ENGR 270 LAB #3 - EDbot Introduction

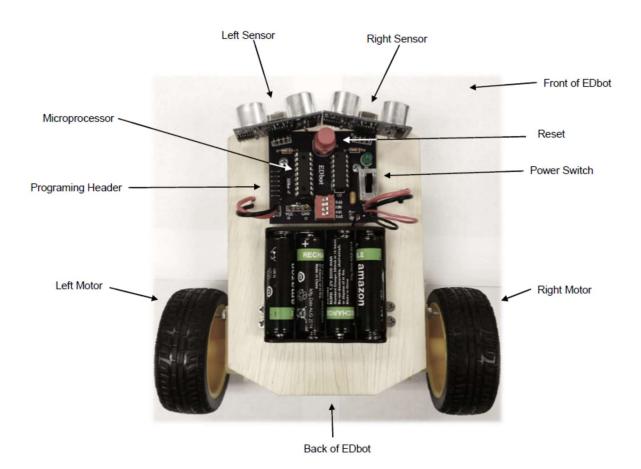
Objective

Introduce the EDbot platform and use of broader range of assembly instructions and constructs..

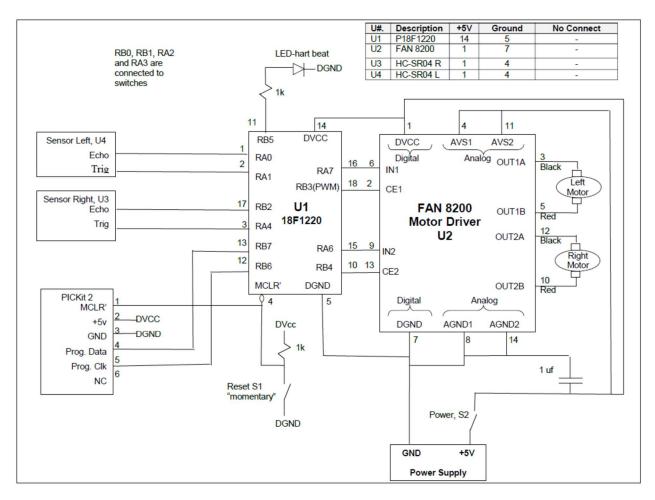
Related Principles

- Computer Organization and Design
- Microprocessors
- Hardware and Software Interface
- Digital Design
- Assembly language

Equipment


- ✤ Windows-based PC with MPLAB Simulation Solutions Software
- USB hard disk or other removable drives
- Microchip PICKit programmer
- EDbot V7.0 Platform

Supplies


None

Preparation/Background

EDbot was designed and implement by past students based on the learning from this course. The design is similar to the work done in labs 1 and 2. The following diagram outlines the physical design and labels major components of EDbot:

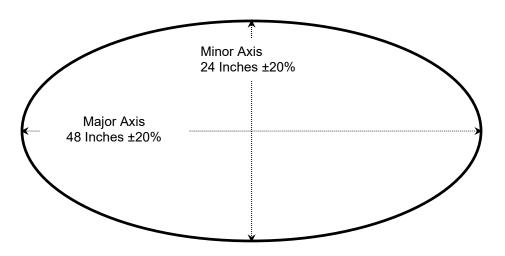
EDbot uses PIC18F1220 as the microcontroller with two independent DC motors and two independent distance sensors (HC-SR04) which make EDbot a highly flexible robotic platform. EDbot V7.0 schematic follows:

EDbot has specific assignment for all the PICmicro I/O Pins as follows:

Registers <bit #=""></bit>	Pin # - Name -Type	Function
Port A <0>	1 – RA0 – Input	Echo Left Sensor
Port A <1>	2 – RA1 – Output	Trigger Left sensor
Port B <2>	17 – RB2– Input	Echo Right Sensor
Port A <4>	3 – RA4 – Output	Trigger Right sensor
Port A <7>	16 – RA7 – Output	Left Motor Director
Port B <3>	18 – RB3 – Output	Left Motor Enable (PWM capable)
Port A <6>	15 – RA6 – Output	Right Motor Director
Port B <4>	10– RB4 – Output	Right Motor Enable
PortB <0,1>	8,9 – RB 0,1 – Input	DIP Switch #3,2 (INT0 and INT1)
Port A <2,3>	6,7 – RA 2,3 – Inputt	DIP Switch #1,4
Port A <5>	4 – MCLR – Output	Reset – Red push button
Port B <5>	11 - RB5 - Output	D ₁ LED

Experiment #1

Create a new MPLAB project using the code provided on the next page. Build the project and program EDbot. Write a summary of EDbot operation based on your review of the code, schematics and observation of EDbot executing the code.


Notes:

- 1) During the Programming and execution EDbot wheel will rotate. Be careful not to drop it!
- Microchip header file supplied with MPLAB® IDE contains the definition for all the SFR register addresses and bit names in addition to commonly used constant values listed in the course text appendix. You can use SFR register names and bit names by adding the following statement in your code to include the header file;

include p18f1220.inc

Experiment #2

Modify the code in experiment 1 in order for EDbot to drive an ellipse (per specifications shown below) pattern that takes between 5 to 15 seconds to complete.

This experiment requires that you review your high level design (flow chart or pseudo code) and demonstrate your system to the instructor upon completion. Include the approval signature in your report.

:		
; FILE: EDbo		for all a life
	sign to test EDbot basic ATE: 6/15/2016	tunctionality
; AUTH: Clas		
; list	p=18F1220	; processor type
radix config	hex	; default radix for data FF, OSC = INTIO2 ; Disable Watchdog timer, Low V. Prog, and RA6 as a clock
#include	p18F1220.inc	; This header file includes address and bit definitions for all SFRs
#define	dCount	0x80
#define	dCountInner	0x81
org	0x000 ; Set th	e program origin (start) to absolute 0x000
	all I/O ports	
CLRF CLRF	PORTA PORTB	; Initialize PORTA : Initialize PORTB
MOVLW	0x7F	; Set all A\D Converter Pins as
MOVEV		; digital I/O pins
MOVLW	0x0D	; Value used to initialize data direction
MOVWF	TRISA	; Set Port A direction
MOVLW	0xC7	; Value used to initialize data direction
MOVWF MOVLW	TRISB 0x00	; Set Port B direction ; clear Wreg
	ortb,5, direction, and d	
	going forward for first d	
Main:		- Frankla Direkt master
BSF BSF	PORTB,4 PORTA,6	;Enable Right motor ;Forward Right
BSF	PORTB,3	Enable Left Motor
BCF	PORTA,7	;Backward Left
MOVLW	.1	
CALL	Delay	
BCF	PORTA,6	;Backward Right
BSF	PORTA,7	;Forward Left
MOVLW CALL	.1 Delay	
BCF	PORTB,4 ;Disable	Right
BCF	PORTB,3 ;Disable	
MOVFF		ne for first loop cycle.
Loop: ; Tog BTG	ggle LED PORTB,5	
MOVLW	.5	
CALL	Delay	
MOVF	PORTA, 0	; W = PORTA
XORWF	0x82, 0	; W = W XOR LASTIN
BZ BRA	Loop Main	; Loop if zero ;Restart when Dip switch 1 and 4 is changed
		lue as the number of 1/10 of seconds delay period
Delay: MOVWF	dCount	
DelayLoop:	acount	
CALL	DelayOnce	
DECF	dCount	
BNZ	DelayLoop	
RETURN DelayOnce:		
Delayonde.	CLRF dCountInne	;Internal delay loop
DelayOnceL		
NOP		
INCF	dCountInner	
BNZ	DelayOnceLoop	
RETURN		
end	; code end	

Report Requirements

All reports must be computer printed (formulas and diagrams may be hand drawn) and at minimum include:

For each experiment:

- a) Clear problem statement; specify items given and to be found.
- b) Specific responses to each question asked in the experiment.
- c) Documentation of resulting high level design, disassembled code, system diagram, schematics and any other supporting material.

For the report as a whole

- a) Cover sheet with your name, course, lab title, date of completion and your teammates' name.
- b) Lessons learned from this lab.
- c) A new experiment and expected results which provide additional opportunity to practice the concepts in this lab.