Chapter 5. Problems

“All programming problems should include design pseudo code either as a separate design document on
embedded comments in the code.”

1S. Prior to execution of the following code segment, PC was “0x0120”, WREG was “0x02” and register file

0x81 was “0x35".

ADDWF 0x81,0,0
MOVWF 0x82
ADDWF 0x81,1,0
RRNCF 0x81
GOTO 0x029A

After the execution of the above the code segment, determine:
a) The content of register files “0x81”, “0x82” and WREG.

b) The content of PC.

Solution
a)

Register 0x81 < 0x36
Register 0x82 < 0x37

WREG < 0x37

PC < 0x029A

1U. Prior to execution of the following code segment, PC was “0x0220”, WREG was “0xA2” and register file

0x83 was “0x45”.

ADDWF 0x83,0,0
MOVWF 0x82
ADDWF 0x83,1,0
RRNCF 0x83
GOTO 0x029A

After the execution of the above the code segment, determine:
a) The content of register files “0x83”, “0x82” and WREG.

b) The content of PC.

Solution

2S. Write an assembly code segment that implements the following C code, where the value of op1 and
op2 are in the register files 0x92 and 0xAO.

If (op1 > op2) {
opl =23;
op2 = 29;
}

Solution

Op1 equ 0x92
Op2 equ O0xAO0

MOVF Op1, 0

CPFSLT Op2

www.EngrCS.com

Computer Organization and Microprocessors, V3.0d

page 27

BRA Next

MOVLW 23
MOVWF Op1
MOVLW 29

MOVWF Op2
Next:

2U. Write an assembly code segment that implements the following C code, where the value of op1 and
op2 are in the register files 0x81 and 0x82.

If (op1 < 0p2) {
op1 =op1 +93;
op2 = 0;

}

Solution

3S. Write an assembly code segment that implements the following C code, where the value of index and
count in memory locations 0xC2 and 0xC5.

for (index=0 ; index<26; index++){
Count = Count + 2
}

Solution

index equ 0xC2

count equ O0xC5
MOVLW 26
CLRF index
CLRF count

floop: INCF 0xC2
INCF 0XC5
INCF 0XC5
CPFSEQ 0xC2
BRA floop

3U. Write an assembly code segment that implements the following C code, where the value of index and count
in register files 0xA2 and OxAS.

for (index=5 ; index<25; index=index+2){
Count = Count + 4;
}

Solution

4S. Write an assembly code that set the contents of registers 0xA1 through 0xA8 (unique value in each register)
such that the logical AND of the registers results in 0x00 and logical OR results in OxFF.

Solution
// there are eight registers with 8-bits each so simply setting only one unique bit
// in each register will satisfy the requirements
MOVLW 0x01
MOVWF 0xA1
MOVFF 0xA1, OxA2
RLNCF 0xA2

www.EngrCS.com Computer Organization and Microprocessors, V3.0d page 28

MOVFF 0xA2, OxA3
RLNCF 0xA3
MOVFF 0xA3, 0xA4
RLNCF O0xA4
MOVFF 0xA4, 0xA5
RLNCF OxA5
MOVFF 0xA5, 0xA6
RLNCF 0xA6
MOVFF 0xAB, 0xA7
RLNCF 0xA7
MOVFF 0xA7, OxA8
RLNCF 0xA8

4U. Write an assembly code that set the contents of register files 0xA1 through 0xA8 (unique value in each
register) such that the logical XOR of all the registers results in 0x00.

Solution

5S. Write an assembly code that reads the value of register 0xD1, doubles it and saves it in register 0xD2,
quadruple of the value and save it in register file 0xD3 and half the read value to register file 0xD4.

Solution
MOVF 0xD1,0 // read the value
MOVWF 0xD2
RLNCF 0xD2 /I multiply by 2 <shift left>
BCF 0xD2,0 /'just to clear carry
MOVFF 0xD2, 0xD3
RLNCF 0xD3 /I multiply by 2 <shift left>
BCF 0xD3,0 /'just to clear carry
MOVWF 0xD4
RRNCF 0xD4
BCF 0xD4,7 // Divide by 2 <shift right>

5U. Write an assembly code that reads the value of register file 0xA8, writes the bits in reverse order in register
0x8A. Upon execution of the code, bit 0 of register 0xA8 will be in bit 7 of register 0x8A and bit 7 of register
0xA8 will be in bit 0 of register 0x8A.

Solution

6S. Write an assembly code that clears (0x00) registers 0x80 through 0x91 and then sets the value of register
listed on the right column to OxFF if the corresponding value in the left column is equal to the value in the
register 0xA1. For example if the value in 0xA1 register is 4, only register 0x83 should be set to oxFF.

Content of register 0xA1 Register file to be set to Oxff
1 0x81
2 0x86
3 0x87
4 0x83
8 0x84
9 0x91
All other values 0x80

www.EngrCS.com Computer Organization and Microprocessors, V3.0d page 29

Solution
; Clear Registers - You can use indirect addressing (Chap6) to set the values in a loop
CLRF 0x80
CLRF 0x81
CLRF 0x82
CLRF 0x83
CLRF 0x84
CLRF 0x85
CLRF 0x86
CLRF 0x87
CLRF 0x88
CLRF 0x89
CLRF 0x8A
CLRF 0x8B
CLRF 0x8C
CLRF 0x8D
CLRF 0x8E
CLRF 0x8F
CLRF 0x90
CLRF 0x91

; Setting the values
MOVLW 1
CPFSEQ 0xA1
BRA Cont2
BRA L81
Cont2: MOVLW 2
CPFSEQ 0xA1
BRA Cont3
BRA L86
Cont3: MOVLW 3
CPFSEQ 0xA1
BRA Cont4
BRA L87
Cont4: MOVLW 4
CPFSEQ 0xA1
BRA Cont8
BRA L83
Cont8: MOVLW 8
CPFSEQ 0xA1
BRA Cont9
BRA L84
Cont9: MOVLW 9
CPFSEQ 0xA1
BRA Other
BRA L91

L81: MOVLW OxFF
MOVWEF 0x81
BRA Done
L86: MOVLW O0xFF
MOVWF 0x86
BRA Done
L87: MOVLW O0xFF
MOVWF 0x87
BRA Done
L83: MOVLW OxFF
MOVWF 0x83
BRA Done

www.EngrCS.com Computer Organization and Microprocessors, V3.0d page 30

L84: MOVLW O0xFF
MOVWF 0x84
BRA Done
L91: MOVLW OxFF
MOVWEF 0x91
BRA Done
Other: MOVLW O0xFF
MOVWF 0x80
Done: BRA Done

6U. Write an assembly code that clears (0x00) registers 0x81 through 0x8A and then sets the value for each of
these registers to sum of the address of its digits if the sum is even. For example location 0x82 will be set to
0xA but content of location 0x83 will not be changed.

Solution

7S. Write an assembly code that sorts the values stored in register files 0x90 through 0x94 from the largest to

smallest.

Solution

COMP12:

COMP13:

COMP14:

list p=18F1220
radix hex

temp equ 0x80
temp1 equ 0x90
temp2 equ 0x91
temp3 equ 0x92
temp4 equ 0x93
temp5 equ 0x94

org 0x0000

MOVF temp1,0
CPESGT temp2; If temp1 > tempt2, then skip next line
GOTO COMP13

; Swap values
MOVFF temp1, temp
MOVFF temp2, temp1
MOVFF temp, temp2

CPFSGT temp3; If temp1 > temp3, then skip next line
GOTO COMP14; To skip

MOVFF temp1, temp
MOVFF temp3, temp1
MOVFF temp, temp3

CPFSGT temp4; If temp1 > temp4, then skip next line
GOTO COMP15

; swap values
MOVFF temp1, temp
MOVFF temp4, temp1
MOVFF temp, temp4

www.EngrCS.com

Computer Organization and Microprocessors, V3.0d

page 31

COMP15:

COMP23:

COMP24:

COMP25:

COMP34:

COMP35:

COMP45:

endPro:

CPFSGT tempb5; If temp1 > temp5 skip next line.
GOTO COMP23

; Swap values
MOVFF temp1, temp
MOVFF temp5, temp1
MOVFF temp, temp5

MOVF temp2,0
CPFSGT temp3; If temp2 > temp3, skip next line
GOTO COMP24 ; Skipped line

MOVFF temp2, temp
MOVFF temp3, temp2
MOVFF temp, temp3

CPFSGT temp4; If temp2 > temp4, skip a next line
GOTO COMP25 ; Skipped line

MOVFF temp2, temp
MOVFF temp4, temp2
MOVFF temp, temp4

CPFSGT temp5; If temp2 > temp5, skip a next line
GOTO COMP34 ; skipped line

; Swap values
MOVFF temp2, temp
MOVFF temp5, temp2
MOVFF temp, temp5

MOVF temp3,0
CPFSGT temp4; If temp3 > temp4, skip a next line
GOTO COMP35 ; skipped line

; Swap values
MOVFF temp3, temp
MOVFF temp4, temp3
MOVFF temp, temp4

CPFSGT temp5; If temp3 > temp5, skip a next line
GOTO COMP45; skipped line

; Swap values
MOVFF temp3, temp
MOVFF temp5, temp3
MOVFF temp, temp5

MOVF temp4,0
CPFSGT temp5; If temp4 > tempb, skip a next line
GOTO endPro

; Swap values
MOVFF temp4, temp
MOVFF temp5, temp4
MOVFF temp, temp5

end

www.EngrCS.com

Computer Organization and Microprocessors, V3.0d

page 32

7U. Write an assembly code that sorts the values stored in register files 0x90 through 0x94 from the smallest to
largest.

Solution

8S. What is the real number represented by the following single precision floating point representation:

Bit 31 Bit 0
1111 0101 0101 1100 0000 0000 0000 0000

Solution
Sign bit is 1 > Negative number
Power = Exponent — Bias = (11101010), — 127 = 234 — 127 = 107
Fraction =27 + 2° +2% + 2° = 0.71875

Real Number = - 1.71875 x 2'% = -2.788831 x 10*

8U. What is the real number represented by the following single precision floating point representation:

Bit 31 Bit 0
0111 0101 1111 1010 0000 0000 0000 0000

Solution

9S. Write the real number 1.375 x 16 in double precision floating point format.

Solution
Real Number = 1.375 x 2* > Convert to nearest 1.ffff x 2°°**" with the available precision
Positive = Sign bitis 0
Exponent = Power + Bias

Double Precision Floating Point (64 bits):
[0] [1000 0000 011] [0110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000]

9U. Write the real number {1.875 / 16} in double precision floating point format.

Solution

10S. Write an Assembly code that compare two single float numbers where one of number, op1, is stored
in register files 0x80 through 0x83 and the second number, op2, is stored in register files 0x84 through 0x87 as
shown below:.

www.EngrCS.com Computer Organization and Microprocessors, V3.0d page 33

Bit31 ... Bit24 Bit23 ... Bit16 Bit15 Bit8 BRit7 Bit 0
Opl:
0x83 0x82 h 0x81 oo 0x30
Bit31 ... Bit24 Bit23 ... Bit16 Bit15 Bits Bit7 Bit 0
Op2:
0x87 0x86 B 0x85 oo 0x84

If Op1 is larger than Op2 set Wreg to OxFF.
Solution

Flow Chart

Wreg € 0x00

Yes

Yes

Op2 >0

No

Byte-by-Byte
Comparison
Opl > Op2

Yes

<
<

\4

Wreg €< OxFF

v

Opl >0

Byte-by-Byte
Comparison
Opl > Op2

; Code to implement the comparison

SIGN equ 0x90
OP1GTOP2 equ 0x91

www.EngrCS.com Computer Organization and Microprocessors, V3.0d

page 34

OP1P:

OP1N:

OP1P_OP2N:

OP1N_OP2P:

OP1N_OP2N:

OP1P_OP2P:

Done:

COMP_BYTES:

BYTES:

OP1BP:
OP1BN:

OP1NB:

OP1NBP:

OP1NB:

CLRF WREG

CLRF SIGN

CLRF OP1GTOP2

; Determine the signs
BTFSC 0x83,7

BRA OP1N

BRA OP1P

BTFSC 0x87,7

BRA OP1P_OP2N
BRA OP1P_OP2P
BTFSC 0x87,7

BRA OP1N_OP2N
BRA OP1N_OP2P

; OP1 is positive and OP2 is negative
SETF WREG

BRA DONE

; OP1 is negative and OP2 is positive
CLRF WREG

BRA DONE

CALL COMP_BYTES
MOVLW 1

CPFSEQ OP1GTOP2
SETF WREG

BRA DONE

CALL COMP_BYTES
CLRF WREG
CPFSEQ OP1GTOP2
SETF WREG

BRA DONE

; wait loop

BRA Done

; Compare bytes and return 1 if OP1 is larger and 0 otherwise

MOVF
CPFSEQ
BRA
MOVLW
BRA
MOVLW
BRA
MOVLW
CPFSEQ
BRA
MOVLW
BRA
MOVLW
RETURN

OxA1
OP1BN
OxFF
Done
0
Done
0

OxA1
OP1NBN
0
Done
OxFF

www.EngrCS.com

Computer Organization and Microprocessors, V3.0d

page 35

10U. Write an assembly code that compare two double precision float numbers where one is in op1 (registers
A0 to A7) and the other is in op2 (registers B0 to B7). If op1 is less than op2 set register 0x80 to 0x00,
otherwise set register 0x80 to OxFF.

Solution

11S. Use CPFSLT instruction to implement the following C code functionality:

/I high is in Wreg and temp is in register file 0x81

high =0
If tlemp>5) {
high = 1;
}
Solution
Flow Chart
Yes
Reg 0x81 <5
No
Wreg =0
Wreg =1
v
Code
MOVLW 5
CPFSLT 0x81
BR WR_One
MOVLW 0
BRA Done
WR_One: MOVLW 1
Done: BR Done

11U. Use CPFSLT instruction to implement the following C code functionality:

/I high is in Wreg and temp is in register file 0x84
high =1
If (temp < 15){
high = 0;
}

www.EngrCS.com Computer Organization and Microprocessors, V3.0d page 36

Solution

12U. Write a PICmicro Assembly code that does the following:

Accepts temperature in Centigrade ranging from 0 to 127 oC on Port A.
Output the temperature in Fahrenheit ranging from 1 to 126 on Port B. “0” output represent too low
to show temperature and “127” represents too high to show.
Note: use Tf = (2Tc + 32) for conversion.
e Every hour, the temperature in oC is stored in registers starting at 0xA0 and will keep the data for

24 hours.
Note: first temp is stored in OxAO and the 24th is stored in 0xB7 and 25th is stored in OxAO.

e All temperature reading in location OxAO through 0xB7 will be cleared when INTO pin transitions
from High to low.

Solution

www.EngrCS.com Computer Organization and Microprocessors, V3.0d page 37

