
Computer Organization and Microprocessors (ENGR 270) Page 23
www.EngrCS.com Version 2.2

ENGR 270 LAB #4 – Interrupts

Objective
Utilizing interrupts to handle unscheduled events while the PICmicro is executing the main code.

Related Principles
 Computer Organization and Design
 Microprocessors
 Hardware and Software Interface
 Digital Design
 Assembly language

Equipment
 Windows-based PC with MPLAB Simulation Solutions Software
 USB hard disk or other removable drives
 Microchip PICKit programmer
 EDbot V7.0 Platform

Supplies
 None

Preparation/Background
In additional to material covered in earlier labs, this lab requires knowledge of PICmicro interrupts handling.
It is recommended to review the material in the course text as well as using the PICmicro data sheet as a
reference. The remainder of this section provides a brief overview of PICmicro’s three external or peripheral
interrupt pins and their uses.

 The high priority interrupt vector is at 000008h program memory location and the low priority interrupt vector
is at 000018h program memory location. Interrupt vector is the location that PC will be set to after an
interrupt has occurred and has been acknowledged.

There are three external interrupts available on PICmicro (INT0-Pin 8, INT1-Pin9 and INT2-Pin 17). Below is
an example of connecting interrupt INT0 to Event Signal. Anytime, Event Signal goes from low to high which
causes a high priority interrupt and sets PC to 000008h.

PICmicro

Int 0

Int 1

Int 2

8
9

17

Computer Organization and Microprocessors (ENGR 270) Page 24
www.EngrCS.com Version 2.2

In general, each interrupt source has three bits to control its operation. The functions of these bits are:

 Flag bit to indicate that an interrupt event occurred.
 Enable bit that allows program execution to branch to the interrupt vector address when the flag bit

is set.
 Priority bit to select high priority or low priority (INT0 has no priority bit and is always high priority)

The following four SFR registers are used to control interrupt operations:

 RCON Register

 INTCON Register

GIE/
GIEH

PEIE/
GIEL

TMR0
IE

INT0
IE

RBIE TMR0
IF

INT0
IF

RB
IF

Bit 7
INTCON

IPEN __ __ RI’ TO’ PD’ POR’ BOR’
Bit 7 Bit0

RCON

PICmicro
8 Event Signal INT0

Event Signal
PC = “Any Value” PC = 000008h

Computer Organization and Microprocessors (ENGR 270) Page 25
www.EngrCS.com Version 2.2

 INTCON2 Register

RBPU’ INTE

DG0
INTE
DG1

INTE
DG2

__ TMR0
IP

__ RBIP
Bit 7 Bit0

INTCON2

Computer Organization and Microprocessors (ENGR 270) Page 26
www.EngrCS.com Version 2.2

 INTCON3

The interrupt priority feature is enabled by setting the IPEN bit (RCON<7>). When interrupt priority is
enabled, there are two bits that enable interrupts globally. Setting the GIEH bit (INTCON<7>) enables all
interrupts that have the priority bit set (high priority). Setting the GIEL bit (INTCON<6>) enables all interrupts
that have the priority bit cleared (low priority). When the interrupt flag enable bit and appropriate global
interrupt enable bit are set, the interrupt will vector immediately to address 000008h or 000018h, depending
on the priority bit setting. Individual interrupts can be disabled through their corresponding enable bits.

INT2
IP

INT1
IP

__

INT2
IE

INT1
IE

__ INT2
IF

INT1
IF

Bit 7 Bit0
INTCON3

Computer Organization and Microprocessors (ENGR 270) Page 27
www.EngrCS.com Version 2.2

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled. With this setting, the
interrupts are compatible with PICmicro mid-range devices. In compatibility mode, the interrupt priority bits
for each source have no effect. INTCON<6> is the PEIE bit, which enables/disables all peripheral interrupt
sources. INTCON<7> is the GIE bit, which enables/disables all interrupt sources. All interrupts branch to
address 000008h in compatibility mode.

When an interrupt is responded to, the global interrupt enable bit is cleared to disable further interrupts. If the
IPEN bit is cleared, this is the GIE bit. If interrupt priority levels are used, this will be either the GIEH or GIEL
bit. High priority interrupt sources can interrupt a low priority interrupt. Low priority interrupts are not
processed while high priority interrupts are in progress.

Upon interrupt, the return address is pushed onto the stack and the PC is loaded with the interrupt vector
address (000008h or 000018h). Once in the interrupt service routine, the source(s) of the interrupt can be
determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before re-
enabling interrupts to avoid recursive interrupts. The “return from interrupt” instruction, RETFIE, exits the
interrupt routine and sets the GIE bit (GIEH or GIEL, if priority levels are used), which re-enables interrupts.

For external interrupt events, such as the INT pins or the PORTB input change interrupt, the interrupt latency
may be three to four instruction cycles. The exact latency is the same for one or two-cycle instructions.
Individual interrupt flag bits are set, regardless of the status of their corresponding enable bit or the GIE bit.

Note: Do not use the MOVFF instruction to modify any of the interrupt control registers while any interrupt is
enabled. Doing so may cause erratic microcontroller behavior.

Computer Organization and Microprocessors (ENGR 270) Page 28
www.EngrCS.com Version 2.2

 Returning from interrupt handling code
Upon interrupt, the value of PC+2 (pointer to the next instruction) is pushed on the stack. This allows
the interrupt handling code to return to the next instruction before interrupt by popping the stack and
using the top of stack value as the PC.

The Instruction RETFIE when executed will automatically return the instruction execution back to the
next instruction before the interrupt.

Notes:

 Example – High priority interrupts and

returns code.

Solution:

 NOP Delay Loop Example

The following code generate delay equal to approximately 100x4 cycles:

 MOVLW 155 ; start the count
 MOVWF 0x84
Delay: NOP ; 1 cycle
 INCF 0x84 ; 1 cycle
 BNC Delay ; 2 cycle when jumps to Delay

Address Content .
0x008 MVLW 23
0x00A ADDWF 0x90, 1, 0
0x00C CLRF 0x89
0x00E RETFIE

…

0x126 MVLW 23
0x128 ADDWF 0x90, 1, 0
0x12A CLRF 0x89

A high Priority Interrupt occurs
when instruction at location 0x128
is being executed. Where PC is
equal to 0x12A.

Computer Organization and Microprocessors (ENGR 270) Page 29
www.EngrCS.com Version 2.2

Using fosc = 31.5 Khz, internal clock frequency, means that One clock cycle period is Tosc = 1/fosc = 32
usec. Tcyc, instruction cycle, is 4 times the clock frequency which means Tcyc = 4*32 = 128 usec.
Therefore, the above NOP delay loop generated a delay equal to 400x128 usec or approximately 51
msec.

 Interrupt Usage Example
INT0, Pin 8 (high priority) is connected to DIP switch #3 and INT1, Pin 9 (low or high priority) is
connected to DIP switch #2 on EDbot. The following code is written to demonstrate the use of low and
high priority interrupts.

Each INT0 occurrence increments the Wreg value by 5 which causes the LED blinking on and off time to
increase by 0.5 seconds.

Each INT1 occurrence decrements the Wreg value by 5 which causes the LED blinking on and off time
to decrease by by 0.5 seconds.
.

;---
; FILE: IntrExample ; DESC: Interrupt Example - Demonstrates use of interrupts
; DATE: 5-18-16 ; AUTH: Class
; DEVICE: PICmicro (PIC18F1220)
;--- list p=18F1220 ; processor type
 radix hex ; default radix for data
 config WDT=OFF, LVP=OFF, OSC = INTIO2 ; Disable Watchdog timer, Low V. Prog, and RA6 as a clock
#include p18f1220.inc ; This header file includes address and bit definitions for all SFRs
 #define countID 0x80
#define countOD 0x81

 org 0x000 ; Executes after reset
 GOTO StartL
 org 0x008 ; Executes after high priority interrupt
 GOTO HPRIO
 org 0x018 ; Executes after low priority interrupt
 GOTO LPRIO
 org 0x20
 HPRIO: ; high priority interrupt
 ADDLW .5 ; when interrupt 0 occurs
 BCF INTCON, INT0IF ; Clear Interrupt 0 RETFIE ; Return from interrupt

LPRIO: ; Low priority interrupt BTFSC INTCON3, INT1IF ; Check for Interrupt 1
 BRA Intr1
 RETFIE ; Return from interrupt
Intr1: ; take care of Interrupt 1
 ADDLW 0xFB ; W(W-5). {note: SUBLW .5 will not work} BCF INTCON3, INT1IF ; Clear interrupt 1 flag
 RETFIE ; Return from interrupt

StartL: ; Initialization code to be executed during reset
 ; Initialize all I/O ports CLRF PORTA ; Initialize PORTA
 CLRF PORTB ; Initialize PORTB
 MOVLW 0x7F ; Set all A\D Converter Pins as MOVWF ADCON1 ; digital I/O pins
 MOVLW 0x0D ; Value used to initialize data direction
 MOVWF TRISA ; Set Port A direction MOVLW 0xC7 ; Value used to initialize data direction

Computer Organization and Microprocessors (ENGR 270) Page 30
www.EngrCS.com Version 2.2

 MOVWF TRISB ; Set Port B direction
 MOVLW 0x00 ; clear Wreg
 ; Enable NT0 and INT1
 BSF INTCON, PEIE ; enable all peripheral interrupts BSF INTCON, INT0IE ; enable INT0
 BSF INTCON3, INT1IE ; enable INT1
 BCF INTCON3, INT1IP ; INT1 is set to low priority BSF RCON, IPEN ; enable priority levels on interrupts
 BCF INTCON, INT0IF ;flags must be cleared to allow an interrupt
 BCF INTCON3, INT1IF ; BSF INTCON, GIE ; enable interrupts globally

 MOVLW .5 ; Set starting delay to 0.5 seconds
MainL: ;Main loop
 BTG PORTB,5 ; LED Toggle CALL Delay
 BRA MainL
 ;Function to delay for Wreg x 0.1 seconds
Delay:
 MOVWF countOD DelayOL: ; delay Outer loop
 CLRF countID
DelayIL: ; Delay Inner Loop INCF countID
 BNZ DelayIL DECF countOD
 BNZ DelayOL
 RETURN ; end delay function
 end ; Interrupt Example Program

Computer Organization and Microprocessors (ENGR 270) Page 31
www.EngrCS.com Version 2.2

Experiment #1
Use the example code provided to implement a system that start with 0.5 second LED on/off. Each time INT0
occurs, the on/off time increases by one second and each time INT1 occurs, the on/off time decreases by
one seconds. The delay should never be less than 0.5 second or more than 25 seconds.

Experiment #2
Write code for EDbot to blink LED on/off every 0.5 second. When INT0 occurs, EDbot should turn clockwise
in circles for 2 seconds. When INT1 (Low Priority) occurs, EDbot should turns counter clockwise for 2
seconds.

This experiment requires that you review your high level design (flow chart or pseudo code) and demonstrate
your system to the instructor upon completion.

 Report Requirements
All reports must be computer printed (formulas and diagrams may be hand drawn) and at minimum include:

For each experiment:

a) Clear problem statement; specify items given and to be found.
b) Specific responses to each question asked in the experiment.
c) Documentation of resulting high level design, disassembled code, system diagram, schematics and

any other supporting material.

For the report as a whole

a) Cover sheet with your name, course, lab title, date of completion and your teammates’ name.
b) Lessons learned from this lab.
c) A new experiment and expected results which provide additional opportunity to practice the concepts

in this lab.

