
Computer Organization and Microprocessors (ENGR 270) Page 33
www.EngrCS.com Version 2.2

ENGR 270 LAB #5 – Timer & Pulse width Modulation

Objective
Application of Timers to schedule tasks and use of Pulse Width Modulation (PWM) to control average power
delivered.

Related Principles
 Computer Organization and Design
 Microprocessors
 Hardware and Software Interface
 Digital Design
 Assembly language

Equipment
 Windows-based PC with MPLAB Simulation Solutions Software
 USB hard disk or other removable drives
 Microchip PICKit programmer
 EDbot V7.0 Platform

Preparation/Background
Prior to start of this lab, you are expected to have completed all prior labs successfully and have reviewed
Chapters 2, 4 and 5 of Computer Organization and Microprocessor textbook.

Following example code demonstrates the use of Timer1 and Pulse Width Modulation (PWM). This code
uses Timer1 to generate an interrupt every two seconds and after each Timer1 interrupt, the power delivered
to the right motor toggles between 10% and 30% power.

;--
; Demonstrate use of Timer1 to change power delivered to right motor using
; PWM functionality of the PICmicro. ; LAST UPDATE: 6/15/2016
; AUTH: Class
; DEVICE: PICmicro (PIC18F1220) ;;--
 list p=18F1220 ; processor type
 radix hex ; default radix for data config WDT=OFF, LVP=OFF, OSC = INTIO2 ; Disable Watchdog timer, Low V. Prog, and RA6 as a clock

#include p18f1220.inc ; This header file includes address and bit definitions for all SFRs
 org 0x000 GOTO StartL ; Executes after reset

 org 0x008 ; Executes after high priority interrupt GOTO HPRIO

 org 0x20 ; Start of the code
HPRIO: ; high priority service code
 BTFSC PIR1, TMR1IF BRA TIMERL ; If Timer1 is interrupting then go to Timer1 Service code
 RETFIE ; Return from interrupt
 TIMERL:
 BCF T1CON, TMR1ON ; Disable Timer 1
 ; Start of code to be executed during Timer1 interrupts
 MOVLW .30
 CPFSEQ CCPR1L BRA Percent30
Percent10: ; set PWM to 10%
 MOVLW .10 MOVWF CCPR1L
 BRA TIdone

Computer Organization and Microprocessors (ENGR 270) Page 34
www.EngrCS.com Version 2.2

Percent30: ; set PWM to 30%
 MOVLW .30 MOVWF CCPR1L

TIdone: ; get ready to return from interrupt ; Reset Timer 1 so next timer interrupt is in approximately 2 seconds
 MOVLW 0xE1
 MOVWF TMR1H MOVLW 0x7D
 MOVWF TMR1L
 BCF PIR1, TMR1IF ; Clear Timer 1 Interrupt Flag
 BSF T1CON, TMR1ON ; Enable Timer 1;
 RETFIE ; Return from interrupt
StartL: ; entry point from reset
 ; Initialize all I/O ports CLRF PORTA ; Initialize PORTA
 CLRF PORTB ; Initialize PORTB
 MOVLW 0x7F ; Set all A\D Converter Pins as MOVWF ADCON1 ; digital I/O pins
 MOVLW 0x0D ; Value used to initialize data direction
 MOVWF TRISA ; Set Port A direction MOVLW 0xC7 ; Value used to initialize data direction
 MOVWF TRISB ; Set Port B direction
 MOVLW 0x00 ; clear Wreg ; Timer 1 Initialization + interrupt enable/disable
 BSF INTCON, PEIE ; enable all peripheral interrupts BSF PIE1, TMR1IE ; enable Timer1 Interrupt
 BSF IPR1, TMR1IP ; Set Timer 1 Interrupt to High priority
 MOVLW 0x58 ; Timer 1: "8&8-bit, osc. clock, 1:2 pre-scale, enabled, internal clk" MOVWF T1CON ; "0 1 01 1 0 0 0"
 ; Set Timer 1 so next timer interrupt is in approximately 2 seconds
 ; 2 sec x (106 usec/sec) x (sysClk/32 usec) x (instClk/4sysClk) x (Tick/2 instClk) = 7,812 Ticks ; set (TRM1H & TMRL) to { (216) – 7,812 = 57725} or (E17D)H
 MOVLW 0xE1
 MOVWF TMR1H MOVLW 0x7D
 MOVWF TMR1L ; For 16-bit timers, high byte must be written first.
 BSF T1CON, TMR1ON ; Enable Timer 1
 BSF INTCON, GIE ; enable interrupts globally
 ; Following 6 steps configure PWM power level based on the PICmicro Data Sheet starting at page 131
 ; 1) PWM will be delivered on P1A (pin 18) which controls Left Motor; for this code, use TOSC = 32 usec.
 MOVLW 0x00C ; "0000 1100 MOVWF CCP1CON ; PWM output on P1A (Pin 18)
 ; 2)PWM Requires Timer 2 and must be enabled for (PWM requires Timer 2)
 CLRF TMR2 ; Timer 2 Register MOVLW 0x05 ; Enable timer and set pre-scale to 4
 MOVWF T2CON
 BCF PIR1, TMR2IF ; Clear Timer 2 flag ; 3) Initialize PWM Period to PWM Period = (PR2 + 1) * 4 * TOSC * (TMR2 Pre-scale) = (99 + 1) * 4 * 32 usec * 4 = 51 msec
 MOVLW .99
 MOVWF PR2 ;4) Set PWM On-time to (CCPR1L:CCP1CON<5:4>)*TOSC*(TMR2 Pre-scale) = (CCPR1L:00)* 32 * 4 usec
 ; With this configuration, value stored in CCPR1L defines the duty cycle and therefore the % power leve
 MOVLW .10 MOVWF CCPR1L ; Set the power level to 10%
 ;5) Need to wait until timer2 has overflowed once and set PWM Pin 18 to output
WAITL: BTFSS PIR1, TMR2IF
 BRA WAITL
 BCF TRISB,3 ; Set P1A/RB3/CCP1 as an output pin BSF PORTB, 5 ; turn on LED just to indicate EDbot is on

MainL: ; waiting in a loop
 ; Add main (non-interrupt) code that should be executed here.
 BRA MainL

 end ; end of code

Computer Organization and Microprocessors (ENGR 270) Page 35
www.EngrCS.com Version 2.2

Experiment #1
Write an assembly code that controls the power delivered to EDbot’s left motor using PWM functionality of
PICmicro. The system is expected to perform the following steps:

1. Drive the motor at minimum power level (0% duty cyle)
2. Increase the percent of power delivered to the motor by 10% every three seconds until 40%

of maximum power is achieved.
3. Decrease the percent of power delivered to the motor by 10%every three seconds until

minimum power is achieved.
4. Reverse the motor direction
5. Go to step 1

It is recommended that you experiment with provided sample code to gain an understanding of PWM and
Timer application prior to starting work on this experiment..

This experiment requires that you review your high level design (flow chart or pseudo code) and demonstrate
your system to the instructor upon completion. Include the approval signature in your report.

Experiment #2
Write an assembly code that drives EDbot forward in circles. Initially, Edbot circles clockwise at 50% power
level for 5 seconds and then Edbot circles counter clockwise at 20% for 5 seconds before stopping. you may
not use the built-in hardware PWM, therefore, you have to write a program that modulates (PWM) left and
right motor drive pins.

This experiment requires that you review your high level design (flow chart or pseudo code) and demonstrate
your system to the instructor upon completion. Include the approval signature in your report.

Report Requirements
All reports must be computer printed (formulas and diagrams may be hand drawn) and at minimum include:

For each experiment:

a) Clear problem statement; specify items given and to be found.
b) Specific responses to each question asked in the experiment.
c) Documentation of resulting high level design, disassembled code, system diagram, schematics and

any other supporting material.

For the report as a whole

a) Cover sheet with your name, course, lab title, date of completion and your teammates’ name.
b) Lessons learned from this lab.
c) A new experiment and expected results which provide additional opportunity to practice the concepts

in this lab.

