
Computer Organization and Microprocessors (ENGR 270) Page 2 
www.EngrCS.com Version 2.2 

ENGR 270 LAB #1 - Introduction to Microprocessors 
 
Objective 
Gain an understanding of the role of assembly language and introduction to the PIC assembler, linker, 
simulator and use of microprocessor in system design. 
  
Related Principles 
 Computer Organization and Design 
 Microprocessors 
 Hardware and Software Interface 
 Digital Design 
 Assembly language 

 
Equipment 
 Windows-based PC with MPLAB Simulation Solutions Software 
 USB hard disk or other removable drives  
 Microchip PICkit programmer  
 
Supplies 
 PC Board 
 PICmicro (18F1220) 
 Four LEDs 
 One 8-DIP Switch  
 Three 1K resisters 
 
 
Preparation/Background 
 

1) Installation. 
If you have not already installed MPLAB X, visit http://www.microchip.com/pagehandler/en-
us/family/mplabx/ for MPLAB X download and installation instruction. MPLAB X is Java-based, and 
should work well under Windows, Linux or OS-X. However, if you have a 64-bit machine, you may 
need to enable 32-bit Java for MPLAB-X to function properly.  
 

2) MPLAB start-up and interface. 
It would be helpful to refer to MPLAB Help section for a detailed description of MPLAB interface and 
functionality. 

 
 



Computer Organization and Microprocessors (ENGR 270) Page 3 
www.EngrCS.com Version 2.2 

Experiment #1  
In this experiment, the student is expected to practice creating a new project, compile it, simulate it, and 
program a PICmicro chip and test it in a circuit.  
 
 Create a new project for a simple counter. 

 
1) In MPLAB-X, select File/New Project... from the menu. This will start the MPLAB-X Project Wizard which 

will walk you through creating a project 
 
a) In Step 1 of the Project Wizard, just click "Next>" (the defaults: "Microchip Embedded"/"Standalone 

Project" should be fine); 
b) Next, under "Families:" select "Advanced 8-bit MCUs (PIC18)";then under "Device" select 

"PIC18F1220." Then click "Next>"; 
c) Under "Select Tool" choose "Simulator " the click "Next>" 

(i) The wizard then skips to Step 6: 
d) Under "Select Compiler" choose the item under "mpasm" (currently this says "mpasm (v5.68) 

[C:/Program Files (X86)...]" but this may be different on your machine); 
e) On the final window, under "Select Project Name and Folder," first enter a Project Location. This is 

the parent of the directory where your project will be stored. Then enter a Project Name (we'll use 
"Lab1" in this example; avoid spaces and special characters). Under "Project Folder" you should see 
a new folder named "projectname.X" (where projectname is whatever you entered). Make sure you 
use a separate project name and folder for each program you write. One of the most frequent 
issues people run into is editing a new program Y but accidentally including an older file X. You can 
minimize the risk of this by always starting a new project in a new folder for each program you write 
(even if they're part of the same asignment). Also, it's recommended that you keep a copy of your 
code outside of MPLAB-X. Make frequent backups, and make sure you keep copies of your code on 
a flash drive etc. Remember that the lab computers remove user files when you log out. Click 
"Finish" when done. 
 

2) Once you have finished the Project Wizard, you should see a window with different sub-windows inside 
it. In the upper-left area of the window should be a window with the name of your project ("Lab1"), 
followed by "Header Files," "Important Files," and other folder names. Note that if you were previously 
working on a different project, you may see that project listed here as well. Find the name of the project 
you're creating now, and right-click on the project name, then select "New/AssemblyFile.asm" 
 

3) Enter a "File Name" of your choice. main.asm is always a good choice, but you can choose something 
more descriptive if you like. Don't enter anything in the Folder: area. You should see a full path under 
"Created File:" which should end with "\Lab1.X\main.asm" Hit "Finish" 
 
Note:  On the upper-middle/right side of the window should be a tab labeled "main.asm" This is where 
you'll enter your program's source code. 
 

4) Copy the code from next page into your newly created main.asm file. Save your code by selecting 
File/Save" or by just hitting CTRL-S. Note that some of the indenting may not match what's shown below. 
You can indent entire sections of text in MPLAB-X by selecting the text and hitting TAB (you can un-
indent by hitting SHIFT-TAB). 
 

5) Select “Run/Build Project” to assemble the code 
Notes: i) Tab formatting should be maintained. 

ii) Select “Absolute” if prompted with “Absolute or Relocatable” code dialog box. 
iii) The lower-right window should have a tab labeled "Output - Lab1(Build, Load)" and the bottom of 

that window should include the messages "BUILD SUCCESSFUL" and "Loading Complete." Any 
messages in red indicate a likely error in your source code. 

  



Computer Organization and Microprocessors (ENGR 270) Page 4 
www.EngrCS.com Version 2.2 

;------------------------------------------------------------------------------------- 
; FILE: Intro.asm ; DESC: Experiment 1 – Simple Counter  
; DATE: 5-18-06 
; AUTH: Class ; DEVICE: PICmicro (PIC18F1220) 
;------------------------------------------------------------------------------------- 
     list  p=18F1220 ; Set processor type 
    radix  hex ; Sets the default radix for data exp. 
    config WDT=OFF, LVP=OFF, OSC = INTIO2 ; Disable Watchdog timer,  Low V. Prog, and RA6 as a clock  
#define PORTA 0xF80 
#define PORTB 0xF81 #define TRISA 0xF92 
#define TRISB 0xF93 
#define ADCON1 0xFC1  
COUNT equ 0x080 
LASTIN equ 0x081 INPUT equ 0x082 
TEMP equ 0x083 
     org  0x000 ; Set the program origin (start) to absolute 0x000 
 
; Initialize all I/O ports     CLRF   PORTA  ; Initialize PORTA 
    CLRF   PORTB  ; Initialize PORTB     MOVLW   0x7F  ; Set all A/D Converter Pins as 
    MOVWF  ADCON1  ; digital I/O pins 
    MOVLW  0x00  ; Value used to initialize data direction     MOVWF  TRISB  ; Set Port B RB<7:0> as outputs 
    MOVLW  0x01  ; Value used to initialize data direction 
    MOVWF  TRISA  ; Set Port A Pin 0 RA<0> as input  
    MOVLW 0x00 ; W = 0 
    MOVWF COUNT ; COUNT = WREG     MOVWF LASTIN ; LASTIN = WREG 
 
Loop:     MOVFF PORTA, INPUT ; INPUT = PORTA 
    MOVF INPUT, 0 ; W = PORTA 
    XORWF LASTIN, 0 ; W = W XOR LASTIN     ANDLW 0x1 ; W = W AND 0x1 
    MOVFF INPUT, LASTIN ; LASTIN = PORTA 
    MOVWF TEMP ; TEMP = W     BTFSC TEMP, 0 ; If TEMP<0> = 0 Then Skip Next Command 
    CALL IncL 
    GOTO Loop  
IncL: 
    MOVF COUNT, 0 ; W = COUNT     ADDLW 1 ; W = W + 1 
    MOVWF COUNT ; COUNT = W 
    MOVWF PORTB ; PORTB = W     RETURN 
 
    end  ; Indicates the end of the program.    



Computer Organization and Microprocessors (ENGR 270) Page 5 
www.EngrCS.com Version 2.2 

 Simulation 
Use the simulation feature of MPLAB-X to test the functionality of your counter by following the steps 
shown: 
 
1) In your source code listing, click on the line number next to the code line that says 

 
 "CLRF     PORTA  ; Initialize PORTA" 
 
The entire line should turn red. This indicates that you've created a breakpoint at that line. Each time 
the simulator is about to execute a line with a breakpoint, the simulator will pause and return control 
to you. 
 

2) Select "Debug/New Watch..." and under "Enter or Select Watch Expression" enter PORTA and click 
OK (remember that names like "PORTA" are case-sensitive: "PORTA" is different from "PortA"). 
 

3) Again select "Debug/New Watch..." but this time enter PORTB and click OK. Repeat for WREG (note 
that these 3 items (which are called "Special Function Registers") can also be selected from the 
drop-down box). 
 

4) Select Window/Simulator/Stimulus" You'll see a new tab labeled "Stimulus." Click on the area 
beneath "Pin" and select RA0 (which specifies bit 0 of PORTA). Click on the box under Action and 
select "Toggle." 
 

5) Select “Debug/Debug Project(Lab1)." You'll see a box saying "PICkit2 not Found." Select "Simulator" 
under "Hardware Tools" and click "OK" 
 

6) Your main dialog box should now say something like:  Launching  Initializing simulator  User program running  User program stopped  Breakpoint hit at line 21 in file ... 
 

7) Here you can enter a few more watch locations. Click on the Variables tab, double-click under 
"Name" (where it says "<Enter new watch>"), enter "0x80" and hit Tab. Repeat for 0x81, 0x82 and 
0x83. 
 

At this point you're ready to begin simulating your code. The F7 key will single-step your code, one 
instruction at a time. As the code executes, the current instruction will be highlighted in your source-code 
window. Begin hitting F7 and observe what happens. You should see the program advance line by line, 
until it reaches the GOTO Loop" statement, at which point it will return to a previous instruction. Your 
variables should all show a Value of 0x00. This pattern will repeat indefinitely, until you change the value 
of your simulated input. Proceed as follows: 
 
1. In the Stimulus window, click the arrow under the "Fire" column; 
2. Click on the "Variables" tab to examine your variables; 
3. Continue hitting F7 and observe what happens. The PORTA line should turn red and show a vaue of 

0x01 (this reflects the fact that you just toggled bit 0 of that port). Keep hitting F7 and observe what 
happens. After several steps, the program should reach the line labeled "IncL: 

4. After 3 more steps, you should see the value of address 0x80 change to 0x01. After oe more step, 
PORTB should also change to 0x01. 

5. The program will now return to looping indefinitely, until you switch to the Stimulus window and again 
click Fire. Then go back to Variables and hit F7 and you'll again observe PORTB incrementing after 
10-20 instructions. 
 NOTE: You can hold down F7 instead of repeatedly pressing it, but changes in the Variables window 
may not appear immediately. 
 

When you're finished, you can select "Debug/Finish Debugger Session." 
  



Computer Organization and Microprocessors (ENGR 270) Page 6 
www.EngrCS.com Version 2.2 

 PICmicro Programming. 
At this point you have a program that has been tested using a simulation, so now it is time for 
programming the PICmicro so that it could be used in a later design. The following steps enable you to 
program the PICmicro: 
 

 Connect the PICkit USB to your PC using the USB cable; 
 Start MPLAB-X and open your project (if it's not already opened); 
 In the upper-left window, right-click on the project name ("Lab1") and select Properties. 
 Under "Hardware Tools" select "PICkit" and click OK 
 Right-click on the project name again, and select "Make and Program Device" 

 
PICkit can be directly connected to the circuitry using the following connections in order to program the 
PICmicro without removing it from the circuit.  PICKit is able to power your circuit so no need for power 
supply.  
 

  

18F1220 PICKit  
USB Cable to PC 

MCLR’ 
+5v 

GND 
Prog. Data 

Prog. Clk 
NC 

1 
2 
3 
4 
5 
6 Not Used 

MCLR’ 
+5v 
GND 
Prog. Data 
Prog. Clk 

4 
14 

5 
13 
12 



Computer Organization and Microprocessors (ENGR 270) Page 7 
www.EngrCS.com Version 2.2 

Experiment #2  
The objective of this experiment is to build a circuit to test the functionality of the PICmicro programmed in 
the previous experiment.  Build the following circuit and develop a test to ensure that your counter is working 
properly.   
 

  
Using your implementation based on the above schematics and earlier code, confirm that it performs as a 4-
bit binary up counter. This experiment requires that you demonstrate your system to the instructor. 
 

RB0 
RB1 
RB2 
RB3 
RB4 
RB5 
RB6 
RB7 

8 
9 
17 
18 
10 
11 
12 
13 

GND  

LEDs 
Vcc 

Out 

Reset 
Disch 

Thres 
Trig 

GND 

2 
6 
7 

4 

GND 

+5V 

0.01 uF 

1 MΩ 

1 MΩ 
8 

3 

1 KΩ 

U1 

U2 

1 uF 

1 KΩ 

1 KΩ 
+5V 

GND 

Reset 
Switch 

MCLR’  

RA0 1 

4 

U#. Description +5V Ground No Connect 
U1 555 timer 8 1 5 
U2 PIC 18F1220 14 5 2,3,6,7,10,11, 

12, 13,15,16 
 



Computer Organization and Microprocessors (ENGR 270) Page 8 
www.EngrCS.com Version 2.2 

Report Requirements  
All reports must be computer printed (formulas and diagrams may be hand drawn) and at minimum include: 
 
For each experiment: 

a) Clear problem statement; specify items given and to be found. 
b) Specific responses to each question asked in the experiment. 
c) Documentation of resulting high level design, disassembled code, system diagram, schematics and 

any other supporting material. 
Note:  
Disassembly listing can be found at “Window>Debugging>Output>Disassembly Listing File” menu 
item. 
If it is grayed out (not available) then access project property, select “Loading” and check “Load 
symbols…”.  Make sure to click on the Apply button!  You may also have to rebuild the project to 
generate the disassembled listing. 

 
For the report as a whole 

a) Cover sheet with your name, course, lab title, date of completion and your teammates’ name. 
b) Lessons learned from this lab. 
c) A new experiment and expected results which provide additional opportunity to practice the concepts 

in this lab.   
  


