone
SUBFWE f d,a |Subtract f from WREG with 1 0101 ol1da f£fff f£fff |C, DC,Z OV, N|1, 2
borrow
SUBWF f.d, a |Subtract WREG from f 1 0101 11da f£fff f£f£f |C, DC, 2, 0OV,
SUBWFE T, d,a |Subtract WREG from f with 1 0101 1oda f£fff f£fff |C,DC,Z OV, N|1,2
borrow

SWAPF f.d, a |Swapnibblesinf 1 o011l 1oda ££fff £££f |None 4
TSTFSZ f.a Testf, skipif 0 1(2or3)|o110 o011a £fff f£fff ([MNone 1,2
XORWF 1 d,a |Exclusive OR WREG with T 1 o001 1oda f£fff ££fff [M
BIT-ORIENTED FILE REGISTER OPERATIONS
BCF f. b, a |BitClearf 1 1001 bbba f£fff f£fff [Mone 1,2
BSF f.h,a |BitSetf 1 1000 bbba f£fff f£££ff [Mone 1,2
BTF=C f, b, a |Bit Test f, Skip if Clear 1(2or3)|{1011 kkba ££fff f£fff [None 3,4
BTF33 f. b, a |Bit Test f, Skip if St 1(2or3)|{ 1010 kkbba £fff f£fff |[None 3,4
BTG f,d,a |BitToggle f 1 0111 kbha £fff £fff |MNone 1,2
Note 1: When a Port register is modified as a function of itself (2. g, MOvVF PORTE, 1,), the value used will be that

value present on the pins themselves. For example, if the data latch is “1° for a pin configurad as input and is
driven low by an external device, the data will be written back with a “o’.
It this instruction is executed on the TMRO register (and where applicable, d = 1), ihe prescaler will be cleared
if assigned.
If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second
cycle is executed as a HOE
Some instructions are 2-word instructions. The second word of these instructions will be executed as a HoE,

unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all
program memory locations have a valid instruction.
If the table write stars the write cycle to internal memory, the write will continue until terminated.

Computer Organization and Microprocessors

Page 248

16-Bit Instruction Word

Mnemonic, Description Cycles Status Notes
Operands MSb LSh Affected
LITERAL OPERATIONS
ADDLW k Add literal and WREG 1 0000 1111 kkkk kkkk |C,DC,Z OV, N
ANDLW k AND literal with WREG 1 0000 1011 kkkk kkkk |Z N
IORLW k Inclusive OR literal with WREG |1 0000 1001 kkkk kkkk |Z, N
LFSR f, k Move literal (12-bit) 2nd word |2 1110 1110 00ff kkkk |[None
to FSRx 1st word 1111 0000 kkkk kkkk
MOVLB k Move literal to BSR<3:0= 1 0000 0001 0000 kkkk |[None
MOVLW k Move literal to WREG 1 0000 1110 kkkk kkkk |None
MULLW Kk Multiply literal with WREG 1 0000 1101 kkkk kkkk |[None
RETLW k Return with literal in WREG 2 0000 1100 kkkk kkkk |[None
SUBLW Kk Subtract WREG from literal 1 0000 1000 kkkk kkkk [C,DC,Z OV, N
XORLW Kk Exclusive OR literal with WREG |1 0000 1010 kkkk kkkk |Z, N
DATA MEMORY < PROGRAM MEMORY OPERATIONS
TBLRD* Table read 2 0000 0000 0000 1000 |[None
TBLRD*+ Table read with post-increment 0000 0000 0000 1001 |[None
TBELRD*- Table read with post-decrement 0000 0000 0000 1010 |[None
TBELRD+* Table read with pre-increment 0000 0000 0000 1011 |[None
TBLWT* Table write 2(5) 0000 0000 0000 1100 |[None
TBLWT*+ Table write with post-increment 0000 0000 0000 1101 |[None
TBLWT*- Table write with post-decrement 0000 0000 0000 1110 |[None
TBLWT+* Table write with pre-increment 0000 0000 0000 1111 |[None
Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that

value present on the pins themselves. For example, if the data latch is "1’ for a pin configured as input and is
driven low by an external device, the data will be written back with a "0’
2: If this instruction is executed on the TMRO register (and where applicable, d = 1), the prescaler will be cleared
if assigned.
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second
cycle is executed as a NOP.
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOE,
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all
program memory locations have a valid instruction.
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

Computer Organization and Microprocessors

Page 249

Mnemonic, o 16-Bit Instruction Word Status
Operands Description Cycles MSD sn Affected Motes
CONTROL OPERATIONS
BC n Branch if Carry 1(2) 1110 0010 nnnn nnnn |None
BN n Branch if Megalive 10(2) 1110 0110 nnnn nnnn (Nons
BNC n Branch if Mot Carry 1(2) 1110 0011 nnnn nnnn |None
BNM n Branch if Mot Negative 1(2) 1110 0111 nnnn nnnn |None
BNOYW n Branch if Mot Overflow 1(2) 1110 0101 nnnn nnnn (Nons
BNZ n Branch if Mot Zero 1(2) 1110 0001 nnnn nnnn |None
BOW n Branch if Overflow 1(2) 1110 0100 nnnn nnnn |None
BRA n Branch Unconditionally 2 1101 onnn nnnn nnnn |None
BZ n Branch if Zero 1(2) 1110 0000 nnnn nnnn (Nons
CALL n,s Call subroutine 1st word 2 1110 11los kkkk kkkk [Mone
2nd word 1111 kkkk kkkk Kkkkk|
CLEWDT — Clear Watchdog Timer 1 o000 0000 0000 o100 |TO,PD
DAW — Decimal Adjust WREG 1 o000 0000 0000 0111 |C
GOTO n Go o address 15t word 2 1110 1111 kkkk kkkk [Mones
2nd word 1111 kkkk kkkk kkkk
MOP — Mo Operation 1 0000 0000 0000 0000 (MNone
MOP — Mo Operation 1 1111 w00 oo |None 4
POFP — FPop top of return stack (TOS) 1 0000 0000 0000 0110 (None
PUSH — Push top of return stack (TOS3) |1 o000 0000 0000 0101 |None
RCALL n Felative Call 2 1101 1nnn nnnn nnnn (Nong
RESET Software device Reset 1 0o00 0000 1111 1111 [Al
RETFIE s Return from interrupt enahle 2 o000 0000 000l ooos |GIEAGIEH,
PEIE/GIEL
RETLW k Feturn with literal in WREG 2 ooo0 11o0 kkkk kkkk [Mone
RETURN s Return from Subroutine 2 0000 0000 0001 00ls (MNone
SLEEP Gointo Standby mode 1 0O00 0000 0000 0011 |TQ,PD
Mote 1: When a Port register is modified as a function of itself (e.g, MovF porRTE, 1, 0}, the value used will he that

value present on the pins themselves. For example, if the data latch is "1’ for & pin configured as input and is
driven low by an external device, the data will be writien back with a ‘0.
2: If this instruction is executed on the TMRO register (and where applicable, d = 1), the prescaler will be cleared
if assigned.
3: If Program Counter {PC) is modified or a conditional test is true, the instruction requires two cycles. The second
cycle is executed as a Hop
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a MoE,
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all
program memary locations have a valid instruction.
5: If the tahle write stars the write cycle to infernal memory, the write will continue until terminated.

Computer Organization and Microprocessors

Page 250

APPENDIX B. PICMICRO OPCODE FIELD DESCRIPTION

Source: Microchip Data Sheet

Computer Organization and Microprocessors Page 251

Field Description
a RAM access bit
a = 0: RAM location in Access RAM (BSR register is ignored)
a=1:FRAM bank iz specified by BSR register
bk Bit address within an 5-bit file register (0 1o 7).
EBSR Bank Select Register. Used to select the current RAM bank.
d Ceestination sslect bit
d = 0: store result in WREG
d = 1: store result in file register ©
dest Diestination either the WREG reqister or the specified register file location.
£ B-0it register file address (0«00 to 0xFF).
f= 12-bit register file address (02000 to 0x<FFF). Thiz is the source address.
fd 12-bit register file address (02000 to 0xFFF). Thiz is the destination addrezs.
k Literal field, constant data or label (may be either an 8-bit, 12-hit or a 20-bit value).
label Label name.
mm The mode of the TBLPTR register for the table read and table write instructions.
Only used with table read and table write instructions:
* Mo change to register (such as TBLPTR with table reads and writes)
"4 Posi-Increment register (zuch as TELFTR with table reads and writes)
*_ Posi-Decrement register {zuch as TBLFTR with table reads and writes)
+* Pre-Increment register (such as TELPTR with table reads and writes)
n The relative address (2'e complement number) for relative branch instructions, or the direct address for
calllbranch and returmn instructions.
PRODH Product of Multiply High Byte.
PRODL Product of Multiply Low Byle.
a Fast CallReturn mode select bit
5 = . do not update intofrom shadow registers
5= 1. certain registers loaded intoffrom shadow registers (Fast mode)
u Unuzed or unchanged.
WEES Working register (accurmulator).
x Cion't care ('07 or “1').
The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all
Microchip software tools.
TELFTER 21-bit Takle Pointer {point2 1o a program memory location).
TABLAT B-bit Table Latch.
TS Top-of-Stack.
j=ln Program Counter.
BOL Program Counter Low Byte.
PCH Program Counter High Byte.
PCLATH Program Counter High Byte Lateh.
PCLATLY Program Counter Upper Byte Latch.
GIE Globkal Interrupt Enable bit.
WOT Watchdog Timer.
TS Tirne-out bit.
ED Power-down bit.
C, Do, E, oW, H AL Status bits: Carry, Digit Carry, Zemo, Overflow, Megative.
[1 Optional.
[Contents.
— Aszigned to.
< = Register bit fild.
= In the set of.
italics User defined term {font iz Courier).

Computer Organization and Microprocessors Page 252

APPENDIX C. REGISTER FILE SUMMARY

Source: Microchip Data Sheet

The following two tables contains the summary of the PICmicro Register file. The following Information
will be useful in reading the register summary:

Legends:
x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Notes:

1: RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function
on RAB) Oscillator mode only and read ‘0’ in all other oscillator modes.

2: RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read ‘0’ in
all other modes.

3: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

4: The RA5 port bit is only available when MCLRE fuse (CONFIG3H<7>) is programmed to ‘0’.
Otherwise, RA5 reads ‘0’. This bit is read-only.

Computer Organization and Microprocessors Page 253

Special Function Reqgisters (SFR) Map

Address
FFFh
FFEh
FFDh
FFCh
FFBh
FFAR
FFoh
FF8h
FF7h
FFBh
FF5h
FF4h
FF3h
FF2h
FF1h
FFON
FEFh
FEEh
FEDh
FECh
FEBh
FEAh
FE9h
FE8h
FE7h
FEGh
FESh
FE4h
FE3h
FE2h
FETh
FEOh

Name

TOSU

TOSH

TOSL

STKPTR

PCLATU

PCLATH

PCL

TELFPTRU

TBELFTRH

TBLFTRL

TABLAT

PRODH

PRODL

INTCON

INTCONZ

INTCON3

INDFDI2}

POSTINCO)

POSTDECO

PREINCDE

PLUSWOI2)

FSROH

FSROL

WREG

INDF 112}

POSTING1'

POSTDEC12

PREINC12)

PLUSW12)

FSR1H

FSR1L

BSR

Address
FDFh
FDEh
FDDh
FDCh
FDBh
FDAh
FDSh
FD8h
FD7h
FD&h
FD3h
FD4h
FD3h
FD2h
FD1h
FDOn
FCFh
FCEh
FCDh
FCCh
FCBh
FCAh
FCah
FC8h
FCTh
FCeh
FCsh
FC4h
FC3h
FC2h
FC1h
FCOn

Name

INDF2(2)

POSTINC2(2)

POSTDEC2@)

PREINC2(2)

PLUSW?22)

FSR2H

FSR2ZL

STATUS

TMROH

TMROL

TOCON

OSCCON

LVDCON

WOTCON

RCON

TMR1H

TMR1IL

T1CON

TMR2

PR2

T2CON

ADRESH

ADRESL

ADCONO

ADCON1

ADCONZ2

Address
FBFh
FBER
FBDh
FBCh
FBEN
FBAh
FBSh
FBeh
FB7h
FBBh
FBSh
FB4h
FB3h
FB2h
FB1h
FBOh
FAFh
FAENh
FADO
FACH
FABh
FAAR
FASh
FABN
FATH
FABH
FASh
FAdh
FA3h
FAZh
FATh
FAOh

Name

CCPR1H

CCPRIL

CCP1CON

PWM1CON

ECCPAS

TMR3H

TMR3L

TICON

SPBRGH

SPBRG

RCREG

TXREG

TXSTA

RCSTA

BAUDCTL

EEADR

EEDATA

EECONZ

EECON1

IPR2

PIRZ2

FIEZ

Address
FaFh
FIER
FaDh
FaCh
Fa9Bh
FaAR
F99h
F98h
F97h
Fa96h
F95h
F94h
F93h
F92h
F91h
F90h
F8Fh
F3Eh
FaDh
F&Ch
FaBh
FBAh
F&9h
F&sh
F&7h
Fasth
F85h
Fadh
F&3h
F&2h
Fa1h
F80h

Name

IPR1

PIR1

PIE1

OSCTUNE

TRISB

TRISA

LATB

LATA

PORTB

PORTA

Computer Organization and Microprocessors

Page 254

General Register Map, 1/2

File Mame | Bit7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 F"II:;?I!:EEI%”R
TOSU — — — Top-of-Stack Upper Byte (TOS<20:16=) ---0 0000
TOSH Top-of-Stack High Byte (TOS<15:8=) 0000 0000
TOSL Top-of-Stack Low Byle (TOS<7:0=) 0000 0000
STEFTR STRFUL STEUNF — Return Stack Pointer 00-0 0000
PCLATU = = bit 2181 | Holding Register for PC<20:16= ---0 0000
PCLATH Heolding Register for PC=15:8= 0000 0000
PCL PC Low Byte (PC<T:0=) 0000 0000
TELPFTRU — | — bit 21 | Program Memory Table Pointer Upper Byte (TBLPTR<20:16=) --00 0000
TBLPFTRH Program Memory Table Pointer High Byte (TELFTR=15:5=) 0000 0000
TELFTRL Program Memory Table Pointer Low Byie (TBLFTR=T.0=) 0000 0000
TABLAT Program Memaory Table Latch 0o 0000
FPRODH Product Register High Byte EHEHN HHEX
PRODL Product Register Low Byte AINA LN
INTCON GIE/GIEH | PEIESGIEL | TMROIE INTOIE RBIE TMROIF INTOIF RBIF 0000 000x
INTCOM2 REEU INTEDGD | INTEDGT | INTEDGZ — TMROIP — REIP 1111 -1-1
INTCOM3 INT2IP INT1IP — INTZIE INT1IE — INTZIF MT1IF 11-0 0-00
INDFD Uses contents of FSR0 to address data memory — value of FSRO not changed (not a physical register) A
POSTIMCD [Uses contents of FSRO to address data memoery — value of FSR0 post-incremented {not a physical register) A
POSTDECD [Uses contenis of FSRO to address data memory— value of FSRO posi-decrementad (not a physical register) MIA
PREINCD Uses contentz of FSR0 to address data memory — value of FSRO pre-incremented (not a physical register) MIA
PLUSWO Uses contents of FSRO to address data memory — value of FSR0 offset by W {not a physical register) MIA
FSROH _ — —_ — Indirect Data Memory Address Pointer 0 High -——- 0000
FSROL Indirect Data Memory Address Pointer 0 Low Byie WINE KK
WREG Working Register WINE KK
INDF1 Uses contents of FSR1 to address data memory — value of FSR1 not changed (not a physical register) WA
POSTIMCA Uses contents of FSR1 to address data memory — value of FSR1 post-incremented (net a physical register) WA
POSTDECT (Uses contents of FSR1 to address data memory — value of FSR1 post-decremented (not a physical register) A
PREIMNCA UUses contents of F5R1 to address data memory — value of FSR1 pre-incremented (not a physical register) MIA
PLUSWA1 Uses contents of F5R1 to address data memory — value of FSR1 offset by W (not a physical register) MIA
FSRIH — | — | — | — [indirsct Data Memory Address Pointer 1 High —-—- 0000
FSRIL Indirzct Cata Memory Address Pointer 1 Low Byte EHEHN HHEX
8SR — | — | — | — |BarkSelect Register —-—- 0000
INDF2 Uses contents of FSR2 to address data memory — value of FSR2 not changed (not a physical register) WA
POSTINC2 [Uses contents of FSR2 to addrezs data memory — value of FSR2 post-incremented (not a physical register) WA
POSTDECZ (Uses contents of FER2 fo address data memory — value of FSR.2 post-decremented (not a physical register) A
PREIMC2 Uses contents of FSR2 to address data memory — value of FSR2 pre-incremented (not a physical register) WA
PLUSW2Z Uses contents of FSR2 to address data memory — value of FSR2 offset by W {not a physical register) WA
FSRIZH — | — | — | — [indirect Data Memory Address Bointer 2 High —-—- 0000
FSRIL Indirect Data Memory Address Pointer 2 Low Byle HHHH HHHK
STATUS — | — 1 = | w [ov z DC C - —x s
TMRIH TimerD Register High Byie 0o 0000
TMRIL TimerD Register Low Byte EHEHN HHEX
TOCOM TMROCOH TOABIT ToOCS TOSE PS& TOPS2 TOPS1 TOPSD 1111 1111
QSCCON IDLEM RCF2 IRCF1 RCFO OSTS IOFS SCs1 SCS0 0000 go00
LVDCON — — WRST LVDEM LVDL3 oLz LvDL1 LVOLD --00 0101
WOTCON — — — — — — — SWDTEM | --- ---D
RCOM IPEM — — Rl TO PD FOR BOR 0--1 11q0

Computer Organization and Microprocessors

Page 255

General Register Map, 2/2

File Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Phgll:tu.ea?jlh
TMR1H Timer1 Register High Byte XXX 200K
TMRIL Timer1 Register Low Byle HIHN UK
T1CON rRo1e | TiRuN | Tickest | Tickeso | Tioscen | TISVRE | TMRics | TMRion | oooo oooo
TMR2 TimerZ Register 0ao0 0aooo0
PR2 Timer2 Period Register 1111 1111
T2CON — | Toutesa | TouTPsz | TouTPst | TOUTPSD | TMR20ON | T2cKPS1 | T2CKPSD | -000 0ooo
ADRESH AD Result Register High Byte HAXN WO
ADRESL AD Result Register Low Byte HIHN UK
ADCOMND VICFG1 WVCFGO —_ CHS2 CHS1 CHS0 GO/DONE ADOM ao-0 0000
ADCON1 — PCFGE PCFGE PCFG4 PCFG3 PCFG2 PCFG1 PCFGD -000 0000
ADCOMN2 ADFM _ ACQT2 ACQTH ACQTO ADCS2 ADCS ADCSD 0-00 0000
CCPR1H Capturs/Compars/PWh Register 1 High Byte HIHN UK
CCPRIL Capture/Compare/PWM Register 1 Low Byte AHEXN AN
CCP1COM Fimi P10 DCiB1 DC180 CCPIM3 CCPIMZ CCPIMA CCPIMD | 0000 0000
PWR1CON PRSEN PDCB PDCS FDC4 PDC3 PDC2 PDC1 PO:COD aoog 0000
ECCPAS ECCPASE | ECCRASZ | ECCPAST | ECCRASD FPS5ACT PS5ACO FS5BD1 PS5BD0 | 0000 0000
TMR3H Timer3 Register High Byte HHXN AOCHNK
THMR3L Timer3 Register Low Byle AHHN IOEHH
TICOM RD16 — TICKPS1 | TACKPSO TICCP1 T2SYNC TMRICS TMR2OM | 0-00 0000
SPBRGH EUSART Baud Rate Generator High Byte 0000 0000
SPBRG EUSART Baud Rate Generafor Low Byte aoog 0000
RCREG EUSART Receive Register 0000 0000
TXREG EUSART Tranzmit Register aoog 0000
THSTA CSRC TXS TXEM SYNC SENDB BRGH TRMT TAOD 0000 0010
RCSTA SPEN RS SREM CREM ADDEN FERR OERR RXSD Qo000 000
BAUDCTL — RCIDL — SCKP BRG16 — WUE ABDEM -1-1 0-00
EEADR EEPROM Address Register aoo0 0000
EEDATA EEFROM Data Register 0000 0000
EECON2 EEFPROM Control Register 2 {not a physical register) aoo0 0000
EECON1 EEPGD CFGS — FREE WRERR WREN WR RD -0 x000
IPR2 OSCFIP _ —_ EEIP — LVDIP TMRIIP —_ 1--1 -11-
PIRZ OSCFIF — — EEIF — LvDIF TMR3IF — O--0 -00-
PIEZ2 OSCFIE _ —_ EEIE — LWVDIE TMR3IE —_ O--0 -00-
IPR1 — ADIP RCIP TEIP — CCP1IP TMRZIP TMR1IF -111 -111
PIR1 —_ ADIF RCIF TXIF — CCPIIF TMR2IF TMRAIF -000 -000
PIE1 — ADIE RCIE TXIE — CCP1IE TMRZIE TMRI1IE -0o0 -000
OSCTUME — — TUMNS TUN4 TUM3 TUMZ2 TUMA TUND --00 0000
TRISE Data Direction Control Register for PORTE 1111 1111
TRISA TRISAT | TRISa6M | — |Data Direction Control Register for PORTA 11-1 1111
LATE Read/Write PORTE Data Latch AHHN IOEHH
LATA LATA<7=R) | LaTa<e=1| — |Read/write PORTA Data Latch —_—
PORTE Read PORTE pins, Write PORTE Data Latch AHHN 200K
PORTA RATIZN | RAgI | RAS |Head PORTA pins, Write PORTA Data Latch w0 0000

Computer Organization and Microprocessors Page 256

APPENDIX D. SPECIAL FEATURES OF PICMICRO

PICmicro includes features intended to maximize system reliability, minimize cost through elimination of
external components and offer code protection. These are:

» Oscillator Selection

> Resets:

= Power-on Reset (POR)

= Power-up Timer (PWRT)
= Oscillator Start-up Timer (OST)
= Brown-out Reset (BOR)
Interrupts

Watchdog Timer (WDT)
Fail-Safe Clock Monitor
Two-Speed Start-up

Code Protection

ID Locations

In-Circuit Serial Programming

VVVVVVY

Although most configurations can be done by modifying the SFR registers, the more central configuration
is done by modifying the configuration bits.

The configuration bits can be programmed (read as ‘0’), or left un-programmed (read as ‘1’), to select
various device configurations. These bits are mapped starting at program memory location 300000h
which is beyond the program and user program memory space. In fact, it belongs to the configuration
memory space (300000h-3FFFFFh). This space can only be accessed using the table read and table
write instructions.

Programming the configuration registers is done in a manner similar to programming the Flash memory.
The EECONT1 register WR bit starts a self-timed write to the configuration register. In normal operation
mode, a TBLWT instruction, with the TBLPTR pointing to the configuration register, sets up the address
and the data for the configuration register write. Setting the WR bit starts a long write to the configuration
register. The configuration registers are written a byte at a time. To write or erase a configuration cell, a
TBLWT instruction can write a ‘1’ or a ‘0’ into the cell. For additional details on Flash programming, refer
to PICmicro data sheet.

Computer Organization and Microprocessors Page 257

Dafault
File Marne Bit 7 Bit g Bits Bit 4 Bit 3 Bit 2 Bit 1 BitO Unpragrammed

Value
300001h JCOMFIGIH | IESO FSCM — — FOSC3 | FOSCZ2 | FOSCH FOSCO 11-- 1111
300002h | COMFIG2L — — — — BORWA BORWD BOR |PWRTEM| ---- 1111
3000030 |COMFIG2H — — — WOTPS3 | WOTPS2 | WOTPS1 | WDOTPS0 | WOT ---1 1111
300005h |COMFIG3H | MCLRE — — — — — — — l-mm ----
300006h |COMFIG4L | DEEUG — — — — VP — STVR 1--- -1-1
3000080 | COMFIGSL — — — — — — CP1 CPO O ---- -- 11
300000h |COMFIGSH | CPD CPE — — — — — — 11-- ----
300008R | COMFIGEL — — — — — — WRT1 WRTD | ---- -- 11
J0000Bh |COMFIGEH | WRTD | WRTE | WRTC — — — — — 111- ----
30000CH |COMFIGTL — — — — — — EETRA1 EBTRO | ---- -- 11
300000R | COMFIGTH — EETRE — — — — — — -l-- ----
3FFFFEh |DEVIDM™ | DEvVZ | DEVY | DEVO | REV4 | REV2 | REVZ REV1 REVD xxxx xxxEl)
3FFFFFh |DEVIDZM | DEVIO | DEVG DEVE DEWT DEVE DEVS DEV4 DEW3 0000 0111
Legend: = =unknown, u =unchanged, - = unimplementad. Shaded calls are unimplemeanted, read as ‘o

Mote 1:

See Raegister 19-14 for DEVIDA values. DEVID registers are read-only and cannot b2 programmed by the user.

Computer Organization and Microprocessors

Page 258

APPENDIX E. ADDITIONAL RESOURCES

» Website www.EngrCS.com provide access to additional supporting hardware/software
documentation, Microchip PIC 18F1220 Data Sheet and development environment.

» The latest development tools, documentation and tutorial on MPLAB software and other hardware
development tools are available at www.Microchip.com.

Computer Organization and Microprocessors Page 259

