

Computer Organization
&

Microprocessors

Version 4.6 printed on June 2015
First printed on March 2007

Computer Organization and Microprocessors Page 2

Background and Acknowledgements

This material is intended for the second course in digital systems focus on Computer Organization and
Microprocessors. The content is derived from the author’s educational, engineering and management
career, and teaching experience.

I would like to extend special thanks to the many students and colleagues for their contributions in making
this material a more effective learning tool.

Further, I would invite the reader to forward corrections, additional topics, examples and problems to me
for future updates.

Thanks,

Izad Khormaee
www.EngrCS.com

Microchip material used by permission:
Excerpts from Microchip Technology Inc.’s PIC microprocessor Datasheets, application notes and other
resources has been included with permission from Microchip Technology Inc., November 9, 2006. The
following are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other
countries: Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PowerSmart, PRO
MATE, rfPIC and SmartShunt; as well as the Microchip logo, the Microchip name and logo, and the
KEELOQ logo.

Computer Organization and Microprocessors Page 3

Table of Contents
CHAPTER 1. Introductions .. 6

1.1. Overview of components, subsystems and interfaces ... 7
1.2. Processor Design Considerations .. 14
1.3. Computing systems Classification .. 15
1.4. Historical Perspective and Trends .. 17
1.5. What’s next… ... 18
1.6. Integrated Development Environment (IDE) ... 19
1.7. Additional Resources .. 23
1.8. Problems ... 24

CHAPTER 2. Assembly Instructions and Processor Architecture ... 25

2.1. Instruction Structure & Execution ... 26
2.2. Byte-oriented Operations .. 28
2.3. Bit-oriented Operations ... 32
2.4. Literal-oriented Operations ... 34
2.5. Control Operations .. 35
2.6. Memory Layout & Definitions .. 44
2.7. Additional Resources .. 48
2.8. Problems ... 49

CHAPTER 3. Input/Output Organizations .. 50

3.1. Pinout and Packaging ... 51
3.2. Accessing I/O Devices .. 55
3.3. Additional Resources .. 64
3.4. Problems ... 65

Chapter 4. Program Flow, Event Handling and Control ... 66

4.1. Overview ... 67
4.2. Stack Operations .. 68
4.3. Procedure Call and Return Instructions .. 74
4.4. Interrupt/exception handling ... 80
4.5. Clock and Oscillator .. 89
4.6. Timers ... 92
4.7. Power Management .. 101
4.8. Reset ... 102
4.9. Analog-to-Digital Converter .. 103
4.10. Pulse Width Modulation (PWM) .. 114
4.11. Additional Resources .. 119
4.12. Problems ... 120

Chapter 5. Arithmetic & Logic Operations .. 121

5.1. Arithmetic Operations ... 122
5.2. Move, Set and Clear Operations .. 138
5.4. Branch Operations .. 167
5.5. Specialty Operations ... 177
5.6. IEEE Standards for Floating Point .. 179
5.7. Additional Resources .. 184
5.8. Problems ... 185

Computer Organization and Microprocessors Page 4

Chapter 6. C/Assembly/Machine Language Equivalencies ... 186

6.1. Introduction ... 187
6.2. Indirect Addressing (INDFn) ... 195
6.3. Functions / Procedures ... 197
6.4. Data Types ... 200
6.5. Program Flow Controls ... 206
6.6. Additional Resources .. 210
6.7. Problems ... 211

Chapter 7. Performance ... 212

7.1. CPU Performance and Relating Factors .. 213
7.2. Evaluating Performance ... 218
7.3. Performance Bench Marking Design .. 219
7.4. Additional Resources .. 220
7.5. Problems ... 221

Chapter 8. Memory & Storage Hierarchy ... 222

8.1. Memory & Storage Overview .. 223
8.2. Cache Memory ... 225
8.3. Primary Memory ... 226
8.4. Secondary Storage ... 227
8.5. Virtual Memory Management.. 228
8.6. Additional Resources .. 229
8.7. Problems ... 230

Chapter 9. Concurrency in Computing .. 231

9.1. Overview of Parallelism .. 232
9.2. Pipelining .. 233
9.3. Multi-processing .. 236
9.4. Multi-core Processors ... 237
9.5. Multi-Processor Systems .. 238
9.6. Additional Resources .. 239
9.7. Problems ... 240

Chapter 10. Networking ... 241

10.1. Networking Overview & OSI Model .. 242
10.2. Medial Layers (Physical, Data/Link & Network) ... 243
10.3. Host Layers (Transport, Session , Presentation and Application) .. 244
10.4 Additional Resources ... 245
10.5. Problems ... 246

Appendix A. PICmicro Instruction Set Summary ... 247

Appendix B. PICmicro OpCode Field Description .. 251

Appendix C. Register File Summary .. 253

Appendix D. Special Features of PICmicro ... 257

Computer Organization and Microprocessors Page 5

Appendix E. Additional Resources .. 259

Computer Organization and Microprocessors Page 6

CHAPTER 1. INTRODUCTIONS

Key Concepts and Overview

 Overview of components, subsystems and interfaces

 Processor Design Considerations

 Computing systems Classification

 Historical Perspective and Trends

 What’s next…

 Integrated Development Environment (IDE)

 Additional Resources

Computer Organization and Microprocessors Page 7

1.1. Overview of components, subsystems and interfaces

 Computer Layers

 Operating System roles

Operating systems are basically the system resource managers and controllers. The common
Operating systems include Windows, Linux and Mac OS.

The operating system roles include:

 Handle basic Input/output
 Start and stop applications
 Allocate storage, memory and processor – In general, manage the use of computer

resources among the applications (active processes)

Application (Word, Photoshop, MATLAB …)

System Software (Compiler,
Assembler, operating System)

Hardware

Computer Organization and Microprocessors Page 8

 Steps from High Level Language (C, C++, C#, Java, …) to executable code

As it can be seen from the above figure, high level languages such as C make it easier for human
programmers to read and write the program. Improved code readability increases the programmers’
productivity which has led to popularity of high level language amongst Software engineers and
businesses.

Compilers and assemblers are used to translate the high level language into Machine language which
can be executed on the processor. Programmers typically use Assembly language to optimize the
parts of code that have high impact on performance.

Finally, linker allows integration of functions which are previously written or functions from available
libraries.

 Computer Architecture
Architecture defines the flow of data and patterns of the system. In general, a computer system can

High-Level Code, C Language Swap (int v[], Int k)
{
 int temp;
 temp = v[k]
 v[k] = v[k+1];
 v[k+1] = temp;
}

Compiler

Swap:
 ADDWF f,d,a
 MOVWF f,d,a
 BRA end_loop

Assembly Language Program
(for PICmicro)

Assembler

0000000010100000010000000011000
0000000000001100000000011100001
…..

Binary Machine Language
(for PICmicro)

Linker

Other Binaries

Executable Code

Computer Organization and Microprocessors Page 9

be described using the following architectural diagram:

 Computer Components

 Input

Keyboard, Mouse, Microphone, Joy stick and Video camera are examples of input devices.

 Output
One of the main forms of output is presenting the information on a display. There are a large
number of display types. Here are some examples of display types:

 Cathode Ray Tube-CRT
 Liquid Crystal Display-LCD
 Electro Luminescent-EL
 Plasma

Typically, displays are memory-mapped which means there is a memory location for every dot on
the display. The value in the memory controls the color and intensity of the corresponding dot.
Collections of dots may be used to form an image, text or other display elements. The following
diagram presents a few examples which show the relationship between data and a RGB (Red,
Green, and Blue) memory-mapped display:

Control

Processor
Memory

Input Output

Data & Control
Path

Computer Organization and Microprocessors Page 10

 Networking is another important type of Input/Output
The following list categorizes networking based on the geographical coverage:

 Personal Networking (PN)

PN coverage is around one person, desk or room. Some examples are:

 USB
 Blue tooth
 RS232 – Serial bus
 Parallel Bus

 Local Area Networking (LAN)

IEEE 802.3 is the most common LAN type in use within a building or small campus. The light
weight wired implementation is the most common type of Local area networking in use. The
wireless implementation of this network type has also grown dramatically.

 Wide Area networking (WAN)
WAN coverage is across cities, countries or continents. WAN service is typically leased from
a telecommunication company. One could say that the telephone system is a form of WAN.

(X,Y) Pixel on screen

 R G B
FF 00 00 Red
00 FF 00 Green
00 00 00 Black
FF FF FF White

Computer Organization and Microprocessors Page 11

 Processor
Processor or Central Processing Unit (CPU) is the program execution unit of the computer and
can be thought of as the brain. The following diagram shows the most common elements or
functional blocks of a processor:

Control

Instructional Cache

Enhanced Floating Point &
Multimedia

Control

Advanced Pipelining
Hyper threading support

Control

I/O
Interface

Secondary
Cache and
memory
interface

Integrated
Datapath

Control

Computer Organization and Microprocessors Page 12

 Memory/Storage
 Primary Memory

Typically referred to as solid state memory. It is smaller in size but faster (Access time in
nanoseconds) and is used during program execution. (512 Mbytes for $100 in 2005)

 Volatile memory
This is the most common type of memory where data is retained as long as power is
applied. There most common types of volatile memory are:

 CACHE

Cache is the fastest memory and it is used for frequently accessed instructions
and data. It is intermediate memory between processor and memory/storage.

 DRAM
Dynamic Random Access Memory (DRAM), is the second fastest memory type
used for data and programs. Processor can execute the instruction directly from
DRAM. Physically, they are available in a variety of packages depending on the
application.

 Nonvolatile memory
This type of memory preserves the data even if power is removed. Read Only
Memory (ROM), Erasable Programmable Read Only Memory (EPROM), Flash RAM
and Nonvolatile RAM (NVRAM) are a few examples of nonvolatile memory.

 Storage or Secondary Memory
Typically, larger in size but slower access (Access time in micro to milliseconds). Also lower
cost per mega bytes (250 GB for $100 in 2005)

Some examples include Floppy, Hard Disk (Magnetic Disk), CD and DVD (Optical Disk), Zip
Drive, USB Jump Drive, Magnetic Tape.

 Selecting amongst memory types
The selection of memory types are driven by the tradeoff between speed and price. Further,
it should be noted that speed and price are inversely proportional. Most applications benefit
from fastest memory, but budgets limit the speed of memory which developers can afford.

The price and speed trade off leads to small size cache memory (fastest, typically static
RAM) and medium sized main memory (typically DRAM). The largest memory or storage is
typically the hard disk which is also the lowest cost per byte.

 Main or Mother Board

A computer typically has a main board which houses the processor and other interface logic required
for the operation of the computer system. The following diagram shows some of the common
components found on a main board:

Computer Organization and Microprocessors Page 13

Graphics

I/O bus Slots

Processor

Processor Interface

M
e
m
o
r
y

Disk and USB
interfaces

Computer Organization and Microprocessors Page 14

1.2. Processor Design Considerations

 Functionality

Functionality is the foundation of design and as such is prominent in design consideration.

 Speed/Performance
Speed and performance are increasingly more important considerations in computer and process
design. Market is demanding higher performance computers as applications have increased in
complexity due to the following factors:

 Increased demand for graphics in order to create more natural presentations
 More types and more complete sets of data leading to larger and more complex database

management
 Multi-tasking and more demand on operating system
 User’s expectation of instantaneous response.

 Usability
Usability or ease-of-use continues to grow in importance as a broader range of users attempts to
access more of the computer’s functionality.

 Maintainability and reliability
As the systems become more complicated, the need for maintainability and expandability of existing
software and hardware is more important than ever before. This has resulted in designers needing to
use hardware modularization and its equivalent in software, Object Oriented Design.

 Memory Requirement
As the technology advances and more memory becomes available at lower cost, minimization of
memory requirement becomes less of a design issue.

For example, a typical desktop computer in 1985 had 512 Kbytes of RAM, where the same type of
computer in 2005 had 512 Mbytes of RAM. That represents a 1,000 fold increase in 20 years. The
price for a 2 GByte in 2010 was roughly about the same as the price for a 512 Kbyte in 1985.

Computer Organization and Microprocessors Page 15

1.3. Computing systems Classification

 Computer Usage

It is impossible to go through a day without interacting with computer systems in our modern society.
Today, computers are integrated into many facets of living and working. In many cases, you may be
benefiting from the power of a computer, but you may not be aware of its existence. The following list
provides a few examples:

 Cars
 Home Appliances
 Personal Computers
 Internet
 Cell Phones
 Medical solutions such as Hearing-aid, pace maker and others
 Traffic Light

 Classes of Computer Application

 Workstations & Desktop Computers

A computer used by one user with input and output devices. It may be used for personal,
business, games, hobby, engineering, science or other activities. These systems typically have a
dedicated display, keyboard and network connection.

 Servers
A computer used for running large programs for multiple users, often simultaneously. It is typically
in a data center, accessible only through a network. A server might not have its own keyboard
and display.

Servers are available in a wide range of performance and functionality. The low-end servers and
Supercomputers are the extreme ends of the spectrum:

 Low-end Server

This type of server may be a desktop computer running networkable version of windows,
Linux or some other operating system.

 Supercomputers
This class of computers has the highest performance and is the most expensive.
Supercomputers are typically used for specific and computationally intensive problems such
as weather forecasting.

 Embedded
Computers embedded inside a device performing a set of predetermined functions. Embedded
systems are the most pervasive type of computers and are expected continue to grow rapidly
based on current trends. Embedded systems can be found in a broad range of products such as
washing machines, cell phones and PDAs. A typically modern car has multiple embedded
systems such as the fuel system controller and ABS breaking system.

Based on a 2002 survey, the computer system usage for each type of computer is shown below:

 1122 million embedded or 89.5% of total
 131 million desktops or 10.4% of total
 1 million servers 0.1% of total

Computer Organization and Microprocessors Page 16

 Microprocessor Survey
As of 2014, majority of processors are 64-bit (data is 64 bits wide). Prior to 2000, most processor
designers were developing Complex Instruction Set Computers (CISC) which provide a large set of
instructions. The most influential producers of CISC processor vendors were:

 Motorola 68K - CISC

 Intel’s IA-32 (Intel’s Pentium,…) - CISC

 Since 2000, the idea behind CISC has been successfully challenged by many processor

designers and as of 2014, most major producer have migrated to Reduced Instruction Set
Computers (RISC) which provide a selected few simple instructions, but instructions execute in a
single clock cycle. This means that instruction execution is much faster than in CISC. The most
influential producers of RISC processor vendors are:
IBM’s Power PC – RISC
* Also used in Apple PCs until 2006 when Apple moved to Intel’s RISC processors.

 Sun Microsystems’ SPARC - RISC

 Microchip’s PIC processors and Microcontrollers - RISC
“PICmicro will be used throughout this book as an example”

 ARM Processors - RISC

 MIPS - RISC

Computer Organization and Microprocessors Page 17

1.4. Historical Perspective and Trends

 Technology Trends

Year Technology used in Computers Relative Measure (Transistors/Device)
1951 Vacuum Tube 1
1965 Transistor 35
1975 Integrated circuits 900
1995 Very Large Scale Integrated Circuit 2,400,000
2005 Ultra Large Scale Integrated Circuit 6,200,000
2009 Dual Core Itanium 2 (596 mm2 Die)

“using 90 nm process”
1,700,000,000

2012 8-Core Itanium Poulson (544 mm2 Die)
“using 32 nm process”

3,100,000,000

2014 NVIDIA GK110 processor (551 mm2 Die)
“using 28 nm process”

7,100,000,000

 Moore’s law states that the number of transistors per square inch will double every 18-24 months.

This observation has held true over the past 50 years (1965 – 2015).

 Complementary Metal Oxide Semiconductor (CMOS) is the dominant semiconductor technology for
integrated circuits. The main reason is that it consumes power mainly during switching according the
following formula:

 Power = Capacitive load x Voltage2 x Frequency switched

It is important to note that two of the main limiting factors for integrated circuits are power
consumption and dissipation of resulting heat.

 Computer design trends:
 Continued minimization of size and faster execution
 Lower voltage (5v 1.5V …)
 Use of Biological solutions
 Nano technology
 Parallel processing
 Large data buses 3264128?

Computer Organization and Microprocessors Page 18

1.5. What’s next…

The remainder of this book is focused on introducing key concepts in computer organization and system
design. As much as possible, the general concepts will be introduced first, followed by an implementation
example.

Microchip PIC 18F1220 Microcontroller will be used as the implementation example throughout the
remainder of this book. Microchip PIC 18F1220 will be referred to as PICmicro.

PICmicro is a microcontroller as opposed to a microprocessor, which means, in addition to the
functionality available in a typical microprocessor, PICmirco has additional functionality and circuits which
are outlined below:

 Memory

 4K bytes of Program Flash Memory
Flash memory used to store the program instruction set which can be reprogrammed up to
100,000 times. The programming is retained for over 40 years.

 256 bytes of Data Memory
This memory is used for data. It will be referred to as the register file since all the available data
memory is available to the user.

 16 input/output ports

 Seven 10-bit Analog to Digital Converters

 One Pulse Width Modulator (PWM)
PWM is used to control amount of power delivered by modulating (changing) duty cycles.

 One Enhanced Universal Asynchronous Receiver Transmitter (EUSART)
Serial to parallel and parallel to serial capability with auto speed detection and wake-up capability.

 Three timers

 Priority-level interrupts

 Choice of internal or external oscillator

Computer Organization and Microprocessors Page 19

1.6. Integrated Development Environment (IDE)

Most processor vendors provide a full Integrated Development Environment (IDE) to support the
developers using of their processors in development of new products. Typically, an IDE includes editor,
compiler, assembler, linker, debugger, simulator and other useful applications/tools. Processor vendors
such as Microchip are focused on providing effective IDEs to increase adoption rates resulting in the
higher use of their processors.

Microchip’s PICmicro family of processors has an extensive set of hardware and software development
tools supporting the designers. PICmicro IDE is called MPLAB IDE and can be downloaded from
www.EngrCS.com or directly from Microchip’s website. MPLAB IDE is available for Widows, MAC and
Linux. The MPLAB IDE offers the following core functionality:

 Code Management and Editor
 C complier is available but needs to be downloaded and installed.
 Assembler
 Linker
 Simulator
 Programmer Interface
 Debugger
 Extensive online help and tutorial

Below is a brief overview of these key components of MPLAB IDE:

 Code Management and Editor

MPLAB IDE provides tools for managing your file as part of a project and editing your code in a
context sensitive editor that provides syntax hints during programming.

 Compiler
MPLAB’s C compiler is a complete ANSI C compiler for PICmicro. This compiler is fully compatible
and integrates seamlessly with MPLAB IDE. It also provides symbolic information that works with
MPLAB IDE debugger and simulator.

C code is saved in files with extension (.c) and include files are saved in files with extension (.h).
below is an example of PICmicro C code:

Computer Organization and Microprocessors Page 20

 Assembler
PICmicro’s assembler (MPASM) is an integral part of MPLAB IDE and MPASM, is a full-featured,
universal macro assembler for all PICmicro MCUs. MPASM generates relocatable object files for the
object linker (MPLINK), MAP files with detailed memory usage and symbol references, absolute LST
files that contain source lines, machine code and COFF files for debugging.

Assembly code is saved in file with extension (.asm) which are part of a project such as the code
shown below:

/***
* File: main.c
* Project: A Simple Counter
* Author: Great Designer
* Device: PICmicro (PIC18F1220)
***/

#include <p18f1220.h>
//TRISA, TRISB, PORTA, PORT are already defined in p18f1220.h

void main(void)
{
 unsigned char input;
 unsigned char lastinput = 0x00;
 unsigned char count = 0x00;

 ADCON1 = 0x7F;
 TRISA = 0x01;
 TRISB = 0x00;

 while(1)
 {
 input = PORTA;
 input = input & 0x01;
 if(input != lastinput)
 {
 count++;
 PORTB = count;
 }
 lastinput = input;
 }
}

Computer Organization and Microprocessors Page 21

 Linker and Object Librarian
The linker is required to combine various object files generated by assembler and code libraries into
an executable program. The MPLINK object linker combines relocatable objects created by the
MPASM assembler and the MPLAB C compiler. It can also link relocatable objects from precompiled
libraries using directives from a linker script.

The MPLIB object librarian manages the creation and modification of library files of precompiled code.
When a routine from a library is called from a source file, only the modules which contain that routine

;---
; FILE: main.asm
; DESC: A Simple Counter
; DATE: 5-18-06
; AUTH: Great Designer
; DEVICE: PICmicro (PIC18F1220)
;---

 list p=18F1220 ; Set processor type
 radix hex ; Sets the default radix for data exp.

#define PORTA 0xF80
#define PORTB 0xF81
#define TRISA 0xF92
#define TRISB 0xF93
#define ADCON1 0xFC1

COUNT equ 0x080
LASTIN equ 0x081
INPUT equ 0x082
TEMP equ 0x083

org 0x000 ; Set the program origin (start) to 0x000

 ; Initialize all I/O ports
 CLRF PORTA ; Initialize PORTA
 CLRF PORTB ; Initialize PORTB
 MOVLW 0x7F ; Set all A\D Converter Pins as
 MOVWF ADCON1 ; digital I/O pins
 MOVLW 0x0A ; Value used to initialize data direction
 MOVWF TRISB ; Set Port B <pins 0,2,4:7> as output
 ; Set Port B<pins 1,3> as input
 MOVLW 0xE2 ; Value used to initialize data direction
 MOVWF TRISA ; Set Port A <Pin 7:5,1> as input
 ; Set Port A <Pin 0, 2:4> as output

 MOVLW 0x00 ; W = 0
 MOVWF COUNT ; COUNT = WREG
 MOVWF LASTIN ; LASTIN = WREG

Loop: MOVFF PORTA, INPUT ; INPUT = PORTA
 MOVF INPUT, 0 ; W = PORTA
 XORWF LASTIN, 0 ; W = W XOR LASTIN
 ANDLW 0x1 ; W = W AND 0x1
 MOVFF INPUT, LASTIN ; LASTIN = PORTA
 MOVWF TEMP ; TEMP = W
 BTFSC TEMP, 0 ; If TEMP<0> = 0 Then Skip Next Command
 CALL Increment
 GOTO Loop

Increment: MOVF COUNT, 0 ; W = COUNT
 ADDLW 1 ; W = W + 1
 MOVWF COUNT ; COUNT = W
 MOVWF PORTB ; PORTB = W
 RETURN

 end ; Indicates the end of the program.

Computer Organization and Microprocessors Page 22

will be linked in with the application. This allows large libraries to be used efficiently in many different
applications.

 Simulator
A great way to test the functionality of your code is to use a simulator before downloading the code
into the processor hardware. The simulator enables the designer to test the functionality while
viewing the processor’s internal states and registers, as well as access to the debugging process.
The only limitation is that the simulator will not test the timing requirements since the code is not
running at the proper speed.

The MPLAB SIM software simulator allows PICmicro code simulation in a PC hosted environment by
simulating the PICmicro on an instruction level. For a given instruction, the data areas can be viewed
or modified as stimuli are applied from either files or user key presses. The execution can be
performed in different modes: Single-Step, Execute Until Break, or Trace. The MPLAB simulator
supports symbolic debugging using MPLAB C Compilers and/or the MPASM assembler.

 Debugger
The code can be debugged while simulating. The developer will have access to all the variables and
memory locations as well as the ability to either single step through the code or run the code to a pre-
determined breakpoint.

 Programmer Interface
Once the code has been tested with simulation, the next step is to download the code into the
PICmicro chip so that it can be installed in the circuit. From MPLAB, code can be downloaded to PIC
Micro using one the PIC programmers.

Computer Organization and Microprocessors Page 23

1.7. Additional Resources

 Peterson. Computer Organization and Design, (2007) Elsevier Service.

 Microchip Staff. Microchip PIC 18F1220/1320 Data Sheet. (2004) Microchip Technology

Incorporated.

 Microchip Staff. MPLAB IDE User’s Guide and Getting Started with MPLAB

Computer Organization and Microprocessors Page 24

1.8. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Computer Organization and Microprocessors Page 25

CHAPTER 2. ASSEMBLY INSTRUCTIONS AND PROCESSOR ARCHITECTURE

Key concepts and Overview

 Instruction Structure & Execution

 Byte-oriented Instructions

 Bit-oriented Instructions

 Literal-oriented Instructions

 Control Instructions

 Memory Layout & Definitions

 Additional Resources

Computer Organization and Microprocessors Page 26

2.1. Instruction Structure & Execution

At the most basic level, a processor’s first step is to read an instruction (set of binary values). This step
may also be referred to as fetching an instruction. In the next step, the processor will decode and
execute the instruction. Finally, the processor writes any resulting data to memory. These steps are
repeated until the processor is diverted.

Below is a high level view of this process where PC refers to Program Counter. PC’s value is the address
of the next instruction to be fetched and executed: Notice in this example, two is added to PC each time
which means each instruction is 2 bytes long.

An instruction is made up of at least two fields and may use two, four or more bytes. First field is typically
the opcode that identifies the desired operation. The second field is the operand for the operation. There
may be additional fields as needed.

PICmicro instructions are single word (two bytes or 16 bits) long except for the three double-word
instructions. All single-word instructions are executed in a single cycle. Single cycle execution is a
common characteristic of Reduced Instruction Set Computer (RISC) where there are small numbers of
instructions, but the instructions execute in a single clock cycle.

PICmicro has five types of instructions:

 Byte-Oriented operations

 Bit-Oriented operations

 Control Operations

 Literal Operations

 Memory-Block Operations

PC

Instruction

Address

Program
Memory

Add
2

Program
Execution

Module

Data Memory

I/O

Address Data

Computer Organization and Microprocessors Page 27

The Byte-Oriented, Bit-Oriented and Literal operation instructions move and manipulate data. We will be
discussing these instructions in more detail later in this chapter. For these instructions, PC is
incremented by 2 each time an instruction is executed so that PC will always be pointing to the next
instruction.

Control operation instructions are used to change the next PC value to point to an address other than
PC+2 if certain conditions are met. This set of instructions will be discussed in a later chapter. The
control instructions are used to implement conditional expression such as “If-then-else” and loops such as
“For loop”.

Refer to appendices for a complete listing of PICmicro instructions.

Computer Organization and Microprocessors Page 28

2.2. Byte-oriented Operations

Most byte-oriented instructions have three operands:

 The file register (specified by “f”)
 The destination of the results (specified by “d”)
 The accessed memory (specified by ‘a”)

The destination designator “d” specifies where the result of the operation is to be placed. If ‘d’ is zero, the
result is placed in the WREG register. If “d” is one, the result is placed in the file register specified in the
instruction (default).

In this example ADDWF is the opcode (see appendix for PICmicro Instruction Set). Below are a more
detailed description and examples of Byte-Oriented Instructions:

Computer Organization and Microprocessors Page 29

 Add WREG and f “ADDWF f,d,a”

Notes:

 “” in the set of.

d [0,1] means d can be 0 or 1.

 Arithmetic Logic Unit (ALU) Status Bit
Definitions (Status Register – SFR)
o “C” Carry - Set when the instruction

results in a carry out of the most
significant bit, clear when no carry

o “DC” Digit Carry - Set for carry out of the
4th low order bit.

o “N” Set for Negative result, clear for
non-negative result

o “OV” Set for overflow result, clear for
non-overflow result

o “Z” Set for zero result, clear for non-zero
result

 Hexadecimal Designation
Both “0x” prefix and “h” postfix indicate a
hexadecimal number.

For example both “0x1F” and “1Fh” are
representations of 0x1F hexadecimal.

 BSR “Bank Select Register”
By default, BSR will be set to “0” which
means only the first 8 bits of the register file
address are used and the upper 4-bits are
set to 0 (0-FF).
Later in this chapter, BSR will be discussed.

 “[]” any syntax item in the square bracket is
optional. “[]” may be used as nested
construct.

 “()” signifies that the content of the register
(not the address) will be used in the
operation. For example (f) refers to content
of register f.

Computer Organization and Microprocessors Page 30

 Example – Given the following memory map, determine the value stored at memory location 33:

Solution:
 Location 33: Value is 23. (33 in decimal is equal to 0x21 in hexadecimal)

 Example - ADDWF 0x12, 0, 0

 Before Instruction
 W = 0x10
 REG (0x12) = 0x20

 After Instruction
 W = 0x30
 REG (0x12) = 0x20

The value 0x10 is taken from working register WREG and added to the value 0x20 from file register 0x12.
Because we have a zero for the [d] syntax item, the result is stored back in WREG.

 Example - Given W = 25 and F register (22) = 15.

a) Determine what the values of W and register (22) will be after execution of the following assembly
code statement:
 ADDWF 22,1
b) Determine the machine code equivalent for the above assembly code.
Solutions:
 a) W = 25 and F register (22) = 40.

 b) Equivalent Machine code is “0010 0111 0001 0110”.

0x22 34

.

.

.

Address

0x23 65

0x20 12

0x21 23

Data

.

.

.

Computer Organization and Microprocessors Page 31

 Move fs to fd “MOVFF fs,fd”

 Example - Given the following memory
content:

After execution of “MOVFF 0x10, 0x15”:

a) What are the content in file registers 0x10
and 0x15?
b) What’s the machine code equivalent?
c) Assuming the instructions are stored
starting at program memory location 0x26,
show the program memory content from
0x26 to 0x29.

Solutions:

a)

b) “1100 0000 0001 0000”

 “1111 0000 0001 0101”
c)

Address

0x27 0xC0

Data

0x26 0x10

0x29 0xF0

0x28 0x15

…
Address

0x15 0x33

0x10 0x33

Data

…

…

…
Address

0x15 25

0x10 33

Data

…

…

Computer Organization and Microprocessors Page 32

2.3. Bit-oriented Operations

A bit-oriented instruction has three operands:

 The file register (specified by “f”)
 The bit in the file register (specified by “b”)
 The accessed memory (specified by “a”)

The bit field designator ‘b’ selects the number (position) of the bit affected by the operation, while the file
register designator “f”’ represents the number (address) of the file in which the bit is located.

Below is a more detailed description of the two example instructions for the bit-Oriented Instructions:

 Bit Set f “BSF f, b, a”

 Example – value at location 29h is set to
0x20. What is the value at location 29h
after the following code has been
executed:

”BSF 0x29,2”

Solution:
value in location 29h will be 0x24

 Example – All memory locations have
been cleared prior to executing the
following machine code:

 “1000 1010 0111 0000”

a) What ‘s the assembly code
equivalent?
b) Which memory location has been
changed and what is the new content?

Solution:

a) BSF 0x70,5,0
b) Location 0x70 changed to
 “0010 0000” or “0x20”

Example Instructions

Computer Organization and Microprocessors Page 33

Example – Location 0x35 is set to 0x31 before execution of instruction “BSF 0x35,3”.
a) What is the Machine Code for the instruction in Hex?
b) What is the value in location 0x35 after the instruction execution?

Computer Organization and Microprocessors Page 34

2.4. Literal-oriented Operations

The literal instructions may use some of the following operands:

 A literal value to be loaded into a file register (specified by ‘k’)
 The desired Special Function Register (FSR) register to load with the literal value (specified by ‘f’)
 No operand required (specified by ‘—’)

Below is a more detailed description of the example instructions for the literal-Oriented Instructions:

 Move literal to WREG “MOVLW 0x7F”

Notes:

Example Instructions

Computer Organization and Microprocessors Page 35

2.5. Control Operations

The control instructions may use some of the following operands:

 A program memory address (specified by ‘n’)
 The mode of the CALL or RETURN instructions (specified by ‘s’)
 No operand required (specified by ‘—’)

More detailed description of the Control instruction examples to follow:

Example Instructions

Computer Organization and Microprocessors Page 36

 Go to address “k=K19K18 . . . K1K0” “GOTO k”

 “k” is shifted to the left by 1 before being

assigned to PC. This means that jump
are always to a word boundary.

 Example – Determine the value of PC
after the following machine code is
executed:

”1110 1111 1000 0001”
”1111 0000 1000 0010”

Solution:
PC = 10502h

Computer Organization and Microprocessors Page 37

 Example – Determine the Machine Code equivalent for the Goto statement in the following Code

Segment:

Address Instruction (Assembly OpCode)
0x290 GOTO GreatProgram
….
0x932 GreatProgram ; Now what?

Solution:

 Example – Determine the next instruction location (PC) to be accessed after the execution of the
following Machine Code:
 1110 1111 1010 1100
 1111 0000 0000 0010

Solution:

Computer Organization and Microprocessors Page 38

 Call Subroutine at address “k=K19K18 . . . K1K0” “CALL k,s”

Notes:

Computer Organization and Microprocessors Page 39

 Example – Determine the value of PC after the execution of the following Machine Code:

 1110 1111 1010 1100
 1111 0100 0001 0101

Solution:

 Example – Determine the Machine Code equivalent for the following CALL Instruction:

Address Instruction (Assembly OpCode)
0x24 FortyTwo: MOVFF answer, life
….
0x290 CALL FortyTwo

Solution:

Computer Organization and Microprocessors Page 40

 Branch Unconditionally “BRA n”

Notes:

 Address Calculation

New PC = BRA’s PC + 2 + 2*n
 “n is in 2’s Complement format”

 Example – Determine the address of
the next instruction to be executed after
the following BRA instruction:

Address Memory Content
0x236 1101 0111 1000 1000

It is important to note that offset is
provided in “2n” and 2’s complements
format. Therefore:

 1111 0001 0000 (Offset=2*n) +
 0010 0011 0110 (PC)
 10 (2)
.--------------------------------
 1 0001 0100 1000
 or
 0x148 new PC

As you see the overflow is ignored and
the address of the next instruction after
BRA will be location 0x148.

 Example – Determine the Machine Code equivalent for the following BRA instruction:

Address Instruction (Assembly OpCode)
0x110 BRA NextEvent
….
0x230 NextEvent: NOP

Solution:

Computer Organization and Microprocessors Page 41

 Example – Determine the PC after the execution of:

Address Code
0x3210 BRA 215

Solution:

 Example – Determine the Machine Code equivalent for the following BRA instruction:
 Hint: Negative n value.

Address Instruction (Assembly OpCode)
0x2110 Step: MOVWF Dove, 0
….
0x2140 BRA Step

Solution:

Computer Organization and Microprocessors Page 42

 Branch if Carry “BC n”

 Example – Assuming Carry bit is set,

determine the PC after execution of the
following machine code:

Solution:

 Example – Implement the following C
code using BC instruction:

high=0;
if (temp == 255) {
 high = 1;
}

Solution:
 high equ 0x80
 temp equ 0x81
 clrf high
 …

 Example – Write the machine code for
line labeled “loop2” in the following code
segment:

 Wreg = 245
 org 0x3442
Loop: Nop
 BNZ loop2
 ADDLW 25
Loop2: BC Loop

Solution:
 “1110 0010 1111 1100”

Address Data .

0x252 1110 0010 1111 1100

Computer Organization and Microprocessors Page 43

 Example – Determine the Machine Code equivalent for the following code segment:

Address Instruction (Assembly OpCode)
0x220 Loop: ADDLW 52
0x222 MOVFF New, Old
0x226 BC Loop
….
0x340 Step: MOVWF Dove, 0

Solution:

Computer Organization and Microprocessors Page 44

2.6. Memory Layout & Definitions

In general, computer memory is organized into two sections: data memory and program memory. The
size and organization of the memory depend on the type of system and its function. For the PICmicro
example used here, the memory sizes are in Kilo bytes (103) and Mega bytes(106). Depending on your
application, memory ranges may be in Giga bytes (109) and Terra bytes (1012).

Typical computer systems have all three types of memory (Program memory, Data memory, Nonvolatile
memory). Although Program and Data memories may be the same type of hardware, Program and Data
are stored in different sections of memory. This organization is required to ensure that data does not
overwrite programs. Additionally, if the data and program paths are kept separate, the processor can read
and write instructions and data simultaneously in order to improve performance.

As discussed earlier, PICmicro is a microcontroller which means that it will have some amount of each
memory type on-chip, in addition to other functionality. Specifically, PICmicro has the following types of
memory on the chip:

 Program Memory – 4 Kbytes on-chip with ability to access off-chip memory if available. The on-chip

program memory is EEPROM which is non-volatile (data is not lost when power is removed). The
following diagram outlines the total memory space and location of on-chip program memory from
0018-0FFFh

Reset Vector

On-Chip

 (4 Kbytes)
Program Memory

Low Priority Interrupt Vector

High Priority Interrupt Vector

Addressable Memory
(2 Mbytes)

Reads ‘0’ if not implemented

Data Memory Space (2 Mbytes)

0000h

0008h

0018h

0FFFh

1000h

1FFFFFh

Computer Organization and Microprocessors Page 45

 Data RAM
PICmirco’s Program and Data memories use separate buses. This allows for concurrent access of
program and data resulting in improved performance.

The data memory is implemented as static RAM. Each register in the data memory has a 12-bit
address, allowing up to 4096 bytes of data memory. The data memory map is divided into as many
as 16 banks that contain 256 bytes each. The lower 4 bits of the Bank Select Register (BSR<3:0>)
select which bank will be accessed. The upper 4 bits for the BSR are not implemented.

The data memory contains Special Function Registers (SFR) and General Purpose Registers (GPR).
The SFRs are used for configuraton and status reporting of the controller and peripheral functions,
while GPRs are used for data storage and temporary memory for programs. The SFRs are located
in Bank 15,from F80h to FFFh. . Any remaining space in the Bank may be implemented as GPRs.
GPRs start at the first location of Bank 0 (000h) and extend upwards through the rest of the banks.
Any read of an unimplemented location will return ‘0’s.

The entire data memory may be accessed directly or indirectly. Direct addressing may require the
use of the BSR register. Indirect addressing requires the use of a File Select Register (FSRn) and a
corresponding Indirect File Operand (INDFn). Each FSR holds a 12-bit address value that can be
used to access any location in the Data Memory map without banking.

The instruction set and architecture allow operations across all banks. This may be accomplished by
indirect addressing or by the use of the MOVFF instruction. The MOVFF instruction is a two-
word/two-cycle instruction that moves a value from one register to another. To ensure that commonly
used registers (SFRs and select GPRs) can be accessed in a single cycle, regardless of the current
BSR values, an Access Bank is implemented. A segment of Bank 0 and a segment of Bank 15
comprise the Access RAM.

Computer Organization and Microprocessors Page 46

PICmicro has banked memory in the General Purpose Registers (GPRs) area. GPRs are not initialized by
a Power-on Reset and are unchanged on all other Resets. Data RAM is available for use as GPRs by all
instructions. The second half of Bank 15 (F80h to FFFh) contains Special Function Registers (SFRs). The
SFRs are used by the Central Processing Unit (CPU) and peripheral modules for controlling the desired
operation of the device.

The following registers are most commonly used:

 Addresses 0xF80 through 0xFFF. These are the Special Function Registers (SFR) such as
PORTA, PORTB, TRISA, TRISB, etc.

 Addresses 0x000 through 0x0FF. These are the Access Ram and General Purpose Registers
(GPR) which can be used by programs to store data.

Computer Organization and Microprocessors Page 47

In many instructions, the value of flag “a” may be set to define the use of BSR as shown below:

 a=0
GPR address 0x000 – 0x07F ; GPRs are available at 0x00-0x7F
SFR address 0xF80 – 0xFFF ; SFR range is always from F80 to FFH

 a=1 “Default” with BSR =0
GPR address 0x080 – 0x0FF ; GPRs are available at two ranges 0x80-0x0FF or 0x00-0x7F
SFR address 0xF80 – 0xFFF ; SFR range is always from F80 to FFH

 a=1 “Default” with BSR =3
GPR address 0x380 – 0x3FF ; GPRs are available at two ranges 0x380-0x3FF or 0x00-0x7F
SFR address 0xF80 – 0xFFF ; SFR range is always from F80 to FFH

Computer Organization and Microprocessors Page 48

2.7. Additional Resources

 Microchip Staff. Microchip PIC 18F1220/1320 Data Sheet. (2004) Microchip Technology

Incorporated.

 Huang,. PIC Microcontroller: An Introduction to Software & Hardware Interfacing, (2004) Thomson.

 Reese. Microprocessor: From Assembly Language to C using the PIC18Fxxx2. (2003) Course
Technology.

 Peterson. Computer Organization and Design, (2007) Elsevier Service.

Computer Organization and Microprocessors Page 49

2.8. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Computer Organization and Microprocessors Page 50

CHAPTER 3. INPUT/OUTPUT ORGANIZATIONS

Key concepts and Overview

 Pinout and Packaging

 Accessing I/O Devices

 Additional Resources

Computer Organization and Microprocessors Page 51

3.1. Pinout and Packaging

PICmicro is available in three types of packaging. It is important to note that each package has a
different pin layout. Plastic Dual In-Line Package (PDIP) is the most common type of packaging for
prototyping where automated systems are not available. On the other hand, Quad Flat No-Lead (QFN)
package and Shrink Small Outline Package (SSOP) are most commonly used for high volume production
where automation can handle small sizes and cost is important. SSOP is able to handle a wider range of
temperatures compared to QFN.

Computer Organization and Microprocessors Page 52

 Prototype Packaging
As discussed earlier PDIP is the most common packaging used for prototyping. PICmicro
(PIC18F1220) pin out is shown below:

Each pin can be configured to perform a variety of functions, for example Pin 8 may be an I/O port (RB0),
I/O port (AN4), or external Interrupt 0 (INT0). This type of multi-use is common in microcontroller with
high level of functionality, but it is less common in general purpose microprocessors.

The two pins whose definition is constant are pins 5 and 14 which are ground and power.

 Pin 5 Ground (0 V)
 Pin 14 Power (2 to 5.5 V)

Computer Organization and Microprocessors Page 53

 Full PIN Descriptions
PICmicro’s pin definition is outlined in the following two tables.

Computer Organization and Microprocessors Page 54

Computer Organization and Microprocessors Page 55

3.2. Accessing I/O Devices

PICmicro programs are able to read from and write to external devices by using the Special Function
registers (SFRs) to configure the external pins as input/output or configure the internal peripheral
modules such as the Analog to Digital converter or the Pulse Width Modulator.

SFRs can be classified as relating to either the core functions or the peripheral functions. The registers
related to the “core” are described in this section, and the others will be covered in the latter part of the
text. Note that the unused SFR locations will be signified by “__” and are read as ‘0’s.

Hint: all the names and values have been predefined in header file “p18f1220.inc” for assembly
programming and in “p18f1220.h” for C programming.

 Below is a list of Special Function Registers (SFR):

Note: 1) Unimplemented registers are read as ‘0’
 2) Not a physical register

Computer Organization and Microprocessors Page 56

Special Function Register (SFR) Summary Table 1 of 2

Computer Organization and Microprocessors Page 57

Special Function Register (SFR) Summary Table 2 of 2

Computer Organization and Microprocessors Page 58

Computer Organization and Microprocessors Page 59

 I/O Port Set up
As discussed earlier, microprocessors typically consist only of a Central Processing Unit (CPU) while all other
functionality is implemented externally through specialized integrated circuits. All of these modules are accessed
and controlled as if they were memory locations by reading and writing to their respective locations.

PICmicro is a microcontroller which means that, in addition to the CPU, a number of additional functional modules
are contained onboard the chip. These additional functional modules include:

 As many as 16 external PICmicro pins that can be configured as input or output ports.
 Analog to digital converter module
 Pulse Width Modulator (PWM) which is used to control the speed of DC motors and other devices that may be

controlled with amount of energy delivered.

Later in this chapter, all three of these modules will be discussed.

 External Pin Set up as general purpose I/O Ports
Some pins of the I/O ports are multiplexed with an alternate function from other modules on the PICmicro. In
general, when a peripheral is enabled, the pins used by the peripheral may not be used as general purpose I/O
pins. Each port has three registers for its operation. These registers are:

 TRIS register (data direction register)
 PORT register (reads the levels on the pins of the device)
 LAT register (output latch)

A simplified model of a generic I/O port without the interfaces to other peripherals is shown below:

 PORTA, TRISA and LATA Registers

PORTA is an 8-bit wide, bidirectional port. Reading the PORTA register reads the status of the
pins, whereas writing to it will write to the port latch.

Computer Organization and Microprocessors Page 60

The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the
corresponding PORTA pin an input. When the pin is set to input it will be in a high-impedance
mode. Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output. In this mode
the contents of the corresponding bit in the output latch (LATA) will be available on the selected
external I/O pin.

The Data Latch register (LATA) is also memory mapped. Read-modify-write operations on the
LATA register read and write the latched output value from and to PORTA.

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-
Write (R-M-W) operation. The register is read, the data is modified, and the result is stored
according to either the instruction or the destination designator ‘d’. A read operation is performed
on a register even if the instruction writes to that register. It is important to consider the impact of
a read on the configuration before using read-modify-write instructions.

 Example of initializing PortA

CLRF PORTA ; Initialize PORTA by clearing output data latches
CLRF LATA ; Alternate method to clear output data latches
MOVLW 0x7F ; Configure A/D
MOVWF ADCON1 ; for digital inputs
MOVLW 0xF0 ; Value used to initialize data direction
MOVWF TRISA ; Set RA<3:0> as outputs and RA<7:4> as inputs

 Port A Functions Summary

b7 b6 b5 b4 b3 b2 b1 b0 Port A Register:

I/O Pins:

Alternative Uses:

p16 p15 p4 p3 p7 p6 p2 p1

RA7 RA6 RA5 RA4 RA3 RA2 RA1 RA0

“Each I/O pin may be configured for multiple uses,
refer to pin definitions earlier in the chapter for a list

of Alternative uses for each pin”

Computer Organization and Microprocessors Page 61

 Port A Associated Registers Summary

 PORTB, TRISB and LATB Registers
PORTB is an 8-bit wide, bidirectional port. Reading the PORTB register reads the status of the
pins, whereas writing to it will write to the port latch.

The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the
corresponding PORTB pin an input. When the pin is set to input it will be in a high-impedance
mode. Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output. In this mode
the contents of the corresponding bit in the output latch (LATB) on the selected pin.

The Data Latch register (LATB) is also memory mapped. Read-modify-write operations on the
LATB register read and write the latched output value from and to PORTB.

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-
Write (R-M-W) operation. The register is read, the data is modified, and the result is stored
according to either the instruction or the destination designator ‘d’. A read operation is performed
on a register even if the instruction writes to that register. It is important to consider the impact of
a read on the configuration before using read-modify-write instructions.

 Example of initializing PortB

CLRF PORTB ; Initialize PORTB by clearing output data latches
CLRF LATB ; Alternate method to clear output data latches
MOVLW 0x70 ; Set RB0 , RB1, RB4 (Pins 8, 9 &10) as
MOVWF ADCON1 ; digital I/O pins
MOVLW 0xCF ; Value used to initialize data direction
MOVWF TRISB ; Set RB<3:0> as inputs, RB<5:4> as outputs and
 ; RB<7:6> as inputs

b7 b6 b5 b4 b3 b2 b1 b0 Port B Register:

I/O Pins:

Alternating Uses:

p13 p12 p11 p10 p18 p17 p9 p8

RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0

“Each I/O pin may be configured for multiple uses,
refer to pin definitions earlier in the chapter for a list

of Alternative uses for each pin”

Computer Organization and Microprocessors Page 62

 Port B Functions Summary

 Port B Associated Registers Summary

Computer Organization and Microprocessors Page 63

 Example of Basic Input/Output Configuration
As described earlier, configuring external PICmicro pins as input/output is as simple as writing to
SFR registers ADCON1, TRISA and TRISB. Below is a sample pin configuration code from a
counter program:

The following lines clear the data in PORTA and PORTB.

CLRF PORTA
CLRF PORTB

The following line sets the W register (accumulator) to value 0x7F = 01111111
MOVLW 0x7F

The W register is used as a temporary location for values. In this case the value 0x7F has been
placed in W register first. The following line copies the value of W register to ADCON1 register.
The ADCON1 register is one of three registers that control the operation of the PICmicro’s built in
Analog to Digital Converter (ADC). Setting the value of ADCON1 to 0x7F tells the PIC that pins
1, 2, 6, 7, 8, 9 and 10 will be used for input/output rather than for the ADC.
MOVWF ADCON1

The following line sets the W register (accumulator) to value 0x00 = 00000000
MOVLW 0x00

The following line copies the contents of the W register to the TRISB register.
The TRISB register is the control register for PORTB. The bits in TRISB signify which direction
the data is flowing in PORTB (1 = Input, 0 = Output).
MOVWF TRISB

The following line sets the W register (accumulator) to value 0x01 = 00000001
MOVLW 0x01

The following line copies the contents of the W register to the TRISA register.
The TRISA register is the control register for PORTA. The bits in TRISA signify which direction
data is flowing in PORTA (1 = Input, 0 = Output).
MOVWF TRISA

Now that the input/output pins have been configured, the user can write to or read from these
input/output pins by writing and reading from PORTA and PORTB registers. For example, the
following code writes data (0xAB) to the 8 pins of PortA:

MOVLW 0xAB
MOVWF PORTA

Computer Organization and Microprocessors Page 64

3.3. Additional Resources

 Staff. Microchip PIC 18F1220/1320 Data Sheet. (2004) Microchip Technology Incorporated.

 Huang,. PIC Microcontroller: An Introduction to Software & Hardware Interfacing, (2004) Thomson.

 Reese. Microprocessor: From Assembly Language to C using the PIC18Fxxx2. (2003) Course

Technology.

 Peterson. Computer Organization and Design, (2007) Elsevier Service.

Computer Organization and Microprocessors Page 65

3.4. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Computer Organization and Microprocessors Page 66

CHAPTER 4. PROGRAM FLOW, EVENT HANDLING AND CONTROL

Key concepts and Overview

 Overview

 Stack Operations

 Procedure Call and Return Instructions

 Interrupt/exception handling

 Clock and Oscillator

 Timers

 Power Management

 Reset

 Analog-to-Digital Converter

 Pulse Width Modulation (PWM)

 Additional Resources

Computer Organization and Microprocessors Page 67

4.1. Overview

As discussed earlier, the CPU executes instructions in a sequential fashion. PICmicro will execute the
instruction in the word (2 bytes) that is pointed to by the Program Counter (PC). Upon completion of the
current instruction, PC is incremented by 2 and executes the next instruction word pointed to by the PC.
There are a number of instructions and events that are designed to move PC to another location other
than PC+2. The following are the most common of these instructions and events:

 Branch instructions

As seen in earlier chapters, branch instructions redirect the PC to a location in memory other than
(PC + 2). Each branch instruction may test a specific condition. For example: “BC n” will cause the
PC to move to n if the Carry flag is set, otherwise it will continue executing the next instruction word
pointed to by PC+2. Branch instructions are used to develop high-level language “If-then-else”
statements, other conditional statements, and loop constructs.

 Procedure Call and Return Instructions
The Call instruction directs the PC to a new location similar to the Branch instructions. Additionally, it
keeps tracks of the original (PC+4) so that it may return to this location after completing a set of
instructions at the new location. The Return instruction is used to return to the location of the
instruction immediately following the Call instruction. The implementation of high-level language
functions and procedures rely on these types of instructions.

 Interrupts and exceptions
Interrupts and exceptions are required for implementation of event detection and handling. Exception
refers to a software-initiated interrupt. We will use interrupt to refer to both exceptions and interrupts.
Interrupts may occur at any time during the program execution. Once an Interrupt is detected, the PC
will be changed to point to a pre-determined location in the memory corresponding to the detected
interrupt. The code that starts at this new location is written to handle the interrupt or exception.

 Timers
There are situations where the CPU has to wait for a specified amount of time. Although the
processor may be placed in a wait loop by executing NOP instructions, this approach has a number
of disadvantages:

 The actual time has to be experimentally determined since calculations based on instruction
cycle time may be difficult to make.

 In a multiprocessing system, the loop only counts the time allocated to the process executing
the wait loop and not the time used by other processes.

 The processor is not able to perform other tasks while it is in the wait loop.

 Timers solve these issues by allowing the CPU to continue with normal task execution until a
timer timeout interrupt has occurred. The Timer timeout is able to generate a timer interrupt after
a specified time duration which would result in redirecting the PC to a new location in the memory
to execute the code that handles the timed event.

 Power managed Modes
Increasingly, most processors have the power management capability in order to save power. The
key feature is the ability to transition from sleep to active mode driven by an external event. For
example: When the user presses a key on a computer, or upon detection of network activity. Using
this functionality, the CPU may be put into a standby or low power mode until it is needed.

Computer Organization and Microprocessors Page 68

4.2. Stack Operations

Stacks are special memory locations used to store return addresses and other information that will need
to be retrieved later. This space is called a stack since one can visualize data being stacked on the top of
each other. There are specific operations for adding and removing words from stack.

STKPTR Special Function Register contains information about the stack status (empty or full) and stack
point as shown below:

The most common use of stack is for subroutines. When a CALL instruction is executed, the current
value of (PC+4) is added (or “pushed”) on to the stack so that it can be recovered (or “popped”) during a
RETURN instruction. The value recovered by RETURN is used as the location of the next instruction.

STKFUL
{1: Stack is Full}

STKUNF
{1: Stack is Empty}

Stack Points 1-31
{0 is not valid}

 Bit 7 Bit 6 Bit5 Bit4

STKPTR
__

Computer Organization and Microprocessors Page 69

 PUSH Instruction
Adding a word to the stack is called pushing a word onto the stack which is shown below:

Below are the specifications for the PUSH instruction:

Note

 21-bit value for the content of the top of

stack (TOS) is located at TOSU, TOSH
and TOSL Special Function Registers (Top
Of Stack Upper, High, Low).

 Bits 6 and 7 of STKPTR Special Function
Register indicate whether stack is empty
and full, respectively.

Before attempting to add data to the stack,
it is important to check bit 7 of STKPTR to
ensure that the stack is not full.

Similarly, before attempting to remove data
from the stack, it is important to check bit 6
of STKPTR to ensure that the stack is not
empty.

 Program Counter (PC) is the address of
the next instruction to be executed.

3494h

3562h

Stack

Address Code/ Program
2978h PUSH

3494h

3562h

Stack after the push

297Ah

Computer Organization and Microprocessors Page 70

 Pop Instruction
The removal operation is called popping a word from the stack which is shown below:

Below is the specification for the pop instruction:

Note

 21-bit value for the content of the top of

stack (TOS) is located at TOSU, TOSH
and TOSL Special Function Registers
(Top Of Stack Upper, High, Low).

 Bits 6 and 7 of STKPTR Special
Function Register indicate whether
stack is empty and full, respectively.

Before attempting to add data to the
stack, it is important to check bit 7 of
STKPTR to ensure that the stack is not
full.

Similarly, before attempting to remove
data from the stack, it is important to
check bit 6 of STKPTR to ensure that
the stack is not empty.

 Program Counter (PC) is the address of
the next instruction to be executed.

3494h

3562h

Stack after the pop

POP

3494h

3562h

Stack

2672h

Computer Organization and Microprocessors Page 71

 Stack Usage
PICmicro has 31 stack levels (Level 1 – 31) which are most commonly used for saving data between
procedure calls or interrupts. In most cases, stack stores the value of key registers or PC locations
that may be needed later.

Stack memory space does not occupy any of the available program or data memory. However, the
designer may decide to use specific memory to extend stack space beyond the 31 levels.

The following diagram depicts an overview of PICmicro stack and user memory space:

 Return Address Stack
The return address stack allows any combination of up to 31 program calls and interrupts to occur
before a RETURN is needed. The Program Counter (PC) for next instruction is pushed onto the
stack when a CALL or RCALL instruction is executed, or an interrupt is acknowledged. The PC
value for next instruction is pulled off the stack on a RETURN, a RETLW or a RETFIE instruction.
PCLATU and PCLATH registers are not affected by any of the RETURN or CALL instructions.

The stack operates as a 31-word by 21-bit memory and a 5-bit stack pointer, with the Stack
Pointer initialized to 00000b after all Resets. There is no memory location is associated with
Stack Pointer, 00000b. This is only a Reset value. During a CALL type instruction, the Stack
Pointer is first incremented, and then the PC value of the next instruction is written to the memory
location pointed to by the Stack Pointer (STKPTR) register.

PC <20:0>

Stack Level 1

.

.

.

Stack Level 31

Reset Vector

On-Chip

 (4 Kbytes)
Program Memory

Low Priority Interrupt Vector

High Priority Interrupt Vector

Addressable Memory
(2 Mbytes)

Reads ‘0’ if not implemented

User Memory Space (2 Mbytes)

21 bits

0000h

0008h

0018h

0FFFh

1000h

1FFFFFh

Computer Organization and Microprocessors Page 72

During a RETURN type instruction, the contents of the memory location pointed to by the Stack
Pointer are written to the PC, and then the Stack Pointer is decremented. RETURN type
instruction causes the contents of the memory location pointed to by the Stack Pointer to be
transferred to the PC followed by Stack Pointer decrement (which is the same as a pop from the
stack). The Stack Pointer is readable and writable, and the address on the top of the stack is
readable and writable through the Top-Of-Stack (TOS) Special File Registers. Data can also be
pushed to or popped from the stack using the TOS Special Function Registers. As mentioned
earlier, the STKPTR register also contains status bits indicating if the stack is full or empty.

 Top-Of-Stack Access
The top of the stack is readable and writable. Three register locations, TOSU, TOSH and TOSL
(Top-Of-Stack Upper, High, and Low), hold the contents of the stack location pointed to by the
STKPTR register as shown below:

Access to top of stack allows users to implement a software stack if necessary. After a CALL,
RCALL or interrupt, the software can read the pushed value by reading the TOSU, TOSH and
TOSL registers. These values can be copied to a user-defined software stack. At return time, the
software can replace TOSU, TOSH and TOSL with the values saved on the software stack, and
then do a return.

The user must disable the global interrupt enable bits while accessing the stack to prevent
inadvertent stack corruption (refer to the interrupt section for more detail).

 Example – Determine the value of TOSU, TOSH and TOSL after the following instruction has been
executed:

Solution:
 Pushed on stack (PC + 2 = 0x800)
 TOSU=0x00, TOSH=0x08, TOSL=0x00

 Example – Determine the value of TOSU, TOSH and TOSL after the following instruction has been
executed:

Solution:
 Unknown (insufficient information)

Address Instruction .

 001890h POP

Address Instruction .

 07FEh PUSH

Computer Organization and Microprocessors Page 73

 Example – Determine the value of data memory locations 0xFFF, 0xFFE and 0xFFD after the
execution of:

Solution:

Address Instruction .

 0x292 PUSH

Computer Organization and Microprocessors Page 74

4.3. Procedure Call and Return Instructions

Procedure call and return instructions are important in a programmer’s ability to create blocks of codes
that could be shared by multiple parts of one program or multiple programs, eliminating the need to
rewrite the same code multiple times. The major benefits of this type of reuse are reduction in code size
and ease of maintenance since any fix only requires change to one code segment.

Procedure call and return instructions have this advantage over Branch and Goto instructions because of
their ability to return the PC to the code immediately following the CALL instruction. Again, the high level
language functions and procedures are implemented using Procedure CALL and RETURN instructions.

PICmicro provides CALL, RCALL, RETURN and RETLW in support of Procedures as described below:

Computer Organization and Microprocessors Page 75

 CALL n,s

Notes:

Computer Organization and Microprocessors Page 76

 RCALL n

Notes:

Computer Organization and Microprocessors Page 77

 RETLW

Notes:

Computer Organization and Microprocessors Page 78

 RETURN

 Example - For the following code segment:

a) Are all the shown addresses valid? If not,
what is the next valid address for any invalid
address?

b) Determine location of instruction “DECF”.

c) Determine machine Code for each shown
instruction.

d) Determine top of stack value after each
instruction.

Solution:

Address Instruction .
52h CALL add_one
 DECF 0x81

 ….

75h add_one: INCF 0x81

 …

 RETURN

Computer Organization and Microprocessors Page 79

 Example - Function CALL and Return
a) Write an assembly code function “diff” that subtracts two 8–bit operands and returns the result.
b) Write the equivalent machine code.
c) Call Diff from location 0x128 when Top of Stack (TOS) is set to 0x1232. Show value of PC and

TOS immediately before CALL, before Return, and after Return.

Solution:
a) diff function

 op1 equ 0x80
 op2 equ 0x81
 result equ 0x82

 org 0x200
 ; diff function returns result=op1 – op2
diff: MOVF op2, W
 SUBWF op1, W
 MOVWF result
 RETURN 1

b)

c)

Computer Organization and Microprocessors Page 80

4.4. Interrupt/exception handling

As discussed earlier, interrupts are required for event detection and handling. Interrupts may occur at
anytime. When they do, the location of the next instruction is pushed onto the stack, and thePC is
changed to point to a pre-determined location in the memory. The code that starts at this new location is
written to handle the interrupt or exception.

PICmicro handles interrupts from multiple sources. Additionally, the ability to assign interrupt priority
enables the designer to assign a low or high priority to each interrupt source. The high priority interrupt
events can override any low priority interrupts that may be in progress. The high priority interrupt vector is
at 000008h program memory location, and the low priority interrupt vector is at 000018h program memory
location. Interrupt vector is the location that PC will be set to after an interrupt has occurred and has
been acknowledged.

The following four SFR registers are used to control interrupt operations (there are another six SFR
registers that will be discussed later):

 RCON Register

IPEN __ __ RI’ TO’ PD’ POR’ BOR’

Bit 7 Bit0

RCON

Computer Organization and Microprocessors Page 81

 INTCON Register

GIE/
GIEH

PEIE/
GIEL

TMR0
IE

INT0
IE

RBIE TMR0
IF

INT0
IF

RB
IF

Bit 7 Bit0

INTCON

Computer Organization and Microprocessors Page 82

 INTCON2 Register

RBPU’ INTE
DG0

INTE
DG1

INTE
DG2

__ TMR0
IP

__ RBIP

Bit 7 Bit0

INTCON2

Computer Organization and Microprocessors Page 83

 INTCON3

It is also recommended that the Microchip header files supplied with MPLAB® IDE be used for the
symbolic bit names in these and other registers. This allows the assembler/compiler to automatically take
care of the placement of these bits within the specified register. For Assembly code, use the following
statement at the top of your assembly code to include all SFR addresses and bit names as specified in
the appendix:

include p18f1220.inc

There are three external interrupts available on PICmicro (INT0-Pin 8, INT1-Pin9 and INT2-Pin 17 on the
PDIP package), three timers capable of generating interrupt and others to be discussed in the future.

Below is an example of connecting interrupt INT0 to Event Signal. Anytime Event Signal goes from low to
high, a high priority interrupt is caused and PC is set to 000008h.

INT2
IP

INT1
IP

__

INT2
IE

INT1
IE

__ INT2
IF

INT1
IF

Bit 7 Bit0

INTCON3

Computer Organization and Microprocessors Page 84

In general, each interrupt source has three bits to control its operation. The functions of these bits are:

 Flag bit to indicate that an interrupt event occurred.
 Enable bit that allows program execution to branch to the interrupt vector address when the flag

bit is set.
 Priority bit to select high priority or low priority (INT0 has no priority bit and is always high priority)

The following 6 registers are used to configure Interrupt Enable, Flag and Priority:

 IPR1, PIE1, PIR1

 IPR2, PIE2, PIR2

The interrupt priority feature is enabled by setting the IPEN bit (RCON<7>). When interrupt priority is
enabled, there are two bits which enable interrupts globally. Setting the GIEH bit (INTCON<7>) enables
all interrupts that have the priority bit set (high priority). Setting the GIEL bit (INTCON<6>) enables all
interrupts that have the priority bit cleared (low priority). When the interrupt flag, enable bit and
appropriate global interrupt enable bit are set, the interrupt will vector immediately to address 000008h or
000018h, depending on the priority bit setting. Individual interrupts can be disabled through their
corresponding enable bits.

OSCF
IP

__ __ EEIP __ LVD
IP

TMR3
IP

__

Bit 7 Bit0

IPR2

PIE2

PIR2

OSCF
IE

__ __ EEIE __ LVD
IE

TMR3
IE

__

OSCF
IF

__ __ EEIF __ LVD
IF

TMR3
IF

__

__ ADIP RCIP TXIP __ CCP1
IP

TMR2
IP

TMR1
IP

Bit 7 Bit0

IPR1

__ ADIE RCIE TXIE __ CCP1
IE

TMR2
IE

TMR1
IE

PIE1

__ ADIF RCIF TXIF __ CCP1
IF

TMR2
IF

TMR1
IF

PIR1

PICmicro
8

Event Signal INT0

Event Signal

PC = “Any Value” PC = 000008h

Computer Organization and Microprocessors Page 85

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are
compatible with PICmicro mid-range devices. In Compatibility mode, the interrupt priority bits for each
source have no effect. INTCON<6> is the PEIE bit, which enables/disables all peripheral interrupt
sources. INTCON<7> is the GIE bit, which enables/disables all interrupt sources. All interrupts branch to
address 000008h in Compatibility mode.

When an interrupt is responded to, the global interrupt enable bit is cleared to disable further interrupts. If
the IPEN bit is cleared, this is the GIE bit. If interrupt priority levels are used, this will be either the GIEH
or GIEL bit. High priority interrupt sources can interrupt a low priority interrupt. Low priority interrupts are
not processed while high priority interrupts are in progress.

The return address is pushed onto the stack and the PC is loaded with the interrupt vector address
(000008h or 000018h). Once in the Interrupt Service Routine, the source(s) of the interrupt can be
determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before re-
enabling interrupts to avoid recursive interrupts.
The “return from interrupt” instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or
GIEL, if priority levels are used), which re-enables interrupts.

For external interrupt events, such as the INT pins or the PORTB input change interrupt, the interrupt
latency will be three to four instruction cycles. The exact latency is the same for one or two-cycle
instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding enable bit
or the GIE bit.

Note: Do not use the MOVFF instruction to modify any of the interrupt control registers while any interrupt
is enabled. Doing so may cause erratic microcontroller behavior.

Computer Organization and Microprocessors Page 86

 Returning from interrupt handling code
At the time of interrupt, the value PC+2 (pointer to the next instruction) is pushed on the stack. Once
the interrupt handling code has finished, it can return to the instruction the program was at before the
interrupt occurred by popping the stack and using the top of stack value as the PC.

The instruction RETFIE, when executed, will automatically enable all interrupts and return the
program back to the location of the next instruction before the interrupt.

 RETFIE Instruction

Notes:

 Example – High priority interrupt and return

code.

Solution:

Address Content .
0x008 MVLW 23
0x00A ADDWF 0x90, 1, 0
0x00C CLRF 0x89
0x00E RETFIE

…

0x126 MVLW 23
0x128 ADDWF 0x90, 1, 0
0x12A CLRF 0x89

A high Priority Interrupt occurs
when instruction at location 0x128
is being executed, so PC+2 is
equal to 0x12A.

0x12A

STACK

STKPTR<4:0>
“Value of PC before
interrupt”

Computer Organization and Microprocessors Page 87

 Example – Event Handling using Interrupts
Write an interrupt handling code to implement a 3-way intersection traffic light controller. Inputs are
Lane A (highest priority), Lane B, and Lane C (lowest priority) where “1” indicates presence of a car in
the lane... Set Wreg to ASCII A (0x41), ASCII B (0x42) or ASCII C (0x43) indicating the highest
Priority Lane that is occupied.

Solutions:

 Partial Schematic

 Flow Chart for Reset, Int0, Int 1 and Int 2 handling

Reset
Location: 0x00

High Priority Interrupt
Location: 0x08

Low Priority Interrupt
Location: 0x18

Return

Initialize:
WREG 0x00
Set bit 7 of RCON
Set bits 7,6,4 of INTCON
Set bits 4,5,6 of INTCON2
Set bits 3,4 of INTCON3

Wait

WREG 0x41
Clear flag

Clear flag

Int 1

WREG 0x43

No

Yes

WREG 0x42

Return

Clear flag

PIC 18F1220

Int 0

Int 1

Int 2

8

9

17

Lane A

Lane B

Lane C

Computer Organization and Microprocessors Page 88

Sample code for Reset, Int0, Int 1 and Int 2 handling
Refer to Lab documentation.

Computer Organization and Microprocessors Page 89

4.5. Clock and Oscillator

PICmicro is much more flexible than typical microprocessors when it comes to selecting the system clock.
It provides over 10 different options. Most processors have a range of speed, and an external oscillator
will be required for proper operation and generation of system Clock. PICmicro allows for external crystal,
RC or internal oscillators.

PICmicro’s internal oscillator block can generate two different clock signals; either one can be used as the
system clock.

The main output (INTOSC) is an 8 MHz clock source, which can be used to directly drive the system
clock. It also drives a post scalar, which can provide a range of clock frequencies from 125 kHz to 4 MHz.
The INTOSC output is enabled when a system clock frequency from 125 kHz to 8 MHz is selected.

The other clock source is the internal RC oscillator (INTRC), which provides a 31 kHz output. The INTRC
oscillator is enabled by selecting the internal oscillator block as the system clock source, or when one of
the following is enabled: Power-up Timer, Fail-Safe Clock Monitor, Timer or Two-Speed Start-up.

 INTIO Modes

Using the internal oscillator as the clock source can eliminate the need for up to two external
oscillator pins, which can then be used for digital I/O. Two distinct configurations are available:

 In INTIO1 mode (Default Setting), the OSC2 pin outputs FOSC/4, while OSC1 functions as RA7

for digital input and output.
 In INTIO2 mode, OSC1 functions as RA7 and OSC2 functions as RA6, both for digital input and

output.

Default oscillator setting, INTIO1 mode, will be assumed throughout the remainder of this document.
In this mode, the internal oscillator is used as the system clock. Additionally, the clock (FOSC/4) is
accessible via OSC2 pin (pin# 15 on PDIP package). It is important to note that this pin will not be
available for other uses such as RA6.

Another point to consider is that each instruction cycle is made up of 4 system clock or Oscillator
cycles (Tosc) as shown below:

As discussed earlier, the internal clock frequency is set at 31 kHz which means each clock period is
Tosc = 1/f = 32 µsec. Therefore, an instruction cycle is 4*Tosc = 128 µsec.

Q1
“Tosc”

Instruction Cycle

Q2 Q3 Q4

Computer Organization and Microprocessors Page 90

 OSCCON Register

This SFR register is used to configure the oscillator and the system clock.

 Example - PIC micro is running with a 32 µsec internal clock. How long would it take to execute “Call
Delay”? Given:

Delay:
 CLRF Wreg
intL: INCF Wreg
 BNZ intL
 RETURN

Solution:

Computer Organization and Microprocessors Page 91

 Example - PIC micro is running with a 32 µsec internal clock. How long would it take to execute the
following function?

Delay: MOVLW 0x00
 MOVWF 0x80
 Loop: MOVFF PORTB, PORTA
 NOP
 INCF 0x80
 BNC Loop
 RETURN

Solution:

Computer Organization and Microprocessors Page 92

4.6. Timers

Timers allow the designer to set a duration which, at its end, the timer will set a flag and cause an
interrupt if configured. PICmicro has four timer modules (Timer0 through timer3). Each with a set of
unique features which are outlined in the next few pages.

Timers may be configured to generate either low or high priority interrupt. In general, configuring a timer
is a three-step process:

 1) Configure the interrupt registers
 2) Set the value of Timer’s Low and High registers
 3) Configure the timer control registered.

The following pages outline each timer module and associated registers.

Computer Organization and Microprocessors Page 93

 Timer 0 Module
Timer 0 may be set to 8-bit or 16-bit mode. In 8-bit mode, interrupt is generated on overflow from
FFh to 00h. In 16-bit mode, interrupt is generated on overflow from FFFFh to 0000h.

T0CON register controls all aspects of Timer0. T0CON is readable and writable.

Timer0 Block Diagram in 8-bit:

Computer Organization and Microprocessors Page 94

 Example - In a PICmirco system, TIMER0 is set to 8-bit mode with pre-scale 1:256 using internal RC
clock. What values of T0CON, TMR0L & TMR0H results in approximately one second to next TIMER
0 interrupt?

Solution:

T0CON = “110x 0111”

Time/Count = 32 µsec/ Tosc X 4 cycle/Tins X 256 = 32,768 µsec

counts for one second = 1,000,000 µsec / 32,768 µsec = 30.5 31 counts

TMR0L = (256 – 31) = 225 “1110 0001”
TMR0H “xxxx xxxx”

 Extension – How would the value of T0CON and TMR0 change if we want to use TIMER 0 in 16-

bit mode.

Solutions:

 Example – In a PICmicro system, register T0CON is set to 0x92, TMR0H is set to 0xFF and TMR0L
is set to 0xF0. How long in seconds before Timer 0 interrupt occurs?

Solution:

Timer is set to “0xFFF0” 16 count to interrupt
Which means that the values of high timer 0 register (TMR0H) is set to 0xFF and low timer 0 register
(TMR0L) is set to 0xF0.

Each Count = 32 µsec/Tosc X 4 cycle/Tins X 8 = 1024 µsec.

Duration to next interrupt = 16 count x 1,024 µsec / count = 16,384 µsec. = 0.016384 seconds

T0CON 1 0 0 1 0 0 1 0

Enable
TMR0

Enable
Scaler

1:8 Internal
RC clock

Computer Organization and Microprocessors Page 95

 Example –Given that T0CON is set to “0x87”, how long does it take to increment TMR0 by 1 (a single

tick) and what value should be loaded in TMR0L and TMR0H if interrupt is expected in 640 msec?

Solutions:

 Given that Timer0 is enabled and T0CON is set to “10010100”, TMR0L is set to “10000000” and
TMR0H is set to “11110000”, Find:
 a) How long does each tick (TMR0L increment) takes in seconds?
 b) How many ticks before TMR0 interrupts?
 c) How many seconds before TMR0 Interrupt?

Computer Organization and Microprocessors Page 96

 Timer 1 Module
Timer1 is a 16-bit timer/count using two 8-bit registers (TMR1H and TMR1L). Both registers are
readable and writable.

T1CON register controls all aspects of Timer1. T1CON is readable and writable.

Timer1 Block Diagram:

Computer Organization and Microprocessors Page 97

 Timer 2 Module
Timer 2 can be used as the Pulse Width Modulator (PWM) time base in the PWM mode of the CCP
module. The TMR2 register is readable and writable and is cleared by any device Reset. The input
clock (FOSC/4) has pre-scale options of 1:1, 1:4 or 1:16, selected by control bits,
T2CKPS1:T2CKPS0 (T2CON<1:0>). Additionally, there are post scalar options of 1:1 to 1:16
selected by bits, TOUTPS3:TOUTPS0 (T2CON<6:3>), that are applied to input clock in order to
increment TMR2 register content. Once TMR2 register reaches its maximum count, a Timer 2
interrupt (latched in flag bit, TMR2IF (PIR1<1>)) is generated..

The pre-scalar and post-scalar counters are cleared when any of the following occurs:

 A write to the TMR2 register
 A write to the T2CON register
 Any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out

Reset)

TMR2 is not cleared when T2CON is written. T2CON is the Timer2 Control Register and is
described below:

 Example – Timers

T2CON is set to 45 hex. and is using internal RC clock.

 a) How long does it take for a single timer tick, or to increment TMR2 by 1?
 b) What value TMR2 (Low & High bytes) will cause Timer 2 interrupt after 60 msec?

Solution:

Computer Organization and Microprocessors Page 98

 Timer 3 Module
Timer3 is a 16-bit timer/counter using two 8-bit registers (TMR3H and TMR3L). Both registers are
readable and writable.

Timer3 can operate in one of these modes:
 As a timer
 As a synchronous counter
 As an asynchronous counter

The operating mode is determined by the clock select bit, TMR3CS (T3CON<1>).

When TMR3CS = 0, Timer3 increments every instruction cycle. When TMR3CS = 1, Timer3
increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if
enabled.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RB7/PGD/T1OSI/P1D/KBI3 and
RB6/PGC/ T1OSO/T13CKI/P1C/KBI2 pins become inputs. That is, the TRISB7:TRISB6 value is
ignored and the pins are read as ‘0’.

Below is a block diagram of Timer3:

Computer Organization and Microprocessors Page 99

T3CON register controls all aspects of Timer3. T3CON is readable and writable.

Computer Organization and Microprocessors Page 100

 Other Timer Related Registers
Other Registers that affect the performance of Timers are shown below (See Interrupt Section for
more detail):

 Example – Timers

Use Timer 0 to flash an LED once every 2 seconds (1 second on, 1 second off).

Solution:

 Example – Timers
Write pseudo code and assembly code to set up Timer 0 to interrupt after 256 msec & upon interrupt,
set Wreg to 35 and disable timers. (set Timer 0 for highest possible precision).

Solution:

Computer Organization and Microprocessors Page 101

4.7. Power Management

In addition to normal operation, PICmicro, like most of today’s processors, has low-power modes to save
power. Below are the three categories of power management:

 Sleep mode
 Idle modes
 Run modes

Each of these modes disables or reduces the clock speed for a given portion of the processor circuits in
order to reduce power. The Run and Idle modes may use any of the three available clock sources
(primary, secondary or INTOSC multiplexer); the Sleep mode does not use a clock source.

Computer Organization and Microprocessors Page 102

4.8. Reset

Reset is required to start the processor into a known state. You can use the hardware or software reset to
return the processor to a known state. PICmicro handles resets from various sources which are listed
below:

 Power-on Reset (POR)
 MCLR Reset during normal operation
 MCLR Reset during Sleep
 Watchdog Timer (WDT) Reset (during execution)
 Programmable Brown-out Reset (BOR)
 RESET Instruction
 Stack Full Reset
 Stack Underflow Reset

Most registers are unaffected by a Reset which means the status of registers are unknown during Power
On Reset (POR). Therefore, it is important to initialize registers during the reset handling section of the
start up to ensure known starting values. Some registers are forced to a “Reset state”, depending on the
type of Reset that occurred.

Computer Organization and Microprocessors Page 103

4.9. Analog-to-Digital Converter

PICmicro has one 10-bit Analog-to-Digital (A/D) converter (ADC) module. The ADC will accept an analog
input signal and convert the value of the input signal voltage to a 10-bit number. This functionality allows
the user to relate analog signal to a digital value. The following figure is a graphical representation of the
ADC operation:

Notice that there is only one ADC, but the user may acquire an analog input signal from one of seven
different pins (AN0 through AN6).

PICmicro ADC has a programmable acquisition time which means that the amount of time required to
convert from analog to digital value can be changed.

GO/DONE bit (bit 1 of ADCON0) is used to indicate whether ADC is in the process of conversion or it has
completed the conversion. So the user has to wait until the conversion is completed as indicated by
GO/DONE before reading the value of the results.

The ADC module is controlled and monitored through five SFR registers as shown below:

 A/D Result High Register (ADRESH) & A/D Result Low Register (ADRESL)
Hold the value resulting from the A/D conversion.

Note that the contents of ADRESH/ADRESL registers are not modified during Power-on Reset
which means the contents of ADRESH and ADRESL are unknown after a Power-on Reset. The
user has to ensure that an acquisition has been completed before reading the contents of these
registers.

 A/D Control Register 0 (ADCON0)

ADCON0 controls the operation of the A/D module.

 A/D Control Register 1 (ADCON1)
ADCON1 configures the functions of the external port pins.

 A/D Control Register 2 (ADCON2)
ADCON2 configures the A/D clock source, programmed acquisition time and justification.

b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0

A/D Result High Register (ADRESH) A/D Result Low Register (ADRESL)

10-bit A/D Result Value
When Right Justified

10-bit A/D Result Value
When Left Justified

A/D Convertor
(ADC) Module

AN0
AN1
AN2
AN3
AN4
AN5
AN6

b0
.
.
.
b9

10 bit digital value
corresponding to
the analog input
signal.

External Pin that
may be used for
the analog input

Channel 0

Channel 6

Computer Organization and Microprocessors Page 104

The following pages offer more detailed descriptions of the three control registers:

 ADCON0 “A/D Control Register 0”

Computer Organization and Microprocessors Page 105

 ADCON1 “A/D Control Register 1”

Computer Organization and Microprocessors Page 106

 ADCON2 “A/D Control Register 2”

 Configuring ADC Module for Conversion
The analog reference voltage is software selectable. Meaning the user can set the high and low
voltage level range to either the supply voltage (AVDD and AVSS), or the voltage levels on the
RA3/AN3/VREF+ and RA2/AN2/VREF- pins. See the figure on the next page for a graphical
representation.

The ADC has a unique feature of being able to operate while the device is in Sleep mode. To operate
in Sleep, the ADC clock must be derived from the ADC’s internal RC oscillator.

ADC module operates by sampling the analog input and holding that value during the conversion
time. This is referred to as “sample and hold”. The output of the “sample and hold” is the input to the
converter, which generates the digital results by successive approximation. Note that a power-on
reset will abort the conversion which means after a power-on reset the digital value in the results
registers is not valid.

Each external pin associated with the ADC can be configured as an analog input, or as a digital I/O.
The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D
conversion is complete, the result is loaded into the ADRESH/ADRESL registers, the GO/DONE bit
(ADCON0 register) is cleared and A/D Interrupt Flag bit, ADIF, is set. The following figure shows the
block diagram of the A/D module:

Computer Organization and Microprocessors Page 107

After the A/D module has been configured as desired, the selected channel must be acquired before
the conversion is started. The analog input channels must have their corresponding TRIS bits
selected as inputs. After this acquisition time has elapsed, the A/D conversion can be started. An
acquisition time can be programmed to occur between setting the GO/DONE’ bit and the actual start
of the conversion.

Below are the steps to configure the A/D Converter:

1. Configure the A/D module:
 Select external pin (channel) that will be used as the analog (use bits 2 to 4 of ADCON0)
 Configure analog pins as input (Bits 0-6 of TRISA)
 Set the voltage reference (Bits 6 and 7 of ADCON0)
 Select A/D acquisition time (Bits 3-5 of ADCON2)
 Select A/D conversion clock (Bits 0-2 of ADCON2)
 Turn on A/D module (Bit 0 of ADCON0)

2. Configure A/D interrupts (if desired):
 In registers INTCON, IPR1, PIR1 and PIE1, perform the following modifications:
 Set GIE bit
 Clear ADIF bit
 Set ADIE bit
 Set ADIP bit

3. Wait the required acquisition time (refer to next section “A/D Acquisition Requirements” for more
detail).

Computer Organization and Microprocessors Page 108

4. Start conversion:
 Set GO/DONE bit (ADCON0 register)

5. Wait for A/D conversion to complete, by either:
 Polling for the GO/DONE’ bit to be cleared
 Waiting for the A/D interrupt

6. Read A/D Result registers (ADRESH:ADRESL); clear bit ADIF if required.

7. For the next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is

defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must
be allowed to fully charge to the input channel voltage level. The analog input model is shown
below:

Note: When the conversion is started, the holding capacitor is disconnected from the input pin.

The source impedance (RS) and the internal sampling switch (RSS) impedance directly affect the
time required to charge the capacitor CHOLD. The sampling switch (RSS) impedance varies over
the device voltage (VDD). The source impedance affects the offset voltage at the analog input
(due to pin leakage current). The maximum recommended impedance for analog
sources is RS = 2.5 k. After the analog input channel is selected (changed), the channel must be
sampled for at least the minimum acquisition time before starting a conversion.

A/D acquisition time and minimum charging time are calculated as shown on the following page:

Computer Organization and Microprocessors Page 109

 System configuration for the calculation:
CHOLD = 120 pF
Rs = 2.5 k
Conversion Error ≤ 1/2 LSb
VDD = 5V → RSS = 7 k
Temperature = 50°C (system max.)
VHOLD = 0V @ time = 0

 Acquisition Time (TACQ)
TACQ = Amplifier Settling Time + Holding Cap. Charging Time + Temp. Coefficient
TACQ = TAMP + TC + TCOFF

Note: This equation assumes that 1/2 LSb error is used (10-bits or 1024 steps for the A/D).
The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution

 A/D Minimum Charging Time
VHOLD = (∆VREF – (∆VREF/2048)) • (1 – e(-TC/CHOLD(RIC + RSS + RS)))
or
TC = -(CHOLD)(RIC + RSS + RS) ln(1/2048)

 Calculating Minimum Required Acquisition Time
TACQ = TAMP + TC + TCOFF
TAMP = 5 µs
TCOFF = (Temp – 25ºC)(0.05 µs/ºC) = (50ºC – 25ºC)(0.05 µs/ºC) = 1.25 µs

Temperature coefficient is only required for temp. > 25ºC. Below 25ºC, TCOFF = 0 µs.
TC = -(CHOLD)(RIC + RSS + RS) ln(1/2047) µs
 -(120 pF) (1 kΩ + 7 kΩ + 2.5 kΩ) ln(0.0004883) µs
 9.61 µs

TACQ = 5 µs + 1.25 µs + 9.61 µs = 12.86 µs “minimum acquisition time”

 A/D VREF+ and VREF- References

PICmicro may be configured to use external voltage references instead of the internal AVDD and
AVSS sources. If external sources are used, the source impedance of the VREF+ and VREF-
voltage sources must be considered. The maximum recommended impedance of the VREF+
and VREF- external reference voltage sources is 250..

 Automatic Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the
‘GO/DONE’ bit is set. When the ‘GO/DONE’ bit is set, sampling is stopped and a conversion
begins. The user is responsible for ensuring the required acquisition time has passed between
selecting the desired input channel and setting the GO/DONE’ bit. This occurs when the
ACQT2:ACQT0 bits (ADCON2<5:3>) remain in their Reset state (‘000’) and is compatible with
devices that do not offer programmable acquisition times.

If desired, the ACQT bits can be set to select a programmable acquisition time for the A/D
module. When the GO/DONE’ bit is set, the A/D module continues to sample the input for the
selected acquisition time, then automatically begins a conversion. Since the acquisition time is
programmed, there may be no need to wait for an acquisition time between selecting a channel
and setting the GO/DONE’ bit. For cases in which the GO/DONE’ bit is cleared when the
conversion is completed, the ADIF flag is set and the A/D begins sampling the currently selected
channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition
time has ended or if the conversion has begun.

Computer Organization and Microprocessors Page 110

 Selecting A/D Conversion Clock
The A/D conversion time per bit is defined as TAD. The A/D conversion requires 11 TAD per 10-bit
conversion. The source of the A/D conversion clock is software selectable. There are seven possible
options for TAD:

A/D Clock (TAD) ADCS2:ADSC0 Bits Max. Fosc=1/Tosc
2 * Tosc 000 1.25 Mhz
4 * Tosc 100 2.50 Mhz
8 * Tosc 001 5.00 Mhz

16 * Tosc 101 10.0 Mhz
32 * Tosc 010 20.0 Mhz
64 * Tosc 110 40.0 Mhz

RC(1) x11 1.00 Mhz
Note: (1)The internal RC source has a typical TAD time of 4 μs.

 Operation in Low-Power Modes

The selection of the automatic acquisition time and the A/D conversion clock is determined, in
part, by the low-power mode clock source and frequency while in a low-power mode.

If the A/D is expected to operate while the device is in a low-power mode, the ACQT2:ACQT0
and ADCS2:ADCS0 bits in ADCON2 should be updated in accordance with the low-power mode
clock that will be used. After the low-power mode is entered (from either of the Run modes), an
A/D acquisition or conversion may be started. Once an acquisition or conversion is started, the
device should continue to be clocked by the same low-power mode clock source until the
conversion has been completed. If desired, the device may be placed into the corresponding low-
power (ANY)_IDLE mode during the conversion.

If the low-power mode clock frequency is less than 1 MHz, the A/D RC clock source should be
selected. Operation in the Low-Power Sleep mode requires the A/D RC clock to be selected. If
bits ACQT2:ACQT0 are set to ‘000’ and a conversion is started, the conversion will be delayed
one instruction cycle to allow execution of the SLEEP instruction and entry to Low-Power Sleep
mode. The IDLEN and SCS bits in the OSCCON register must have already been cleared prior to
starting the conversion.

 Configuring Analog Port Pins
The ADCON1, TRISA and TRISB registers are used to configure the A/D port pins. The port pins
needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is
cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

Notes:

1) When reading the Port register, all pins configured as analog input channels will read as
cleared (a low level). Pins configured as digital inputs will convert an analog input to a
high or a low level.

2) Analog levels on any pin defined as a digital input may cause the digital input buffer to
consume current out of the device’s specification limits.

Computer Organization and Microprocessors Page 111

 A/D Conversion timing

The following diagram shows the operation of the A/D converter after the GO bit has been set
and the ACQT2:ACQT0 bits are cleared:

A/D CONVERSION TAD Cycle (ACQT<2:0>=000, TACQ=0)

The following diagram shows the operation of the A/D converter after the GO bit has been set,
the ACQT2:ACQT0 bits have been set to ‘010’ and a 4 TAD acquisition time has been selected
before the conversion starts:

A/D CONVERSION TAD Cycle (ACQT<2:0>=010, TACQ=4TAD)

Clearing the GO/DONE’ bit during a conversion will abort the current conversion. The A/D Result
register pair will NOT be updated with the partially completed A/D conversion sample. This
means the ADRESH:ADRESL registers will continue to contain the value of the last completed
conversion (or the last value written to the ADRESH:ADRESL registers).

After the A/D conversion is completed or aborted, a 2 TAD wait is required before the next
acquisition can be started. After this wait, acquisition on the selected
channel is automatically started.

Note: The GO/DONE’ bit should NOT be set in the same instruction that turns on the A/D.

 Use of the CCP1 Trigger
An A/D conversion can be started by the “special event trigger” of the CCP1 module. This
requires that the CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be programmed as ‘1011’ and that
the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE’ bit will be
set, starting the A/D acquisition and conversion, and the Timer1 (or Timer3) counter will be reset

Computer Organization and Microprocessors Page 112

to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with
minimal software overhead (moving ADRESH/ADRESL to the desired location). The appropriate
analog input channel must be selected, and the minimum acquisition period is either timed by the
user, or an appropriate TACQ time selected before the “special event trigger” sets the GO/DONE
bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the “special event trigger” will be ignored by the
A/D module, but will still reset the Timer1 (or Timer3) counter.

 Summary of A/D Registers

Computer Organization and Microprocessors Page 113

 Example – Channel 0 is enabled, PICmicro is configured as an A/D convertor and the range is set
from AVss to AVdd. What is the value of the A/D convertor output?

Solution:
A/D has 10-bit output which means there are 210 counts between 0 and 5 v.

voltage/count = (5-0) / (210) = 5 / (210)

Output count at 1.25 = 1.25 /{ 5 / (210)} = 256

10 bit A/D output “01 0000 0000”

When 10-bit A/D Result is Left Justified:

When 10-bit A/D Result is Right Justified:

0 1 0 0 0 0 0 0 0 0

A/D Result High Register (ADRESH) A/D Result Low Register (ADRESL)

10-bit A/D Output

. . .

0 1 0 0 0 0 0 0 0 0 . . .

A/D Result High Register (ADRESH) A/D Result Low Register (ADRESL)

10-bit A/D Output

PICmicro

AN0
1

AVss
5

AVdd
14 +5 v

+1.25 v

Computer Organization and Microprocessors Page 114

4.10. Pulse Width Modulation (PWM)

Pulse Width Modulation(PWM) uses a square wave whose duty cycle is modulated resulting in the
variation of the average power delivered by the waveform. Modulating duty cycle means changing the
percentage of the period that is at high voltage (not zero). This technique is used to control power levels
in electrical devices such as Light source, DC motor and other devices.

For example, in the following diagram, waveform A delivers twice as much average power as waveform
B. This is useful in modulating electrical device performance. One of the important uses of PWM is in DC
motor speed control.

PWM is implemented in PICmicro as one of the three features of the Enhance Capture/Compare/PWM
(ECCP) module. Below is a list of ECCP key features::

 One, two or four PWM outputs
 Selectable polarity
 Programmable dead time (Low)
 Auto-Shutdown and Auto-Restart
 Capture is 16-bit, max resolution 6.25 ns (TCY/16)
 Compare is 16-bit, max resolution 100 ns (TCY)

Below are high-level steps to set up a Pulse-Wide-Modulation

1) Set PR2 (PWMperiod = ((PR2)+1)*4 * TOSC * (TMR2 Prescale Value))
2) Configure and Clear Timer2 (T2CON, 2)
3) Set up PWM Duty Cyle (CCPR1L & CCP1CON)
4) Set mode (CCP1CON)

Waveform A. 50% Duty Cycle Waveform B. 25% Duty Cycle

1 mS

1 mS 1.5 mS

0.5 mS

PWM Output Waveform (duty Cyle = 100*(on-time/period)%

On-time

Period

PWM Output pulse Definition:

Examples:

Computer Organization and Microprocessors Page 115

 CCP1CON register controls ECCP operation

 Note: PWM only uses Timer 2.

The Enhanced PWM Mode provides additional PWM output options for a broader range of control
applications. The module is an upwardly compatible version of the standard CCP module and offers
up to four outputs, designated P1A through P1D. Users are also able to select the polarity of the
signal (either active-high or active-low). The module’s output mode and polarity are configured by
setting the P1M1:P1M0 and CCP1M3:CCP1M0 bits of the CCP1CON register (CCP1CON<7:6> and
CCP1CON<3:0>, respectively).

Computer Organization and Microprocessors Page 116

The following figure shows a simplified block diagram of PWM operation.

All control registers are double-buffered and are loaded at the beginning of a new PWM cycle (the
period boundary when Timer2 resets) in order to prevent glitches on any of the outputs. The
exception is the PWM Delay register, ECCP1DEL, which is loaded at either the duty cycle boundary
or the boundary period (whichever comes first). Because of the buffering, the module waits until the
assigned timer resets instead of starting immediately. This means that Enhanced PWM waveforms
do not exactly match the standard PWM waveforms, but are instead offset by one full instruction
cycle (4 TOSC).

As before, the user must manually configure the appropriate TRIS bits for output.

 PWM Period
The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using
the equation:
 PWM Period = [(PR2) + 1] • 4 • TOSC • (TMR2 Prescale Value)

PWM frequency is defined as 1/[PWM period]. When TMR2 is equal to PR2, the following three
events occur on the next increment cycle:

 TMR2 is cleared
 The CCP1 pin is set (if PWM duty cycle = 0%, the CCP1 pin will not be set)
 The PWM duty cycle is copied from CCPR1L into CCPR1H

Note that The Timer2 postscaler is not used in the determination of the PWM frequency.

Computer Organization and Microprocessors Page 117

 PWM Duty Cycle

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4>
bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the
CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by
CCPR1L:CCP1CON<5:4>. The PWM duty cycle is calculated by the equation:

PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) • TOSC • (TMR2 Prescale Value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not
copied into CCPR1H until a match between PR2 and TMR2 occurs (i.e., the period is complete).
In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle.
This double-buffering is essential for glitch-less PWM operation. When the CCPR1H and 2-bit
latch match TMR2, concatenated with an internal 2-bit Q clock or two bits of the TMR2 pre-scalar,
the CCP1 pin is cleared. The maximum PWM resolution (bits) for a given PWM frequency is
given by the equation:

PWM Resolution bits
F

F

PWM

osc

)2log(

log

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be
cleared.

 PWM Output Configuration
The P1M1:P1M0 bits in the CCP1CON register allow one of four configurations:

 Single Output
 Half-Bridge Output
 Full-Bridge Output, Forward mode
 Full-Bridge Output, Reverse mode

Computer Organization and Microprocessors Page 118

 Example – Determine register values to set up PWM of PICmicro to generate a signal on P1A pin

(use internal RC clock) that has a period of 6 msec. and 30% duty cycle.

Solution:

1) Use the following equations:

 PWM Period = [(PR2) + 1] • 4 • TOSC • (TMR2 Prescale Value)
 Tosc = 32 µsec. for internal RC clock

. to set the values of PR2 and the TMR2 Prescale.

2) Use the following equation:

 PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) • TOSC • (TMR2 Prescale Value)

 to Calculate and set the value for registers CCPR1L:CCP1CON<5:4>.

3) Configure & Clear Timer 2
 TMR2 = 0 and PIR1=0 and TMR2IF=0

 Example – Write a code segment to configure and use a single channel PWM to control a DC motor.

Solution:
Refer to Lab documentation.

2 mS
4 mS

Signal to be generated

2 mS
4 mS

…

…

Computer Organization and Microprocessors Page 119

4.11. Additional Resources

 Staff. Microchip PIC 18F1220/1320 Data Sheet. (2004) Microchip Technology Incorporated.

 Huang,. PIC Microcontroller: An Introduction to Software & Hardware Interfacing, (2004) Thomson.

 Reese. Microprocessor: From Assembly Language to C using the PIC18Fxxx2. (2003) Course

Technology.

 Peterson. Computer Organization and Design, (2007) Elsevier Service.

Computer Organization and Microprocessors Page 120

4.12. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Computer Organization and Microprocessors Page 121

CHAPTER 5. ARITHMETIC & LOGIC OPERATIONS

Key concepts and Overview

 Arithmetic Operations

 Move, Set and Clear Operations

 Logic Operations

 Branch Operations

 Specialty Operations

 IEEE Standards for Floating Point

 Additional Resources

Computer Organization and Microprocessors Page 122

5.1. Arithmetic Operations

PICmicro offers a wide range of arithmetic operations as do the majority of the processors on the market.
In this section each of the arithmetic instructions are described in detail.

It is recommended that the reader utilize the PICmicro development and simulation tools to verify and
explore the full operation of these instructions.

The remainder of this section covers Add, Increment, Multiply and Subtract operations.

 ADDLW literal and WREG

 Example – Given Wreg=25 and the

following statement is executed:

ADDLW 0xF5

What are the status bit values?

Solution:
 N OV C DC Z
 0 1 1 1 0

Note: DC is carry over from lower
nibble.

 What value of Wreg and K will cause “Z”
& “C” to be set to zero when ADDLW
instruction is executed.

Solution:

Computer Organization and Microprocessors Page 123

 Add WREG and f

Notes:

Computer Organization and Microprocessors Page 124

 Add WREG and Carry bit to f

Notes:

 Write an Assembly code segment that

add A (location 0x10) and B (location
0x12) and stores the results in
C(location 0x14).

Solution:

 Write a C code segment that uses
pointers to add A (location 0x10) and B
(location 0x12) and stores the results in
C(location 0x14).

//Hint:
//The following code declares and
// initializes px to 0x12 and pointer
// to integer (16 bit)

Int *px =0x12;
*px = 25; //set reg. 0x12 to 25

Computer Organization and Microprocessors Page 125

 Example – Write a function “Add16” that accepts two 15-bit input (Op1 and Op2) and places the 16-bit result
from the addition of Op1 & Op2 into res:

Write pseudo code before writing the assembly code for the function “Add16”.

Solution:

 |Op1

 81h | 80h

 |Op2

 83h | 82h

 |Res

 85h | 84h

Computer Organization and Microprocessors Page 126

 Decrement f

Notes:

Computer Organization and Microprocessors Page 127

 Decrement f, Skip if 0

 Example - Write an Assembly code
segment to implement the functionality
of the following C code segment:

Unsigned char * pcount;
pcount = (unsigned char *) 0x80;

*pcount = *pcount -1;
if (*pcount != 0) {
 *pcount = 0x00;
}

Solution

pcount equ 0x80;

L1: DECFSZ pcount,1
 CLRF pcount
Done:

Computer Organization and Microprocessors Page 128

 Decrement f, Skip if Not 0

 Example - Write an Assembly code

segment that uses DCFSNZ to
implement the functionality of the
following C code segment:

Unsigned char *pcount, i;
pcount = (unsigned char *) 0x80;
for (i=50; i≥ 0 ; i--) {
 *pcount = i;
}

Solution

Computer Organization and Microprocessors Page 129

 Increment f

Notes:

Computer Organization and Microprocessors Page 130

 Increment f, Skip if 0

Notes:

 Write an Assembly code segment to

implement the functionality of the
following C code segment:

Unsigned char *pcount;
int i;
pcount = (unsigned char *) 0x80;
for (i=25; i<256 ; i++) {
 *pcount++ =(unsigned char)i;
}

Solution

pcount equ 0x80;

 MOVLW 25
 MOVWF pcount

L1: INFSZ pcount,1
 BRA L1
 DECF pcount

Computer Organization and Microprocessors Page 131

 Increment f, Skip if Not 0

Notes:

Computer Organization and Microprocessors Page 132

 Multiply WREG with f

Notes:

Computer Organization and Microprocessors Page 133

 Multiply WREG with f

Notes:

Computer Organization and Microprocessors Page 134

 Subtract f from WREG with borrow

Notes:

Computer Organization and Microprocessors Page 135

 Subtract WREG from f

Notes:

Computer Organization and Microprocessors Page 136

 Subtract WREG from f with borrow

Notes:

Computer Organization and Microprocessors Page 137

 Subtract WREG from literal

Notes:

Computer Organization and Microprocessors Page 138

5.2. Move, Set and Clear Operations

Most applications require an efficient movement of data from one memory location to another.
Processors in general have instructions dedicated to this type of operation. PICmicro also offers a wide
range of operations to move, set and clear data as do other processors.

The remainder of this section provides detailed description of Clear, Complement, Compare, Move,
Negate, Set, Table (block move) and Swap instructions.

 Clear f

Notes:

Computer Organization and Microprocessors Page 139

 Complement f

Notes:

Computer Organization and Microprocessors Page 140

 Compare f with WREG, skip

Notes:

Computer Organization and Microprocessors Page 141

 Compare f with WREG, skip if >

Notes:

Computer Organization and Microprocessors Page 142

 Compare f with WREG, skip if <

Notes:

Computer Organization and Microprocessors Page 143

 Move f

Notes:

Selecting the destination register:

// If d=0, the value in register 0x21 is
placed in W register
“(W) (0x21)”
MOVF 0x21, 0

// If d=1, the value in register 0x21 is
placed back in the same register
“(0x21) (0x21)””
MOVF 0x21, 1

// If d is not specified, it defaults to 1, so
the value in register 0x21 is placed back
in the same register
“(0x21) (0x21)””
MOVF 0x21

Computer Organization and Microprocessors Page 144

 Move fs (source) to 1st word, fd (destination) 2nd word

Notes:

Computer Organization and Microprocessors Page 145

 Move literal to BSR<3:0>

Notes:

 Move literal to WREG

Notes:

Computer Organization and Microprocessors Page 146

 Move WREG to f

Notes:

 Negate f

Notes:

Computer Organization and Microprocessors Page 147

 Set f

Notes:

Computer Organization and Microprocessors Page 148

 Table Read “TBLRD”
The Memory-Block Transfer reads and/or writes to a range of memory locations. The following two bullets
show all the various options for table read “TBLRD” and table write “TBLWT”.

Note:
“TBLPTR” value is stored in three registers:

TBLPTRU TBLPTRH TBLPTRL

After executing of TBLRD instruction, the
content of TBLPTR location is stored in
TABLAT

TABLAT

Program memory

Computer Organization and Microprocessors Page 149

 Table Write “TBLWT”
TBLWT instruction performs the reverse of the TBLRD instruction by moving the content of register TABLAT to
the location pointed to by the TBLPTR in memory.

Computer Organization and Microprocessors Page 150

 Swap nibbles in f

Notes:

Computer Organization and Microprocessors Page 151

5.3. Logical Operation
Programs require the ability to test for validity of certain conditions based on the last operation executed
or the contents of two memory locations, so processors provide a set of logical instructions that may be
used to test validity of certain conditions.

PICmicro also offers a wide range of logical operations. These operations are used for modifying data as
well as setting flags based on the results. These flags can be used later for decision making.

The remainder of this section will describe in detail the logical operation of AND, Bit Set/Clear/Test, OR,
XOR, Rotate and Test for PICmirco.

 AND Literal with WREG

Notes:

Computer Organization and Microprocessors Page 152

 AND WREG with f

Notes:

Computer Organization and Microprocessors Page 153

 Bit Clear f

Notes:

Computer Organization and Microprocessors Page 154

 Bit Set f

Notes:

Computer Organization and Microprocessors Page 155

 Bit Test f, Skip if Clear

Notes:

Computer Organization and Microprocessors Page 156

 Bit Test f, Skip if Set

Notes:

Computer Organization and Microprocessors Page 157

 Bit Toggle f

Notes:

Computer Organization and Microprocessors Page 158

 Exclusive OR literal with WREG

Notes:

Computer Organization and Microprocessors Page 159

 Exclusive OR WREG with f

Notes:

Computer Organization and Microprocessors Page 160

 Inclusive OR literal with WREG

Notes:

Computer Organization and Microprocessors Page 161

 Inclusive OR WREG with f

Notes:

Computer Organization and Microprocessors Page 162

 Rotate Left f through Carry

Notes:

Computer Organization and Microprocessors Page 163

 Rotate Left f (No Carry)

Notes:

Computer Organization and Microprocessors Page 164

 Rotate Right f through Carry

Notes:

Computer Organization and Microprocessors Page 165

 Rotate Right f (No Carry)

Notes:

Computer Organization and Microprocessors Page 166

 Test f, skip if 0

Notes:

 Write a C code segment and an

Assembly code segment that sort the
content of locations 0x120, 0x122, and
0x124 such that 0x120 contains the
smallest value and 0x124 contains the
largest value.

Solution

Computer Organization and Microprocessors Page 167

5.4. Branch Operations

Processors execute one instruction after another unless interrupted or redirected. In order to implement
high level language constructs such as conditional statements (i.e. If-Then-Else, Switch) or loop
statements (i.e. For, While), processors provide an ability to branch to other locations in program memory
based on conditions. Branch instructions allow the PC value to be redirected to locations in memory
other than the next instruction (PC + 2). In other words, in normal execution, once an instruction is
executed, the PC is changed to PC+2. But if the condition for the branch is true, then the PC will be
changed to the new location specified by the branch instruction.

PICmicro provides a set of branch and GOTO instructions. The remainder of this section covers branch
instructions that redirect PC based on status of Carry, Overflow, Negative, Zero flags, or unconditionally.

 Branch if Carry

Notes:

Computer Organization and Microprocessors Page 168

 Branch if Negative

Notes:

Computer Organization and Microprocessors Page 169

 Branch if Not Carry

Notes:

Computer Organization and Microprocessors Page 170

 Branch if Not Negative

Notes:

Computer Organization and Microprocessors Page 171

 Branch if Not Overflow

Notes:

Computer Organization and Microprocessors Page 172

 Branch if Not Zero

Notes:

Computer Organization and Microprocessors Page 173

 Branch if Overflow

Notes:

Computer Organization and Microprocessors Page 174

 Branch Unconditionally

Notes:

Computer Organization and Microprocessors Page 175

 Branch if Zero

Notes:

Computer Organization and Microprocessors Page 176

 Go to address 1st word, 2nd word

Notes:

Computer Organization and Microprocessors Page 177

5.5. Specialty Operations

This section contains detailed descriptions of PICmicro instructions that are useful, but do not fit into any
of the tradition instruction categories. The three instructions discussed here are “Decimal Adjust WREG,
DAW”, “No Operation, NOP” and “Software Device Reset, RESET”.

 Decimal Adjust WREG

Notes:

Computer Organization and Microprocessors Page 178

 No Operation

Notes:

 Software Device Reset

Notes:

Computer Organization and Microprocessors Page 179

5.6. IEEE Standards for Floating Point

As much as we like integers, real world problems have fractions and decimals so we have to learn to deal
with real numbers. Here are a few real numbers.

 3.14159265…
e 2.71828….

There are also large numbers that are not fractions, but still cannot be represented using the normal
variable sizes (i.e. 32-bit) to store them. For example:

436,972,000,000,000,000 4.36972 x 1017

This number is the normalized (no leading 0) scientific notation (d.ddddd x 10n).

The need to represent real numbers and extremely large or small numbers has lead to the need for
floating point representation. IEEE 754 floating-point standards, which are found in virtually every
computer system since 1980, address these requirements.

Some microprocessors have floating point instructions built-in standard, while in others it has to been
implemented in software. PICmicro does not have built-in floating point support, but the floating point
operation may be implemented using the available instructions.

The remainder of this section discusses the IEEE 754 floating-point standards.

 Computer representation

Real numbers are represented as binary Floating Point format which is shown below:
 1.fffffffff x 2eeeeee
 Where:
 fffffff is the binary number representing the fractions
 eeee is the binary number representing the exponent

The 1 before the decimal point is assumed in floating point and it is not explicitly stored.

The benefits of always using Floating Point (Normalized Scientific notation in binary) are:
 Simplifies exchange of data – no conversion required
 Simplifies arithmetic algorithms – no conversion required
 Increases the accuracy of the stored number

 Single Precision Floating Point (Float) Representation

The Floating Point designer must make tradeoffs between the size of the fraction and the size of the
exponent since word size is limited. In other words, the trade off is between precision (fraction), and
range (exponent).

In both Single and Double Precision Floating Point format a single bit is used to represent the sign of
fraction, where s=1 is negative and s=0 is positive.

Computer Organization and Microprocessors Page 180

 Single Precision Format

 Note: If we number the fraction bits from left to right f1, f2, f3, …
(-1)s x (1 + fraction) x 2(exponent – bias) = (-1)s x {1 + (f1 x 2-1) + (f2 x 2-2) + (f3 x 2-3) + . . .} x 2(exponent-bias)

Example of binary word equivalent to floating point numbers:

-1.25x218 1 10010001 01000000000000000000000 or (C8 90 00 00)hex
1.25x2-1 0 01111110 01000000000000000000000 or (3F 10 00 00)hex

Note: The 1 left of decimal point (1.ffff) is implicit and is not represented in the binary format.

In floating point, the programmer has to watch out for errors with a focus on the exponents.
Below are the two error cases:
 Overflow

A situation in which a positive exponent becomes too large to fit in the exponent field.
 Underflow

A situation in which a negative exponent becomes too large to fit in the exponent field.

 Example – Given a single precision floating point “FEA0 0000h” write its equivalent decimal real
number.

Solution:
 1) Write in Binary equivalent 1 111 1110 1010 … 0
 2) convert to Decimal - 1.25 x 2126

 Double Precision Format
In order to represent larger numbers with more precision (reducing the possibility of underflow or
overflow), IEEE 754 double precision floating point format is used. Here is an outline of double
precision floating point format:

Note: If we number the fraction bits from left to right f1, f2, f3, …
(-1)s x (1 + fraction) x 2(exponent – bias) = (-1)s x {1 + (f1 x 2-1) + (f2 x 2-2) + (f3 x 2-3) + . . .} x 2(exponent-bias)

 Summary of IEEE 754 Floating-Point Standards
Since the 1 to the left of the decimal is implicit we could say that the precision is 24 bit for single
precision and 53 bits for the double precision floating point arithmetic.

For example, if we number the fraction bits from left to right f1, f2, f3, the value may be represented by:
 (-1)s x (1 + fraction) x 2exponent = (-1)s x {1 + (f1 x 2-1) + f2 x 2-2) + f3 x 2-3) + . . .} x 2(exponent-bias)
The following table outlines number ranges (valid and invalid) when using IEEE 754 floating point

31 32 62 63 52 61 51

11 bits of exponents
(Bias = 1023)

… …

52 bits of fraction
2-1 2-20 2-21 2-52

s

0 …

32-bit word 32-bit word

0 1 30 31 23 29 22

8 bits of signed exponents
(Bias = 127)

… …

23 bits of fraction
2-1 2-22 2-23

s

Exponent Fraction

Computer Organization and Microprocessors Page 181

format::

Single Precision Double Precision Object Represented
Exponent Fraction Exponent Fraction

0 0 0 0 0
0 nonzero 0 nonzero de-normalized number

1-254 anything 1-2046 anything floating –point number
255 0 2047 0 infinity
255 nonzero 2047 nonzero Nan (Not a Number)

 Example - Single Precision

Convert -.75 to MIPS single precision binary format

-0.75 = (-1)1x(1+1x2-1)(2-1) = (-1)s x {1 + (f1 x 2-1) + f2 x 2-2) + f3 x 2-3) + . . .} x 2(exponent-bias)

for single precision bias is 127 exponent – bias = -1 exponent = 126 = (0111 1110)2

Therefore:

 Example - Double Precision
Convert -.75 to MIPS Double precision binary format

-0.75 = (-1)1x(1+1x2-1)(2-1) = (-1)s x {1 + (f1 x 2-1) + f2 x 2-2) + f3 x 2-3) + . . .} x 2(exponent-bias)

for single precision bias is 1023 exponent – bias = -1 exponent = 1023 = (0111 1110)2

Therefore:

 Example – Convert -5.25 x2-2 to single precision floating point binary format.

Solution:
 “student exercise”

011 1111 1110 1

11 bits of signed exponents
(Bias = 1023)

52 bits of fraction
2-1 2-52

s

100 0000 0000 . . . 0000 0000 0000

0111 1110 1

8 bits of signed exponents
(Bias = 127)

23 bits of fraction
2-1 2-22 2-23

s

100 0000 0000 0000 0000 0000

Computer Organization and Microprocessors Page 182

 Example – Covert 1.25 x10-1 to double precision floating point binary format.

Solution:
 “student exercise”

 Example – Write the decimal equivalent of the single precision floating point “C5D8 0000”.

Solution:
 “student exercise”

”Ans: -6912”

 Example – Write the single precision floating point binary equivalent for the decimal number
“258.6875”.

Solution:
 “student exercise”

”Ans: 0100 0011 1000 0000 0000 0000 010 1011”

 Example – What’s the largest and smallest possible number in:
a) Single Precision Floating point format.
b) Double Precision Floating point format.

Solution:
 “student exercise”

Computer Organization and Microprocessors Page 183

 Floating-Point Addition
Here are the steps in the example of adding .1 and -.4375

Step 1. Adjust the smaller exponent to match the largest exponent (Fraction digit at the right place)

 0.1 1.0 x 2-1 Unmodified
 -0.4375 -0.0111 x20 -1.11x 2-2 -0.111x 2-1

Step 2. Add the adjusted significant (1.fffff)

 Result Significant = 1.0 – 0.111 = 0.001

Step 3. Normalize the result

 results =(1.000 x 2-3)2

Step 4. Round any additional fraction to the number of bits available

 Floating-Point Multiply
Here are the steps in the example of multiplying .1 (1.000x2-1)2 and -.4375 (-1.110x2-2)2.

Step 1. Add the exponents
If you are working with biased exponents that after adding subtract one bias out to correct for having
double amount of bias in the result.

 -1 + (-2) = -3

Step 2. Multiply the significant (1.fffff)

 Result Significant = 1.000 x (1.110)= 1.110

Step 3. Normalize the result & Check for overflow

 results =(1.110 x 2-3)2

Step 4. Round any additional fraction to the number of bits available

 No changes

Step 5. Figure out the sign (if the operands’ signs are the same then the product is positive and if the
operands’ signs are different then the product is negative)

 results = (-1.110 x 10-3)2

Computer Organization and Microprocessors Page 184

5.7. Additional Resources

 Staff. Microchip PIC 18F1220/1320 Data Sheet. (2004) Microchip Technology Incorporated.

 Huang,. PIC Microcontroller: An Introduction to Software & Hardware Interfacing, (2004) Thomson.

 Reese. Microprocessor: From Assembly Language to C using the PIC18Fxxx2. (2003) Course

Technology.

 Peterson. Computer Organization and Design, (2007) Elsevier Service.

 IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754-1985), (1985 with 2008 revision)
Institute of Electrical and Electronics Engineers.

Computer Organization and Microprocessors Page 185

5.8. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Computer Organization and Microprocessors Page 186

CHAPTER 6. C/ASSEMBLY/MACHINE LANGUAGE EQUIVALENCIES

Key concepts and Overview

 Introduction

 Indirect Addressing

 Functions/Procedures

 Data Types

 Program Flow Controls

 Additional Resources

Computer Organization and Microprocessors Page 187

6.1. Introduction

In previous chapters, the underlying processor structure, instructions and logical design has been
discussed. The objective of this chapter is to explore the compile process with specific focus on the
equivalency between high level language (C language) and Assembly language.

We will be using PICmicro as the target processor and MPLAB’s C18 as the compiler and development
environment, which will be used to demonstrate examples of programming environment and build
process. Refer to chapter 3 for step-by-step guide to installing, configuring and development using
MPLAB’s C18 IDE. Additional information regarding MPASM, C18 compiler and MPLAB IDE is available
through the “Help>Topics” menu of the MPLAB IDE.

As discussed earlier, the high level language is compiled to Assembly and then to Machine language.
The object code is combined with other pre-existing object codes to create the executable code that can
be downloaded to the processor’s program memory for execution. Although the steps described are
common across the various systems, each processor and development environment would have its own
unique file name and may combine one or more steps. Below are files that are generated during the build
process of a C program in PICmicro environment:

 file.c
C program file containing the C language code. Although it is shown here as a single file, the
C program commonly consists of many files and directories.

C code typically includes files that define data and references required by the C program. In
PICmicro environment, each processor is defined through one such file. We are using
processor P18F1220 therefore including file “p18f1220.h” (default location is C:\MCC18\h)
would provide the register names, constants and other required definitions.

 file.lst
Listing file is generated after the compilation process and includes the c program and the
corresponding assembly code. The listing file is placed in the same directory as the project
by default. A text editor such as notepad may be best tool to view file.lst files.

Disassembly Listing which can be accessed from MPLAB IDE menu “View > Disassembly
Listing” is a good tool for viewing the relationship between C and corresponding Assembly
code. The rest of this chapter relies on this file to discuss the relationship between C and
Assembly code.

 file.map
Map file is generated by the linker and contains the symbols (variables, functions, …) and
their value. This file provides detailed information about the allocation of data and code.

 file.o
Object file is generated after the assembly program and contains the machine code (Binary).
This code is combined with other object files required by the program to create the
executable code that is downloaded to program memory for execution.

In the next few pages, an example of each of the above files for a simple C program is presented. The
longer files have been truncated to show the type of content, and the reader is encouraged to use
MAPLAB ID to view each file in its entirety and become familiar with type of information provided by each
of these files.

Computer Organization and Microprocessors Page 188

 C program file (c2asm_into.c)

“p18f1220.h” include file (default location is C:\MCC18\h).
/*---
 * $Id: p18f1220.h,v 1.11.2.1 2005/07/25 18:23:27 nairnj Exp $
 * MPLAB-Cxx PIC18F1220 processor header
 *
 * (c) Copyright 1999-2005 Microchip Technology, All rights reserved
 ---/

#ifndef __18F1220_H
#define __18F1220_H

extern volatile near unsigned char PORTA;
extern volatile near union {
 struct {
 unsigned RA0:1;
 unsigned RA1:1;
 unsigned RA2:1;
 unsigned RA3:1;
 unsigned RA4:1;
 unsigned RA5:1;
 unsigned RA6:1;
 unsigned RA7:1;
 };
 struct {
 unsigned AN0:1;
 unsigned AN1:1;
 unsigned AN2:1;
 unsigned AN3:1;
 unsigned :1;
 unsigned MCLR:1;
 unsigned CLKO:1;
 unsigned CLKI:1;

<<<<< MIDDLE SECTION OF THIS FILE HAS BEEN DELETED >>>>>

/*---
 * CONFIG6H (0x30000b)
 ---/

/***
 * File: c2asm_into.c
 * Project: c to Assembly Language Equivalency
 * Author: Class
 * Updated: 2/14/10
 ***/

//Process Specific definitions
#include <p18f1220.h>

// main() is the entry point to the program.
// PICmicro does not accept or return parameters.
void main(void)
{
 int count;

 count = count + 1;

} //main()

Computer Organization and Microprocessors Page 189

#define _CONFIG6H_DEFAULT 0xE0
#define _WRTB_ON_6H 0xBF
#define _WRTB_OFF_6H 0xFF

#define _WRTC_ON_6H 0xDF
#define _WRTC_OFF_6H 0xFF

#define _WRTD_ON_6H 0x7F
#define _WRTD_OFF_6H 0xFF

/*---
 * CONFIG7L (0x30000c)
 ---/
#define _CONFIG7L_DEFAULT 0x03
#define _EBTR0_ON_7L 0xFE
#define _EBTR0_OFF_7L 0xFF

#define _EBTR1_ON_7L 0xFD
#define _EBTR1_OFF_7L 0xFF

/*---
 * CONFIG7H (0x30000d)
 ---/
#define _CONFIG7H_DEFAULT 0x40
#define _EBTRB_ON_7H 0xBF
#define _EBTRB_OFF_7H 0xFF

#endif

Computer Organization and Microprocessors Page 190

 Listing file (c2asm_into.lst)
Address Value Disassembly Source
------- ------- ----------------------- --
 /* $Id: c018i.c,v 1.3.14.1 2006/01/24 14:50:12 rhinec
Exp $ */
 /* Copyright (c)1999 Microchip Technology */
 /* MPLAB-C18 startup code, including initialized data
*/
 /* external reference to the user's main routine */
 extern void main (void);
 /* prototype for the startup function */
 void _entry (void);
 void _startup (void);
 /* prototype for the initialized data setup */
 void _do_cinit (void);

 extern volatile near unsigned long short TBLPTR;
 extern near unsigned FSR0;
 extern near char __FPFLAGS;
 #define RND 6

 #pragma code _entry_scn=0x000000
 void
 _entry (void)
 {
000000 ef81 GOTO 0x102 _asm goto _startup _endasm
000002 f000

000004 0012 RETURN 0x0 }
 #pragma code _startup_scn
 void
 _startup (void)
 {
 _asm
 // Initialize the stack pointer
000102 ee10 LFSR 0x1,0x80 lfsr 1, _stack
000104 f080
000106 ee20 LFSR 0x2,0x80 lfsr 2, _stack
000108 f080

00010a 6af8 CLRF 0xf8,0x0 clrf TBLPTRU, 0 // 1st silicon doesn't do this on
POR

00010c 9c01 BCF 0x1,0x6,0x0 bcf __FPFLAGS,RND,0 // Initialize rounding flag
for floating point libs

 _endasm
00010e ec16 CALL 0x2c,0x0 _do_cinit ();
000110 f000

 loop:

 // Call the user's main routine
000112 ec65 CALL 0xca,0x0 main ();
000114 f000

000116 d7fd BRA 0x112 goto loop;
000118 0012 RETURN 0x0 } /* end _startup() */

<<<<< MIDDLE SECTION OF THIS FILE HAS BEEN DELETED >>>>>

0000ba c0c9 MOVFF 0xc9,0xff8
0000bc fff8
 /* next entry... */
0000be 0100 MOVLB 0x0 curr_entry--;
0000c0 07c5 DECF 0xc5,0x1,0x1
0000c2 0e00 MOVLW 0x0
0000c4 5bc6 SUBWFB 0xc6,0x1,0x1
0000c6 d7bf BRA 0x46 goto test;
 done:

Computer Organization and Microprocessors Page 191

 ;
0000c8 0012 RETURN 0x0 }

/***
 * File: c2asm_into.
 * Project: c to Assembly Language
 * Author:
 * Updated: 2/14/

 //Process Specific definitions
 #include <p18f1220.h>

 // main() is the entry point to the program and does
not accept or return parameters.
0000ca cfd9 MOVFF 0xfd9,0xfe6 void main(void)
0000cc ffe6
0000ce cfe1 MOVFF 0xfe1,0xfd9
0000d0 ffd9
0000d2 0e02 MOVLW 0x2
0000d4 26e1 ADDWF 0xe1,0x1,0x0
 {
 int count;

0000d6 cfde MOVFF 0xfde,0x2 count = count + 1;
0000d8 f002
0000da cfdd MOVFF 0xfdd,0x3
0000dc f003
0000de 0e01 MOVLW 0x1
0000e0 2602 ADDWF 0x2,0x1,0x0
0000e2 0e00 MOVLW 0x0
0000e4 2203 ADDWFC 0x3,0x1,0x0
0000e6 c002 MOVFF 0x2,0xfde
0000e8 ffde
0000ea c003 MOVFF 0x3,0xfdd
0000ec ffdd

0000ee 0e02 MOVLW 0x2 } //main()
0000f0 5ce1 SUBWF 0xe1,0x0,0x0
0000f2 e202 BC 0xf8
0000f4 6ae1 CLRF 0xe1,0x0
0000f6 52e5 MOVF 0xe5,0x1,0x0
0000f8 6ee1 MOVWF 0xe1,0x0
0000fa 52e5 MOVF 0xe5,0x1,0x0
0000fc cfe7 MOVFF 0xfe7,0xfd9
0000fe ffd9
000100 0012 RETURN 0x0
 LIST P=18F1220

 END
 ; RCS Header $Id: cmath18.asm,v 1.4.12.1 2006/01/13
04:11:25 nairnj Exp $
 ; CMATH18 DATA DEFINITION FILE

;***
 ; VARIABLE ALLOCATION - Core math library routines

;***

 MATH_DATA UDATA_
 SIGN RES 1 ; save location for sign in
MSB
 __FPFLAGSbits
 __FPFLAGS RES 1 ; floating point library
exception flags

 GLOBAL SIGN, __FPFLAGS, __

 END

Computer Organization and Microprocessors Page 192

 Disassembly Listing - MPLAB IDE menu “View > Disassembly Listing”
The remainder of this chapter, Disassembly Listing will be used to discuss the C program build
process and resulting machine code.

--- C:\MCC18\src\traditional\startup\c018i.c ---------------------------
1: /* $Id: c018i.c,v 1.3.14.1 2006/01/24 14:50:12 rhinec Exp $ */
2:
3: /* Copyright (c)1999 Microchip Technology */
4:
5: /* MPLAB-C18 startup code, including initialized data */
6:
7: /* external reference to the user's main routine */
8: extern void main (void);
9: /* prototype for the startup function */
10: void _entry (void);
11: void _startup (void);
12: /* prototype for the initialized data setup */
13: void _do_cinit (void);
14:
15: extern volatile near unsigned long short TBLPTR;
16: extern near unsigned FSR0;
17: extern near char __FPFLAGS;
18: #define RND 6
19:
20: #pragma code _entry_scn=0x000000
21: void
22: _entry (void)
23: {
24: _asm goto _startup _endasm
 000 EF81 GOTO 0x102
 002 F000 NOP
25:
26: }
 004 0012 RETURN 0
27: #pragma code _startup_scn
28: void
29: _startup (void)
30: {
31: _asm
32: // Initialize the stack pointer
33: lfsr 1, _stack
 102 EE10 LFSR 0x1, 0x80
 104 F080 NOP
34: lfsr 2, _stack
 106 EE20 LFSR 0x2, 0x80
 108 F080 NOP
35:
36: clrf TBLPTRU, 0 // 1st silicon doesn't do this on POR
 10A 6AF8 CLRF 0xff8, ACCESS
37:
38: bcf __FPFLAGS,RND,0 // Initialize rounding flag for floating
point libs
 10C 9C01 BCF 0x1, 0x6, ACCESS
39:
40: _endasm
41: _do_cinit ();

<<<<< MIDDLE SECTION OF THIS FILE HAS BEEN DELETED >>>>>

--- F:\1Mydata\lab\MPLAB\c2asm_intro\test.c ---------------------------------------

Computer Organization and Microprocessors Page 193

1: /***
2: * File: c2asm_into.c
3: * Project: c to Assembly Language Equivalency
4: * Author: Class
5: * Updated: 2/14/10
6: ***/
7:
8: //Process Specific definitions
9: #include <p18f1220.h>
10:
11: // main() is the entry point to the program and does not accept or
return parameters.
12: void main(void)
 0CA CFD9 MOVFF 0xfd9, 0xfe6
 0CC FFE6 NOP
 0CE CFE1 MOVFF 0xfe1, 0xfd9
 0D0 FFD9 NOP
 0D2 0E02 MOVLW 0x2
 0D4 26E1 ADDWF 0xfe1, F, ACCESS
13: {
14: int count;
15:
16: count = count + 1;
 0D6 CFDE MOVFF 0xfde, 0x2
 0D8 F002 NOP
 0DA CFDD MOVFF 0xfdd, 0x3
 0DC F003 NOP
 0DE 0E01 MOVLW 0x1
 0E0 2602 ADDWF 0x2, F, ACCESS
 0E2 0E00 MOVLW 0
 0E4 2203 ADDWFC 0x3, F, ACCESS
 0E6 C002 MOVFF 0x2, 0xfde
 0E8 FFDE NOP
 0EA C003 MOVFF 0x3, 0xfdd
 0EC FFDD NOP
17:
18: } //main()
 0EE 0E02 MOVLW 0x2
 0F0 5CE1 SUBWF 0xfe1, W, ACCESS
 0F2 E202 BC 0xf8
 0F4 6AE1 CLRF 0xfe1, ACCESS
 0F6 52E5 MOVF 0xfe5, F, ACCESS
 0F8 6EE1 MOVWF 0xfe1, ACCESS
 0FA 52E5 MOVF 0xfe5, F, ACCESS
 0FC CFE7 MOVFF 0xfe7, 0xfd9
 0FE FFD9 NOP
 100 0012 RETURN 0

Computer Organization and Microprocessors Page 194

 Map file (c2asm_into.map)

MPLINK 4.02, Linker
Linker Map File - Created Sun Feb 28 15:10:08 2010

 Section Info
 Section Type Address Location Size(Bytes)
 --------- --------- --------- --------- ---------
 _entry_scn code 0x000000 program 0x000006
 .cinit romdata 0x00002a program 0x000002
 _cinit_scn code 0x00002c program 0x00009e
 .code_test.o code 0x0000ca program 0x000038
 _startup_scn code 0x000102 program 0x000018
 .idata_c018i.o_i romdata 0x00011a program 0x000000
 .romdata_c018i.o romdata 0x00011a program 0x000000
 .code_c018i.o code 0x00011a program 0x000000
 .idata_test.o_i romdata 0x00011a program 0x000000
 .romdata_test.o romdata 0x00011a program 0x000000
 MATH_DATA udata 0x000000 data 0x000002
 .tmpdata udata 0x000002 data 0x000002
 .stack udata 0x000080 data 0x000040
 .udata_c018i.o udata 0x0000c0 data 0x00000a
 .idata_c018i.o idata 0x0000ca data 0x000000
 .udata_test.o udata 0x0000ca data 0x000000
 .idata_test.o idata 0x0000ca data 0x000000
 SFR_UNBANKED0 udata 0x000f80 data 0x000080

 Program Memory Usage
 Start End
 --------- ---------
 0x000000 0x000005
 0x00002a 0x000119
 246 out of 4376 program addresses used, program memory utilization is 5%

 Symbols - Sorted by Name
 Name Address Location Storage File
 --------- --------- --------- --------- ---------
 ___return_lbl00000 0x000004 program static
 ___return_lbl00001 0x000118 program static
 ___return_lbl00002 0x0000c8 program static

<<<<< MIDDLE SECTION OF THIS FILE HAS BEEN DELETED >>>>>

 TBLPTRL 0x000ff6 data extern
 TBLPTR 0x000ff6 data extern
 TBLPTRH 0x000ff7 data extern
 TBLPTRU 0x000ff8 data extern
 PCL 0x000ff9 data extern
 PC 0x000ff9 data extern
 PCLATH 0x000ffa data extern
 PCLATU 0x000ffb data extern
 STKPTRbits 0x000ffc data extern
 STKPTR 0x000ffc data extern
 TOSL 0x000ffd data extern
 TOS 0x000ffd data extern
 TOSH 0x000ffe data extern
 TOSU 0x000fff data extern

Computer Organization and Microprocessors Page 195

6.2. Indirect Addressing (INDFn)

Compliers use Indirect addressing to generate relocatable code and dynamically change the memory
address to be accessed. This section outlines indirect addressing based on PICmicro’s implementation.

Indirect addressing uses FSRn registers (FSR0, FSR1, FSR2) as pointers to the data memory location
that is to be read or written. These register contain the address of the data memory being affected. The
size of memory on PICmicro is 4096 which means an address is 12 bits and requires two bytes to store.
The three sets of indirect addressing subsystems are addressed by:

 FSR0: composed of FSR0H:FSR0L “FEA : FE9”
 FSR1: composed of FSR1H:FSR1L “FE2 : FE1”
 FSR2: composed of FSR2H:FSR2L “FDA : FD9”

Typically, FSRn is initialized by LFSR instruction as shown by the following example:

 LFSR FSR0, 0x1065 ;Sets the initial address of indirect addressing subsystem 0 to
1065h

The data is read or written by accessing one of the special function registers associated with each FSRn.
The following list provides an overview of each of the special registers and their corresponding activity:

• Indirectly access register (pointed to by FSRn), then do nothing else (no change) – INDFn
• Indirectly access register, then auto-decrement FSRn (post-decrement) – POSTDECn
• Indirectly access register, then auto-increment FSRn (post-increment) – POSTINCn
• Auto-increment FSRn, then indirectly access register (pre-increment) – PREINCn
• Use the value in the WREG register as an offset to FSRn. It will not modify the value of the

WREG or the FSRn register after an indirect access (nochange) – PLUSWn

Summary of all the Special Function Registers associated with each Indirect Addressing Subsystem
(IASn):

IAS 0 IAS 1 IAS 2
FSR0H : FSR0L
INDF0
POSTDEC0
POSTINC0
PREINC0
PLUSW0

FSR1H : FSR1L
INDF1
POSTDEC1
POSTINC1
PREINC1
PLUSW1

FSR2H :FSR2L
INDF2
POSTDEC2
POSTINC2
PREINC2
PLUSW2

 Example - Describe the function performed by the following Code Segment.

 LFSR FSR0,0x100
NEXT: SETF POSTINC0
 BTFSS FSR0H, 1
 GOTO NEXT
CONT: BRA CONT

Solution:
 Sets locations 0x100 through 0x1FF to the value 0xFF

 Example - Write a PICmicro code segment using indirect addressing to move content from location

100-150h to 2050-2000h.

Computer Organization and Microprocessors Page 196

Solution:
 LFSR FSR0, 0x100
 LFSR FSR1, 0x2050
 MOVLW 0x51
 MOVWF 0x80

MOVE_IT:
 MOVFF POSTINC0, POSTDEC1
 DECF 0x80
 BNZ MOVE_IT

 Example - Show the content of memory that has been changed by the following code segment and
their new contents.
 MOVLW 12h
 MOVWF FSR0L
 MOVLW 23h
 MOVWF FSR0H
 MOVLW 15h
 MOVWF POSTDEC0
 ADDLW 2h
 MOVWF POSTINC0
 ADDLW 5
 MOVWF INDF0

Solution:
Location and content in Hex
 Location Content
 2311 2
 2312 5

Computer Organization and Microprocessors Page 197

6.3. Functions / Procedures

 Code Entry Point, main()

 Syntax

// entry into the code
void main (void)
 {

Statements

}

 Example - Disassembly Listing

1: /***
2: * File: c2asm_into.c
3: * Project: c to Assembly Language Equivalency
4: * Author: Class
5: * Updated: 2/14/10
6: ***/
7:
8: //Process Specific definitions
9: #include <p18f1220.h>
10:
11: // main() is the entry point to the program and does not accept or return
parameters.
12: void main(void)
 0CA CFD9 MOVFF 0xfd9, 0xfe6
 0CC FFE6 NOP
 0CE CFE1 MOVFF 0xfe1, 0xfd9
 0D0 FFD9 NOP
 0D2 0E02 MOVLW 0x2
 0D4 26E1 ADDWF 0xfe1, F, ACCESS
13: {
14: int count;
15:
16: count = count + 1;
 0D6 CFDE MOVFF 0xfde, 0x2
 0D8 F002 NOP
 0DA CFDD MOVFF 0xfdd, 0x3
 0DC F003 NOP
 0DE 0E01 MOVLW 0x1
 0E0 2602 ADDWF 0x2, F, ACCESS
 0E2 0E00 MOVLW 0
 0E4 2203 ADDWFC 0x3, F, ACCESS
 0E6 C002 MOVFF 0x2, 0xfde
 0E8 FFDE NOP
 0EA C003 MOVFF 0x3, 0xfdd
 0EC FFDD NOP
17:
18: } //main()
 0EE 0E02 MOVLW 0x2
 0F0 5CE1 SUBWF 0xfe1, W, ACCESS
 0F2 E202 BC 0xf8
 0F4 6AE1 CLRF 0xfe1, ACCESS
 0F6 52E5 MOVF 0xfe5, F, ACCESS
 0F8 6EE1 MOVWF 0xfe1, ACCESS
 0FA 52E5 MOVF 0xfe5, F, ACCESS
 0FC CFE7 MOVFF 0xfe7, 0xfd9
 0FE FFD9 NOP
 100 0012 RETURN 0

Computer Organization and Microprocessors Page 198

 Function/Procedures

 Syntax

 Call
name(argument list, if any);

 Definition
name(argument list, if any)
argument declarations, if any
{
 declarations and statements, if any
}

 Example - Disassembly Listing
--- F:\1Mydata\lab\MPLAB\c2asm_intro\test.c
14: void main(void)
 0CA CFD9 MOVFF 0xfd9, 0xfe6
 0CC FFE6 NOP
 0CE CFE1 MOVFF 0xfe1, 0xfd9
 0D0 FFD9 NOP
 0D2 0E02 MOVLW 0x2
 0D4 26E1 ADDWF 0xfe1, F, ACCESS
15: {
16: int count;
17:
18:
19: fun_add(count); // Call
 0D6 CFDE MOVFF 0xfde, 0xfe6
 0D8 FFE6 NOP
 0DA CFDD MOVFF 0xfdd, 0xfe6
 0DC FFE6 NOP
 0DE D80C RCALL 0xf8
 0E0 52E5 MOVF 0xfe5, F, ACCESS
 0E2 52E5 MOVF 0xfe5, F, ACCESS
20:
21: } //main()
 0E4 0E02 MOVLW 0x2
 0E6 5CE1 SUBWF 0xfe1, W, ACCESS
 0E8 E202 BC 0xee
 0EA 6AE1 CLRF 0xfe1, ACCESS
 0EC 52E5 MOVF 0xfe5, F, ACCESS
 0EE 6EE1 MOVWF 0xfe1, ACCESS
 0F0 52E5 MOVF 0xfe5, F, ACCESS
 0F2 CFE7 MOVFF 0xfe7, 0xfd9
 0F4 FFD9 NOP
 0F6 0012 RETURN 0
22:
23: // function definition
24: int fun_add(int op)
 0F8 CFD9 MOVFF 0xfd9, 0xfe6
 0FA FFE6 NOP
 0FC CFE1 MOVFF 0xfe1, 0xfd9
 0FE FFD9 NOP
25: {
26: op = op + 1;
 100 0E01 MOVLW 0x1
 102 6EE7 MOVWF 0xfe7, ACCESS
 104 0EFD MOVLW 0xfd
 106 CFDB MOVFF 0xfdb, 0x2
 108 F002 NOP
 10A 0EFE MOVLW 0xfe
 10C CFDB MOVFF 0xfdb, 0x3
 10E F003 NOP
 110 50E7 MOVF 0xfe7, W, ACCESS
 112 2602 ADDWF 0x2, F, ACCESS
 114 0E00 MOVLW 0
 116 2203 ADDWFC 0x3, F, ACCESS

Computer Organization and Microprocessors Page 199

 118 0EFD MOVLW 0xfd
 11A C002 MOVFF 0x2, 0xfdb
 11C FFDB NOP
 11E 0EFE MOVLW 0xfe
 120 C003 MOVFF 0x3, 0xfdb
 122 FFDB NOP
27: return (op);
 124 0EFD MOVLW 0xfd
 126 CFDB MOVFF 0xfdb, 0x2
 128 F002 NOP
 12A 0EFE MOVLW 0xfe
 12C CFDB MOVFF 0xfdb, 0x3
 12E F003 NOP
 130 C002 MOVFF 0x2, 0xff3
 132 FFF3 NOP
 134 C003 MOVFF 0x3, 0xff4
 136 FFF4 NOP
 138 D000 BRA 0x13a
28: } // fun_add
 13A 52E5 MOVF 0xfe5, F, ACCESS
 13C CFE7 MOVFF 0xfe7, 0xfd9
 13E FFD9 NOP
 140 0012 RETURN 0

Computer Organization and Microprocessors Page 200

6.4. Data Types

 Constant

 Syntax
#define CONSTANT_NAME Value

 Assembly Equivalent
CONSTANT_NAME equ Value

 Examples
 C Example

#define CONST_EX 10
#define CHAR_EX ‘h’

 Assembly Equivalent
CONST_EX equ 10
CHAR_EX equ ‘h’

 Character

 Syntax
char ch_ex;

 Example – .lst file

17: char ch_ex;
18:
19: ch_ex = 'h';
 0EC 0E68 MOVLW 0x68
 0EE 6EDF MOVWF 0xfdf, ACCESS

 String

String is a list of characters terminated by a null character ‘\0’. C language does not support
string declaration as type different from Character.

 Integer

 Syntax

int int_ex; // typically size of int is equal to processor word size

 Example – Disassembly Listing (PIC micro implements integer in 16 bits)

14: int int_ex;
15:
16: int_ex = 0x29;
 0D6 0E29 MOVLW 0x29
 0D8 6EDE MOVWF 0xfde, ACCESS
 0DA 6ADD CLRF 0xfdd, ACCESS
17:

Computer Organization and Microprocessors Page 201

 Float “single-precision floating point” & Double “double-precision floating point”
PICmicro has implemented float and double based on IEEE single precision format discussed in
Chapter 5. The float range is shown below:

 3880564693.6)22(*23817549435.12 15128126 EtoE

 Syntax

float float_ex; // uses IEEE Single precision format
double double_ex; // uses IEEE Single precision format

 Example – Disassembly Listing

Float
14: float flt_ex;
15:
16: flt_ex = 29.35;
 0D6 0ECD MOVLW 0xcd
 0D8 6EDE MOVWF 0xfde, ACCESS
 0DA 0ECC MOVLW 0xcc
 0DC 6EDE MOVWF 0xfde, ACCESS
 0DE 0EEA MOVLW 0xea
 0E0 6EDE MOVWF 0xfde, ACCESS
 0E2 0E41 MOVLW 0x41
 0E4 6EDD MOVWF 0xfdd, ACCESS
 0E6 52DD MOVF 0xfdd, F, ACCESS
 0E8 52DD MOVF 0xfdd, F, ACCESS
17:

Double
14: double dbl_ex;
15:
16: dbl_ex = 29.35;
 0D6 0ECD MOVLW 0xcd
 0D8 6EDE MOVWF 0xfde, ACCESS
 0DA 0ECC MOVLW 0xcc
 0DC 6EDE MOVWF 0xfde, ACCESS
 0DE 0EEA MOVLW 0xea
 0E0 6EDE MOVWF 0xfde, ACCESS
 0E2 0E41 MOVLW 0x41
 0E4 6EDD MOVWF 0xfdd, ACCESS
 0E6 52DD MOVF 0xfdd, F, ACCESS
 0E8 52DD MOVF 0xfdd, F, ACCESS
17:

Computer Organization and Microprocessors Page 202

 Pointers

 Syntax

type *var_p; // declares pointer to a variable of declared type
type var; // declaring a variable of declared type

var= *var_p; // Assign the content of the address pointed to by a pointer to a variable
var_p = &var; // Assign address of variable to the pointer variable

 Example – Disassembly Listing

13: {
14: char chv; // decalre a variable
15: char *chp; // declare a pointer
16:
17: chv = 'h'; // set variable to h
 0D6 0E68 MOVLW 0x68
 0D8 6EDF MOVWF 0xfdf, ACCESS
18: chp = &chv; // move content of pointer to variable
 0DA CFD9 MOVFF 0xfd9, 0x2
 0DC F002 NOP
 0DE CFDA MOVFF 0xfda, 0x3
 0E0 F003 NOP
 0E2 0E01 MOVLW 0x1
 0E4 C002 MOVFF 0x2, 0xfdb
 0E6 FFDB NOP
 0E8 0E02 MOVLW 0x2
 0EA C003 MOVFF 0x3, 0xfdb
 0EC FFDB NOP
19: *chp = 'g'; // set the location pointed to by chp to g
 0EE 0E01 MOVLW 0x1
 0F0 CFDB MOVFF 0xfdb, 0xfe9
 0F2 FFE9 NOP
 0F4 0E02 MOVLW 0x2
 0F6 CFDB MOVFF 0xfdb, 0xfea
 0F8 FFEA NOP
 0FA 0E67 MOVLW 0x67
 0FC 6EEF MOVWF 0xfef, ACCESS
20: chv = *chp; // move content of pointer to variable
 0FE 0E01 MOVLW 0x1
 100 CFDB MOVFF 0xfdb, 0xfe9
 102 FFE9 NOP
 104 0E02 MOVLW 0x2
 106 CFDB MOVFF 0xfdb, 0xfea
 108 FFEA NOP
 10A CFEF MOVFF 0xfef, 0xfdf
 10C FFDF NOP
21:

Computer Organization and Microprocessors Page 203

 Arrays

 Syntax

type ar_name[size dim1]; // declare an array

 Example – Disassembly Listing

 0CA CFD9 MOVFF 0xfd9, 0xfe6
 0CC FFE6 NOP
 0CE CFE1 MOVFF 0xfe1, 0xfd9
 0D0 FFD9 NOP
 0D2 0E0A MOVLW 0xa
 0D4 26E1 ADDWF 0xfe1, F, ACCESS
13: {
14: char ch[10]; // decalre a variable
15:
16: ch[0] = 'a'; // set the first element to a
 0D6 0E61 MOVLW 0x61
 0D8 6EDF MOVWF 0xfdf, ACCESS
17: ch[9] = 'j'; // set the last element to j
 0DA 0E6A MOVLW 0x6a
 0DC 6EF3 MOVWF 0xff3, ACCESS
 0DE 0E09 MOVLW 0x9
 0E0 CFF3 MOVFF 0xff3, 0xfdb
 0E2 FFDB NOP
18:

Computer Organization and Microprocessors Page 204

 Structures

 Syntax

 Defining a new type

// new type
struct new-type{
 list of declarations
};

struct new_type new_struct; // defines a variable new_struct of the type new_type

 Defining a new structure
// new type
struct {
 list of declarations
} new_struct1, new_struct2;

 Example – Disassembly Listing

12: void main(void)
 0CA CFD9 MOVFF 0xfd9, 0xfe6
 0CC FFE6 NOP
 0CE CFE1 MOVFF 0xfe1, 0xfd9
 0D0 FFD9 NOP
 0D2 0E0F MOVLW 0xf
 0D4 26E1 ADDWF 0xfe1, F, ACCESS
13: {
14: char name;
15: struct record
16: {
17: int id;
18: char name[10];
19: int grade;
20: };
21: struct record student = {1,"Great", 100};
 0D6 0E01 MOVLW 0x1
 0D8 6EF3 MOVWF 0xff3, ACCESS
 0DA CFF3 MOVFF 0xff3, 0xfdb
 0DC FFDB NOP
 0DE 0E02 MOVLW 0x2
 0E0 6ADB CLRF 0xfdb, ACCESS
 0E2 50D9 MOVF 0xfd9, W, ACCESS
 0E4 0F03 ADDLW 0x3
 0E6 6EE9 MOVWF 0xfe9, ACCESS
 0E8 CFDA MOVFF 0xfda, 0xfea
 0EA FFEA NOP
 0EC 0E47 MOVLW 0x47
 0EE 6EEE MOVWF 0xfee, ACCESS
 0F0 0E72 MOVLW 0x72
 0F2 6EEE MOVWF 0xfee, ACCESS
 0F4 0E65 MOVLW 0x65
 0F6 6EEE MOVWF 0xfee, ACCESS
 0F8 0E61 MOVLW 0x61
 0FA 6EEE MOVWF 0xfee, ACCESS
 0FC 0E74 MOVLW 0x74
 0FE 6EEE MOVWF 0xfee, ACCESS
 100 6AEE CLRF 0xfee, ACCESS
 102 0E3E MOVLW 0x3e
 104 6EEE MOVWF 0xfee, ACCESS
 106 6EEE MOVWF 0xfee, ACCESS
 108 6EEE MOVWF 0xfee, ACCESS
 10A 6EEE MOVWF 0xfee, ACCESS
 10C 0E64 MOVLW 0x64
 10E 6EF3 MOVWF 0xff3, ACCESS

Computer Organization and Microprocessors Page 205

 110 0E0D MOVLW 0xd
 112 CFF3 MOVFF 0xff3, 0xfdb
 114 FFDB NOP
 116 0E0E MOVLW 0xe
 118 6ADB CLRF 0xfdb, ACCESS
22:
23: } //main()
 11A 0E0F MOVLW 0xf
 11C 5CE1 SUBWF 0xfe1, W, ACCESS
 11E E202 BC 0x124
 120 6AE1 CLRF 0xfe1, ACCESS
 122 52E5 MOVF 0xfe5, F, ACCESS
 124 6EE1 MOVWF 0xfe1, ACCESS
 126 52E5 MOVF 0xfe5, F, ACCESS
 128 CFE7 MOVFF 0xfe7, 0xfd9
 12A FFD9 NOP
 12C 0012 RETURN 0

Note: NOP instructions listed above are actually the second word of two-word instruction.

 Example – The following C program segment:

// Available data memory start at 0x80

Struct {
 char name[30]; // 1 byte/char
 int sid; // integer is 2 bytes
 char grade[2];
} Students [20];

a) Find the location of student[2].grade[1].
b) Find the location for student [9].sid;

Solutions

Computer Organization and Microprocessors Page 206

6.5. Program Flow Controls

 If-Then-Else

 Syntax

if (condition) {
 statements
}
else { // else is optional
 statements
}

 Example – Disassembly Listing

12: void main(void)
 0CA CFD9 MOVFF 0xfd9, 0xfe6
 0CC FFE6 NOP
 0CE CFE1 MOVFF 0xfe1, 0xfd9
 0D0 FFD9 NOP
 0D2 0E02 MOVLW 0x2
 0D4 26E1 ADDWF 0xfe1, F, ACCESS
13: {
14: int count=8;
 0D6 0E08 MOVLW 0x8
 0D8 6EDE MOVWF 0xfde, ACCESS
 0DA 6ADD CLRF 0xfdd, ACCESS
15:
16: if (count < 5){
 0DC CFDE MOVFF 0xfde, 0x2
 0DE F002 NOP
 0E0 CFDD MOVFF 0xfdd, 0x3
 0E2 F003 NOP
 0E4 90D8 BCF 0xfd8, 0, ACCESS
 0E6 5003 MOVF 0x3, W, ACCESS
 0E8 E604 BN 0xf2
 0EA 0E05 MOVLW 0x5
 0EC 5C02 SUBWF 0x2, W, ACCESS
 0EE 0E00 MOVLW 0
 0F0 5803 SUBWFB 0x3, W, ACCESS
 0F2 E20D BC 0x10e
17: count = count + 5;
 0F4 CFDE MOVFF 0xfde, 0x2
 0F6 F002 NOP
 0F8 CFDD MOVFF 0xfdd, 0x3
 0FA F003 NOP
 0FC 0E05 MOVLW 0x5
 0FE 2602 ADDWF 0x2, F, ACCESS
 100 0E00 MOVLW 0
 102 2203 ADDWFC 0x3, F, ACCESS
 104 C002 MOVFF 0x2, 0xfde
 106 FFDE NOP
 108 C003 MOVFF 0x3, 0xfdd
 10A FFDD NOP
18: }
19: else{
 10C D00C BRA 0x126
20: count = count - 5;
 10E CFDE MOVFF 0xfde, 0x2
 110 F002 NOP
 112 CFDD MOVFF 0xfdd, 0x3
 114 F003 NOP
 116 0E05 MOVLW 0x5
 118 5E02 SUBWF 0x2, F, ACCESS
 11A 0E00 MOVLW 0
 11C 5A03 SUBWFB 0x3, F, ACCESS
 11E C002 MOVFF 0x2, 0xfde
 120 FFDE NOP

Computer Organization and Microprocessors Page 207

 122 C003 MOVFF 0x3, 0xfdd
 124 FFDD NOP
21: }
22:
23: } //main()
 126 0E02 MOVLW 0x2
 128 5CE1 SUBWF 0xfe1, W, ACCESS
 12A E202 BC 0x130
 12C 6AE1 CLRF 0xfe1, ACCESS
 12E 52E5 MOVF 0xfe5, F, ACCESS
 130 6EE1 MOVWF 0xfe1, ACCESS
 132 52E5 MOVF 0xfe5, F, ACCESS
 134 CFE7 MOVFF 0xfe7, 0xfd9
 136 FFD9 NOP
 138 0012 RETURN 0

Computer Organization and Microprocessors Page 208

 While Loop

 Syntax

while (condition){
 statements
}

 Example – Disassembly Listing

11: // main() is the entry point to the program and does not accept or return
parameters.
12: void main(void)
 0CA CFD9 MOVFF 0xfd9, 0xfe6
 0CC FFE6 NOP
 0CE CFE1 MOVFF 0xfe1, 0xfd9
 0D0 FFD9 NOP
 0D2 0E02 MOVLW 0x2
 0D4 26E1 ADDWF 0xfe1, F, ACCESS
13: {
14: int count;
15: while (count <= 10){
 0D6 CFDE MOVFF 0xfde, 0x2
 0D8 F002 NOP
 0DA CFDD MOVFF 0xfdd, 0x3
 0DC F003 NOP
 0DE 3403 RLCF 0x3, W, ACCESS
 0E0 E204 BC 0xea
 0E2 5002 MOVF 0x2, W, ACCESS
 0E4 080A SUBLW 0xa
 0E6 0E00 MOVLW 0
 0E8 5403 SUBFWB 0x3, W, ACCESS
 0EA E305 BNC 0xf6
 0F4 D7F0 BRA 0xd6
16: count++;
 0EC 2ADF INCF 0xfdf, F, ACCESS
 0EE 0E01 MOVLW 0x1
 0F0 E301 BNC 0xf4
 0F2 2ADB INCF 0xfdb, F, ACCESS
17: }
18:
19:
20: } //main()
 0F6 0E02 MOVLW 0x2
 0F8 5CE1 SUBWF 0xfe1, W, ACCESS
 0FA E202 BC 0x100
 0FC 6AE1 CLRF 0xfe1, ACCESS
 0FE 52E5 MOVF 0xfe5, F, ACCESS
 100 6EE1 MOVWF 0xfe1, ACCESS
 102 52E5 MOVF 0xfe5, F, ACCESS
 104 CFE7 MOVFF 0xfe7, 0xfd9
 106 FFD9 NOP
 108 0012 RETURN 0

Computer Organization and Microprocessors Page 209

 For Loop

 Syntax

for (Intializationoptional ;Conditionoptional ; Actionoptional){
 statements
}

 Example – Disassembly Listing

12: void main(void)
 0CA CFD9 MOVFF 0xfd9, 0xfe6
 0CC FFE6 NOP
 0CE CFE1 MOVFF 0xfe1, 0xfd9
 0D0 FFD9 NOP
 0D2 0E02 MOVLW 0x2
 0D4 26E1 ADDWF 0xfe1, F, ACCESS
13: {
14: int count;
15: for (count=0; count<10 ; count++){
 0D6 6ADE CLRF 0xfde, ACCESS
 0D8 6ADD CLRF 0xfdd, ACCESS
 0DA CFDE MOVFF 0xfde, 0x2
 0DC F002 NOP
 0DE CFDD MOVFF 0xfdd, 0x3
 0E0 F003 NOP
 0E2 90D8 BCF 0xfd8, 0, ACCESS
 0E4 5003 MOVF 0x3, W, ACCESS
 0E6 E604 BN 0xf0
 0E8 0E0A MOVLW 0xa
 0EA 5C02 SUBWF 0x2, W, ACCESS
 0EC 0E00 MOVLW 0
 0EE 5803 SUBWFB 0x3, W, ACCESS
 0F0 E205 BC 0xfc
 0F2 2ADF INCF 0xfdf, F, ACCESS
 0F4 0E01 MOVLW 0x1
 0F6 E301 BNC 0xfa
 0F8 2ADB INCF 0xfdb, F, ACCESS
 0FA D7EF BRA 0xda
16: }
17:
18:
19: } //main()

Computer Organization and Microprocessors Page 210

6.6. Additional Resources

 Kernighan & Ritchie. The C Programing Language, (1978) Prentice-Hall

 Peterson. Computer Organization and Design, (2007) Elsevier Service.

 Staff. Microchip PIC 18F1220/1320 Data Sheet. (2004) Microchip Technology Incorporated.

Computer Organization and Microprocessors Page 211

6.7. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Computer Organization and Microprocessors Page 212

CHAPTER 7. PERFORMANCE

Key concepts and Overview

 CPU Performance and Relating Factors

 Evaluating Performance and Bench Marking

 Performance Bench Marking Design

 Additional Resources

Computer Organization and Microprocessors Page 213

7.1. CPU Performance and Relating Factors

As discussed earlier, performance is growing in importance as criteria of microprocessor design. As the
memory size and functionality have grown, performance becomes one of the most important factors in
design of computer system.

The first step in understanding, analyzing and designing a system with respect to performance is to agree
on these key definitions.

 Defining Performance

Depending on your application, you may emphasize a subset of performance attributes in your
selection or design of computer systems. For example, if you are designing an enterprise system for
a fortune 500 corporation, you will have different needs than if you are designing a gaming computer
system for a hobbyist.

Here are a few terminologies to consider:

 Performance and Execution Time

It is common to use Performance and Execution Time to refer to the overall performance of a
system. The total time required for the computer to complete a task, including disk access,
memory access, I/O activities, Operating system overhead, CPU execution time and others may
be referred to as the execution time. As shown below, execution time is inversely proportional to
the performance as shown below:

TimeExecution

ePerformanc
1

To maximize performance is to minimize the Execution time. If computer X runs faster than Y,
then it is said that computer X is n time faster than Y, when:

X

Y

Y

X

TimeExecution

TimeExecution

ePerformanc

ePerformanc
n

It can be confusing to use the terms “increasing” and “decreasing” in conjunction with
“performance” and “execution time” since they denote the opposites. For example, an increase in
performance is desirable. On the other hand, increased execution time is undesirable. So to
remove this confusion, the industry typically uses the words “Improve performance” or “Improve
Execution time “ instead of the terms “increase performance” or “decrease execution time”

 Measuring Performance
Computer performance is measured in term of execution time in seconds per program.

 Elapsed Time

Elapsed Time is defined by the wall-clock time, elapsed time, also called “response time,”
refers to the time a program takes to execute from the start to the end of as is observed by
the user. This includes all aspects of activities such as memory, execution and delays.

 CPU Execution Time or CPU Time (corresponding to CPU performance)
A processor is typically shared amongst multiple programs. CPU execution time or CPU
time, is the time the processor, is actually executing the program. Note that in this case,
CPU time does not include activities such as memory access, disk access and others.

CPU time can be further classified as:

Computer Organization and Microprocessors Page 214

 User CPU Time
CPU time spent on the program

 System CPU Time
CPU time spent on the operating system performing tasks on behalf of the program.

 Clock or System Clock
Computer systems have a main clock. The Clock’s frequency (f) and period (T=1/f) are used
in discussion of bottom up performance.

As mentioned earlier, measuring performance depends on many factors and the type of applications
being considered. Therefore, there are a variety of techniques in measuring performance. In some
cases, the designer has to consider CPU performance in terms of number of instructions and number
of cycles per instruction. This method is referred to as the bottom up method.

On the other hand, there are cases when the underlying application and system code are not
available or are too complex for an instruction by instruction performance measurement. In these type
cases, benchmark performance measure will be used.

 CPU Performance Factors
When we have access to the code and the application is not too complex, we are able to do a
detailed analysis of the number of clock cycles the CPU takes to perform a specific task.

 CPU time in terms of CPU Clock is one the most basic measurements of performance.

CPU Execution time for a program =
 (# of CPU Clock Cycle for a Program) * (Clock Cycle Time)
or

CPU Execution time for a program =
 (# of CPU Clock Cycle for a Program) / (Clock freq. or rate)

So, to improve performance is to either use less clock cycles or reduce clock cycle time. But
many techniques to reduce number of clock cycles will also increase the clock cycle time.

 Example

Let’s say your computer is running GTW (Good Time Waster) game with a 1.2 second
response time.

Company VGC (Very Good Computer) is claiming that their new computer, VIC, instruction
set requires only half the clock cycles of your computer and the Clock Frequency is 20%
higher.

What would you expect the GTW game response time to be on VIC.

Solution:
For your computer, we have CPU Execution time = A / B = 1.2 seconds where:
 A is # of CPU cycles and
 B is the CPU clock frequency

For VIC, we have CPU execution time = (A/2) / (1.2 B)
 = (A/B)(1/2.4) = (1.2 sec)(1/2.4) = 0.5 Sec.

Computer Organization and Microprocessors Page 215

As a result, VIC would be a higher-performing computer compared to the current computer.

 Example – What’s the execution time of PIC micro system with 10 Mhz clock running the
following code:

 CLRF 0x30
Loop: MOVWF 0x29
 DECF 0x30
 ADDWF 0x31
 BNZ Loop

Solution:

 Average Clock Cycle per Instruction

If you have access to the code but the application is becoming more complex, you can simplify
have your performance measure by using average Clock Cycles per Instruction (CPI) measure.
At the core, CPI is the average number of cycles to execute an instruction in a code segment.
CPI allows one to count # of instruction and not have the responsibility to know the number of
cycles required by each instruction.

Using the above Definition we can write the following relationships:

CPU Clock Cycles =
 (# of instructions for a program) * (Average Clock Cycle Per Instruction, CPI)

Using the above relationship we can find the CPU Time:

CPU Time = (# CPU Clock Cycles) *(Clock Period)
 = (# CPU Clock Cycles) / (Clock Frequency)

Therefore

CPU Time = (# Instruction per program) * (CPI) * (Clock Period)

Another way to write the same thing:

CPU Time = (# Instruction per program) * (CPI) / (Clock Frequency)

The above equation is especially useful, since it separates the three key factors (Number of
Instructions, CPI and Clock Frequency) that affect performance

Computer Organization and Microprocessors Page 216

 Time (CPU Time or CPU Execution Time) is the measure of performance
In general the following relationship can be used to figure out the performance:

CycleClock

Seconds

nInstructio

CycleClock

gramo

nsInstructio

ogram

Seconds
Time **

PrPr

Where:

Components of Performance Units of Measure
CPU Execution time for a program (Time) Seconds per program
Instruction count Instructions executed for the program
Clock Cycles per instruction (CPI) Average number of clock cycles per instruction
Clock cycle time Seconds per clock cycle

Average CPI requires a fair amount of work to determine and it also varies from code segment to
code segment. For more accurate calculations at the time, you may need to use the following
formula:

CPU Clock Cycle =

n

i
ii CCPI

1

)*(Where

 Ci is the count of the number of instructions in Class I
 CPIi is the average number of cycles per instruction for Class i
 n is the number of instruction classes

 Effect of Software Components on CPU Performance
Another way to study performance is understanding the effect of software development
components on the performance. The following table attempts to represent the relationship:

Software
Components

What is affected? How it is affected?

Algorithm Instruction Count
CPI

Algorithms say how the work is done at a
high level which affect the type of instruction
and number of instructions used

Programming
Language

Instruction Count
CPI

Programming language will directly affect the
instructions used.

Compiler Instruction Count
CPI

Complier is the component that writes the
assembly code so decisions here would also
have an effect on instruction count and CPI.

 Example

An algorithm for sorting has been designed and compiled using Java. The execution code
generated include three classes of code:

15 instruction of ”A” class with 3 clocks cycles per instruction (3 CPIs)
12 instruction of ”B” class with 5 clock cycles per instruction (5 CPIs)
20 instruction of ”C” class with 12 clock cycles per instruction (12 CPIs)

The same sorting algorithm has been designed and complied using C. The execution code
generated includes three classes of code:

30 instruction of ”X” class with 2 clocks cycles per instruction (2 CPIs)
8 instruction of ”Y” class with 7 clock cycles per instruction (7 CPIs)

Computer Organization and Microprocessors Page 217

15 instruction of ”Z” class with 10 clock cycles per instruction (10 CPIs)

Which solution provide you with a better performance? And what is the total execution time for
the better performing solution if the code was running on a PICmicro with the clock speed of 8
MHz.

Solution:

For Java CPU Clock Cycles =

n

i
ii CCPI

1

)*(= (15x3) + (12x5) + (20x12) = 345 clock cycles

For C CPU Clock Cycles =

n

i
ii CCPI

1

)*(= (30x2) + (8x7) + (15x10) = 266 clock cycles

C language solution has better performance

At clock frequency of f=8 MHz, Cycle time is T = 1/f = 125 * 10-9 Seconds.

Therefore: Total execution time = (CPU Clock Cycle) * T = 266 * (125*10-9) seconds

 Example – Estimate execution time for a PICmicro processor with an 8 MHz external crystal to
sort an array with 1000 integers using bubble sort. Below is an example of Bubble Sort C code
segment:

swapped = 0;
while (swapped == 0){
 for (i=0 , i≤(1000-2), i++){
 if (A(i) > A[i+1)){
 temp=A(i);
 A(i) = A(i+1);
 A(i+1) = temp;
 swapped = 1;
 }
 } // for
 } //while

Solution:
“Student Exercise”

Computer Organization and Microprocessors Page 218

7.2. Evaluating Performance

Most users run a set of programs or applications on their computer systems to accomplish their tasks.
Their main interested is on the performance of the total system, not each piece individually. Additionally,
the user does not have access to the code for analysis, even if the user has the time and interest to do
so. Typically in this situation, the instruction by instruction or bottom up performance comparison is not
workable due to complexity and lack of access.

Most commonly, the application code is not available and there are multiple layers of application code,
which would require the user to run some standard set of tasks and compare the response time of the
system. For most types of solutions, there are a set of programs or instruction chosen to predict
performance for a particular work load and application. This type of performance measuring codes is
called benchmarks. Benchmarks are a good way for users to choose the appropriate type of computers
without having to analyze each individual component of the hardware and software.

So if you are planning to select a computer system for Computer Aided Design (CAD) application, then
your benchmark program should include common instructions used in CAD program. On the other hand,
if you plan to use the computer system for gaming, you may consider a different set of benchmarks for
example emphasis on graphics capability of the system.

One word of caution, companies understand this fact and continually work to show their products in the
best possible light. They may knowingly or unintentionally design benchmarks that are not representative
of the final performance for your specific need, so “Buyer beware”. Fortunately, most industries and
application have standard benchmarks which are unbiased.

Benchmarks may focus on a specific portion of the system or attempt to predict end-to-end performance
of a system. Some examples of Benchmarks include:

 SPEC23b99 benchmark
Designed to evaluate web Server performance

 EEMBC benchmark
Designed to evaluate embedded system performance

 SPEC CPU 2000 latest release of SPEC CPU
Designed to measure the CPU performance with respect to integer and floating point operations.

 Transaction Processing Performance Council
Designed to measure database and transaction processing performance. They even list cost
$/tpmc.

There are thousands of benchmarks. Each is designed for a specific set of applications and use. It is
recommended that the user research additional benchmarks.

Computer Organization and Microprocessors Page 219

7.3. Performance Bench Marking Design

Bench marking is an important step in understanding performance need and selecting solution that meet
the required needs. The following three parameters are integral to the decision:

 Key attributes of Application/solution
 Scenarios that Exercises key attributes
 Run bench mark on all solutions

Computer Organization and Microprocessors Page 220

7.4. Additional Resources

 Stallins. Computer Organization & Architecture: Designing for Performance, (2003) Prentice Hall

 Peterson. Computer Organization and Design, (2007) Elsevier Service.

 Robertazzi. Computer Network and Systems: Queuing Theory & Performance Evaluation, (2008)

Springer

 Lilja. Measuring Computer Performance, (2000) Cambridge University Press

Computer Organization and Microprocessors Page 221

7.5. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Computer Organization and Microprocessors Page 222

CHAPTER 8. MEMORY & STORAGE HIERARCHY

Key concepts and Overview

 Memory & Storage Basics

 Cache Memory

 Primary Memory

 Secondary Storage

 Virtual Memory

 Additional Resources

Computer Organization and Microprocessors Page 223

8.1. Memory & Storage Overview

Computer memory structure is driven by four main factors: size, speed, power and cost. It is rare if not
impossible to find a computer user who does not want the largest and fastest memory available. The
factors that limit the users are the cost and power requirements.

These factors has resulted in memory structures which attempt to minimize the size of high speed
memory used, while striving to maximize the utilization of the fast memory that’s available. Virtual
Memory Management attempts to map the slow memory into higher speed memory such as cache for
frequently executed instruction of data.

In a typical computer the following memory types are found:

In a typical computer system, these three types of storage are related to each other as shown below:

Cache Memory (Kbytes to Mbytes)
”Fastest Memory” - Static RAM

Primary Memory (Mbytes to Gbytes
”mid-range” - Dynamic RAM

Secondary Memory(Gbytes to Tbytes)
”least Cost/bit” - ”Optical, Magnetic, Elect.”
 * Hard Disk
 * CD & DVD
 * Back up Tape
 * …

Size

Speed,
Power Req.

&
Cost/Bit

Computer Organization and Microprocessors Page 224

Secondary Memory

Cache Memory

Primary Memory

Processor

Data
Read/Write

Mapped
to

Primary Memory

Mapped to Cache

Computer Organization and Microprocessors Page 225

8.2. Cache Memory

Cache contains a partial copy of primary memory content that can be accessed by the processor faster
than any other type of memory. If the processor can find the code/data needed in Cache (referred to as a
cache hit) resulting in improved performance. If the information is not in cache it has to be copied form
primary memory which is slower. Therefore, designers continually improve the Caching policy to
maximize the Cache hit rate (also known as hit ratio). In addition to policy, Cache type, cost and size is
continually changing.

To complete this section, the reader is expected to perform the following exploration exercise:

 Exploration Exercise

For your current PC, Identify the following Cache parameters:
 Memory Type and read/write time
 Cost/bit of the memory
 The size of the Cache
 Cache Policy

Solution:

Student Exercise

Computer Organization and Microprocessors Page 226

8.3. Primary Memory

Even though Primary Memory is typically orders of magnitude larger than Cache, it only contains a partial
copy of secondary storage content. In a typical computer, processor is unable to directly execute code
from secondary storage. Virtual Memory Manager (Software component) is responsible for ensuring that
the required data/program is copied into the primary memory for execution and access by the processor.
if the program/data is already in primary memory, the performance would be much better than when
information is in secondary memory and has to be copied to primary memory – this condition is referred to
as a miss.

To complete this section, the reader is expected to perform the following exploration exercise:

 Exploration Exercise

For your current PC, Identify the following Primary Memory parameters:
 Memory Type and read/write time
 Cost/bit of the memory
 The size of the Primary Memory (How does it compare to cache size)

Solution:

Student Exercise

Computer Organization and Microprocessors Page 227

8.4. Secondary Storage

Secondary storage contain all the programs and data that can be used by the computer but first they
have to be moved to primary memory and/or cache. Although Secondary storage technology is more
stable than other memory type, secondary storage has continued to become faster, larger in size and
lower cost/bit.

To complete this section, the reader is expected to perform the following exploration exercise:

 Exploration Exercise

For your current PC, answer the following questions:
 How many secondary storage is installed in your PC?
 What are the cost/bit for each type of secondary storage types in your PC?
 What each of secondary storage types are used for?

Solution:

Student Exercise

Computer Organization and Microprocessors Page 228

8.5. Virtual Memory Management

Virtual Memory Manager allows each process/program to use all the space that is allocated to it from
primary and secondary storage seamlessly. In other words, the application running in a given process
can use all the space required without having to explicitly move data between the primary memory and
secondary storage. The Virtual Memory Mangier does all the work of moving data to create a continuous
memory transparently.

The simplest view of Virtual Memory Manager is a system program that bring in blocks of Secondary
Storage into primary memory as their content are required by the processor. If the system is running out
of primary memory, then a block that is no longer needed is over written by the new block.

The block to be over-written is chosen based on the Virtual Memory Manager’s Policy. Some common
ones are First-in-First-out (FIFO) or Last-In-First-Out (LIFO). Of course there are much more complex
policies based on the need and usage model of the system.

The following diagram shows the role of Virtual Memory Management in the context of memory types:

To complete this section, the reader is expected to perform the following exploration exercise:

 Exploration Exercise

For your current PC, answer the following questions:
 What is the name of the Virtual Memory Manager and the vendor?
 What is the smallest block size that is copies?
 What is the replacement policy when Primary Memory is full?

Solution:

Student Exercise

Secondary Memory

Cache Memory

Primary Memory

Processor

Data
Read/Write

Mapped
to

Primary Memory

Mapped to Cache

Virtual Memory
Manager

Computer Organization and Microprocessors Page 229

8.6. Additional Resources

 Peterson. Computer Organization and Design, (2007) Elsevier Service.

 Gorman. Understanding the Linux Virtual Memory Manager, (2004) Prentice Hall

 Staff. Microchip PIC 18F1220/1320 Data Sheet, (2004) Microchip Technology In.

Computer Organization and Microprocessors Page 230

8.7. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Computer Organization and Microprocessors Page 231

CHAPTER 9. CONCURRENCY IN COMPUTING

Key concepts and Overview

 Overview of Parallelism

 Pipelining

 Multi-processing

 Multi-core Processors

 Multi-Processor Systems

 Additional Resources

Computer Organization and Microprocessors Page 232

9.1. Overview of Parallelism

As the performance has become the key parameter used in selecting a computer system. The vendors
are increasing investment in development of parallel computing solutions in order achieve higher
performance has intensified.

One way to characterize the computer system parallelism options is outlined below:

 Pipelining
A pipelined processor is able to operate on multiple instruction concurrently. For example a single
processor fetching one instruction while executing another instruction.

 Multi-processing
A single processor allowing multiple processes to remain active by giving each process a portion
of time. A functioning multi-process will provide user with the impression that all processors are
running simultaneously.

 Multi-core Processors
In this case there are multiple processor cores but still within a single processor which allows for
multiple processes to run at the same time. Cores typically share peripherals and memory.

 Multi-Processor Systems
Many processors executing one or more programs simultaneously.

Although parallelism improves speed, it also adds complexity and overhead to the system. It is important
that sufficient performance improvement is gained to justify the additional complexity and cost associated
with the selected parallelism technique. Also, a given system design may incorporate one or more of the
above options.

Computer Organization and Microprocessors Page 233

9.2. Pipelining

An instruction pipeline is a technique used in the design of computer systems and processors to increase
performance. Pipelining reduces cycle time of a processor which leads to increased instruction
throughput, the number of instructions that can be executed in a unit of time. The instruction processing
is divided into four distinct phases:

1) Instruction fetch (IF)
2) Instruction decode (ID)
3) Execute (EXE)
4) Write Back (WB)

In a non-pipelined system, these phased are completed sequentially while in a pipelined system there is
some level of parallelism. If a system is able to execute a new instruction every cycle, it is said to be fully
pipelined. The following diagram show a fully pipelined system:

The major Advantages of pipelining is reduction of cycle time of the processor leading to increased
instruction processing speed and performance. In achieving this improvement, designer have to be
aware and handle three of issues:

1) The processor executes only a single instruction at a time. This prevents branch delays (in effect,
every branch is delayed) and problems with serial instructions being executed concurrently.
Consequently the design is simpler and cheaper to manufacture.

2) The instruction latency in a non-pipelined processor is slightly lower than in a pipelined
equivalent. This is due to the fact that extra flip flops must be added to the data path of a
pipelined processor.

3) A non-pipelined processor will have a stable instruction bandwidth. The performance of a
pipelined processor is much harder to predict and may vary more widely between different
programs.

PICmicro is also a pipelined processor. But before discussing the pipelining, we need to talk about the
instruction cycles. The clock input (from OSC1) is internally divided by four to generate four non-
overlapping Quarter clocks, namely Q1, Q2, Q3 and Q4. Internally, the Program Counter (PC) is

IF ID EXE WB

IF ID EXE WB

IF ID EXE WB

IF ID EXE WB

IF ID EXE WB

IF ID EXE WB

time

Full Pipelining

Inst 1

Inst 2

Inst 3

Inst 4

.

.

.

Computer Organization and Microprocessors Page 234

incremented every Q1, the instruction is fetched from the program memory and latched into the
instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4.
The clocks and instruction execution flow are shown in the following figure:

As mentioned earlier an “Instruction Cycle” consists of four Q cycles (Q1,Q2, Q3 and Q4). The instruction
fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute
takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in
one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are
required to complete the instruction.

In PICmirco, a fetch cycle begins with the Program Counter (PC) incrementing in Q1. In the execution
cycle, the fetched instruction is latched into the “Instruction Register” (IR) in cycle Q1. This instruction is
then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand
read) and written during Q4 (destination write).

An example of PICmicro pipelined instruction execution is shown in the following figure:

When a programmer (or compiler) writes assembly code, they make the assumption that each instruction
is executed before execution of the subsequent instruction is begun. This assumption may be invalidated
by pipelining. When this causes a program to behave incorrectly, the situation is known as a hazard.
Various techniques for resolving hazards such as forwarding and stalling exist.

The instruction cycle is easy to implement, however, it is extremely inefficient. The answer to this
inefficiency is pipelining. Pipelining improves performance significantly in program code execution. This is
done by decreasing the time that any component inside the CPU is idle. Pipelining does not completely
cancel out idle time in a CPU but a significant impact is made. Processors with pipelining are organized
inside into (stages) which can semi-independently work on separate jobs. Each stage is organized and
linked into a 'chain' so each stage's output is inputted to another stage until the job is done. This
organization of the processor allows overall processing time to be significantly reduced.

Computer Organization and Microprocessors Page 235

Unfortunately, not all instructions are independent. In a simple pipeline, completing an instruction may
require 5 stages. To operate at full performance, this pipeline will need to run 4 subsequent independent
instructions while the first is completing. If 4 instructions that do not depend on the output of the first
instruction are not available, the pipeline control logic must insert a stall or wasted clock cycle into the
pipeline until the dependency is resolved. Fortunately, techniques such as forwarding can significantly
reduce the cases where stalling is required. While pipelining can in theory increase performance over an
unpopulated core by a factor of the number of stages (assuming the clock frequency also scales with the
number of stages), in reality, most code does not allow for ideal execution.

To complete this section, the reader is expected to perform the following exploration exercise:

 Exploration Exercise

For your current PC:
 Identify the pipeline approach used
 Show the content of the full pipeline

Solution:

Student Exercise

Computer Organization and Microprocessors Page 236

9.3. Multi-processing

Commercially viable computer in today’s market including multi-processing capable operating systems
where multiple processes and applications may be active. The single available processor is shared
amongst the active processes which means at any point in time only one process is being executed.
From the user’s point of view, it seems that application are running simultaneously (Other the occasional
choppiness when the system is over used) since each process is given sufficient time to respond to user
commands frequently.

To complete this section, the reader is expected to perform the following exploration exercise:

 Exploration Exercise

For your current PC, answer the following::
 How many processes are active currently and which processor is using the highest

percentage of the processor (i.e. task manager on the Microsoft Windows has the needed
data)?

 What is the maximum number of processes that can be active at the same time?

Solution:
Student Exercise

Computer Organization and Microprocessors Page 237

9.4. Multi-core Processors

Today’s PCs have multi-core which basically means that there are multiple processor core embedded into
a single processor chip. With the help of coordinating software (typically part of operating system),
applications and/or processes are divided amongst the cores to execute. Ideally, multiple cores deliver
higher performance. This is not guaranteed since the management overhead may consume any gains
made from the multi-core set up.

To complete this section, the reader is expected to perform the following exploration exercise:

 Exploration Exercise

In the current PC market:
 Identify a PC with multi-core processor.
 For the identified processor, what is function of each core and how are the cores managed?
 What is the expected performance improvement from the selected multi-core compared to an

equivalent single core system.

Solution:
Student Exercise

Computer Organization and Microprocessors Page 238

9.5. Multi-Processor Systems

Multi-Processor systems are typically used for specialized application that are highly processor intensive.
Over time, there has been various attempts to develop multi-processor systems that are able to efficiently
run any program. But we continue to see the best multi-processor performance for applications design
specifically for the multi-processor design.

To complete this section, the reader is expected to perform the following exploration exercise:

 Exploration Exercise

In the current market:
 Identify a multi-processor system and the vendor
 For the identified system, what are the topology of processor (how are the processors

connected)?
 Does this system only runs specialized applications or is able to improve performance of

general purpose applications.

Solution:
Student Exercise

Computer Organization and Microprocessors Page 239

9.6. Additional Resources

 Jordan. Fundamentals of Parallel Processing, (2003) Prentice Hall

 Peterson. Computer Organization and Design, (2007) Elsevier Service.

 Roosta. Parallel Processing and Parallel Algorithms, (1999) Springer-Verlag

Computer Organization and Microprocessors Page 240

9.7. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Computer Organization and Microprocessors Page 241

CHAPTER 10. NETWORKING

Key concepts and Overview

 Networking Overview & OSI Model

 Medial Layers (Physical, Link & Network)

 Host Layers (Transport, Session , Presentation and Application)

 Additional Resources

Computer Organization and Microprocessors Page 242

10.1. Networking Overview & OSI Model

Networking is an integral part of computing world and numerous designs have been developed to meet
the needs of the computing industry. The best way to discuss networking is to use the abstract Open
System Interconnection Reference Model (OSI Model) developed as part of the Open System
Interconnection (OSI) initiative in 1970s by the International Organization for Standardization (ISO).

OSI Model groups the network functionality into seven layers. Each layer relies on the layers below to
complete its task. In communicating across the network, the two parties to the communication will have
defined protocol at each layer of the model as shown below between two networked devices (P & Q):

Layers are typically divided into two groups based on where they are implemented, in the host or the
networking interface:

 Media Layers – Physical, Data/Link and Network Layers

 Host Layers – Transport, Session, Presentation and Application layers

The following sections provide additional description of each of the seven layers in the above two
categories with the most common implementation examples of each layer.

Application Layer

Session Layer

Transport Layer

Network Layer

Presentation Layer

Data/Link Layer

Physical Layer

Application Layer

Session Layer

Transport Layer

Network Layer

Presentation Layer

Data Layer

Physical Layer

1. physical connection between devices - Media, Signal and Binary Trans.

Network Device P Network Device Q

3. Logical addressing

2. Physical addressing

4. Reliable End-to-end connection

5. host-to-host communication

6. Data Representation

7. Application– to-application communication

Computer Organization and Microprocessors Page 243

10.2. Medial Layers (Physical, Data/Link & Network)

Physical layer defines the electromagnetic and physical specifications for device connection to the
network. Items included in this description of this layer includes connector, voltage/current, timing and
other specifications.

Data/Link layer is responsible for defining and packaging fixed size data that include physical address.
Also it has processes to ensure that a packet is reliability delivered by the physical layer to the intended
physical address. If not, then it would have steps to either flag an error or attempt to correct the problem
by re-transmission.

For examples of Data and Physical layer implementations refer to IEEE 802.3 (Wired LAN), IEEE 802.11
(wireless LAN) and IEEE 902.16 (WiMax) and IEEE 802.15 (Bluetooth-Personal Network).

Networking layer provides reliable transfer of variable length data sequences from one device to one or
more devices on the network. This layer performs the routing function for the devices. Router provides
functionality from physical to networking layer. The most commonly known Network layer implementation
is the Internet Protocol which is commonly refer to as IP. IP enable variable length data to travel through
multiple hops from source to the intended destination. Network layer also serve as the interface with Host
layers.

Computer Organization and Microprocessors Page 244

10.3. Host Layers (Transport, Session , Presentation and Application)

Transport layer is the lowest layer of the Host layers. It provides reliable data transfer services between
end users. It uses flow control, error control, segmentation, retransmission to ensure the end user data
has successfully been transmitted and received. Again the best known Transport layer implementation
example is Transmission Control Protocol (TCP) which is used in most systems. TCP/IP referring to
Transmission Control Protocol and Internet Protocol are one of the most popular implementation of
Network and Transport layer in use today.

Session Layer manages the connection between networked devices. Session layer uses the lower layers
of OSI to establish, manager and terminate connections between applications. Socket (also called
shared socket) is an example of Session layer implementation for TCP/IP environment. Sockets allows
devices to connection application across the network or within the same system. A process read from the
socket to receive the data from another process and the process sends data by writing into the socket.
Communicating processor may be on the same physical computer (Local) or across the network in
another physical computer and location (Remote).

Presentation layer allows mapping of different data format to be translated into session protocol data units
that can be transmitted through session layer services. MIME Protocol is a Session layer implementation
example which is designed to enable sending and receiving emails across variety of email applications.

Application layer is the highest level of OSI layer. As the name implies this is the layer that contain
software application which interfaces with the user. Hypertext Transfer Protocol (HTTP) and File Transfer
Protocol (FTP) are two examples of Application layer implementation.

The following section provide additional description of each layers into two groups:

 Exploration Exercise

In the current market:
 Identify an network enabled application.
 Map the functionality/components of the selected application to the OSI model.

Solution:

Student Exercise

Computer Organization and Microprocessors Page 245

10.4 Additional Resources

 Kurose. Computing Networking, (2010) Addison-Wesley.

 Peterson. Computer Organization and Design, (2007) Elsevier Service.

 Lekkus. Network Processors, (2003) McGraw Hill.

Computer Organization and Microprocessors Page 246

10.5. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Computer Organization and Microprocessors Page 247

APPENDIX A. PICMICRO INSTRUCTION SET SUMMARY

Source: Microchip Data Sheet

Computer Organization and Microprocessors Page 248

Computer Organization and Microprocessors Page 249

Computer Organization and Microprocessors Page 250

Computer Organization and Microprocessors Page 251

APPENDIX B. PICMICRO OPCODE FIELD DESCRIPTION

Source: Microchip Data Sheet

Computer Organization and Microprocessors Page 252

Computer Organization and Microprocessors Page 253

APPENDIX C. REGISTER FILE SUMMARY

Source: Microchip Data Sheet

The following two tables contains the summary of the PICmicro Register file. The following Information
will be useful in reading the register summary:

Legends:
 x = unknown, u = unchanged, – = unimplemented, q = value depends on condition

Notes:

1: RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function
on RA6) Oscillator mode only and read ‘0’ in all other oscillator modes.

2: RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read ‘0’ in
all other modes.

3: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

4: The RA5 port bit is only available when MCLRE fuse (CONFIG3H<7>) is programmed to ‘0’.
Otherwise, RA5 reads ‘0’. This bit is read-only.

Computer Organization and Microprocessors Page 254

Special Function Registers (SFR) Map

Computer Organization and Microprocessors Page 255

General Register Map, 1/2

Computer Organization and Microprocessors Page 256

General Register Map, 2/2

Computer Organization and Microprocessors Page 257

APPENDIX D. SPECIAL FEATURES OF PICMICRO

PICmicro includes features intended to maximize system reliability, minimize cost through elimination of
external components and offer code protection. These are:

 Oscillator Selection
 Resets:

 Power-on Reset (POR)
 Power-up Timer (PWRT)
 Oscillator Start-up Timer (OST)
 Brown-out Reset (BOR)

 Interrupts
 Watchdog Timer (WDT)
 Fail-Safe Clock Monitor
 Two-Speed Start-up
 Code Protection
 ID Locations
 In-Circuit Serial Programming

Although most configurations can be done by modifying the SFR registers, the more central configuration
is done by modifying the configuration bits.

The configuration bits can be programmed (read as ‘0’), or left un-programmed (read as ‘1’), to select
various device configurations. These bits are mapped starting at program memory location 300000h
which is beyond the program and user program memory space. In fact, it belongs to the configuration
memory space (300000h-3FFFFFh). This space can only be accessed using the table read and table
write instructions.

Programming the configuration registers is done in a manner similar to programming the Flash memory.
The EECON1 register WR bit starts a self-timed write to the configuration register. In normal operation
mode, a TBLWT instruction, with the TBLPTR pointing to the configuration register, sets up the address
and the data for the configuration register write. Setting the WR bit starts a long write to the configuration
register. The configuration registers are written a byte at a time. To write or erase a configuration cell, a
TBLWT instruction can write a ‘1’ or a ‘0’ into the cell. For additional details on Flash programming, refer
to PICmicro data sheet.

Computer Organization and Microprocessors Page 258

Computer Organization and Microprocessors Page 259

APPENDIX E. ADDITIONAL RESOURCES

 Website www.EngrCS.com provide access to additional supporting hardware/software
documentation, Microchip PIC 18F1220 Data Sheet and development environment.

 The latest development tools, documentation and tutorial on MPLAB software and other hardware
development tools are available at www.Microchip.com.

