
 

Signals and Systems 

Version 2.5 printed on February 2015 
First published on March 2009 



Signals & Systems  Page 2 
 

Background and Acknowledgements 
 
This material has been developed for the first course in Signal and Systems.  The content is derived from 
the author’s educational, technical and management experiences, in-addition to teaching experience.  
Many other sources, including the following specific sources, have also informed the content and format 
of this text:  
 

 Nilsson, J.  Electrical Circuits. (2004)  Pearson. 
 Oppenheim, A.  Signals & Systems (1997) Prentice Hall 
 Stremler, F. Introduction to Communication Systems (1990) Addison 
 Lathi, B. Modern Digital and Analog Communication Systems (1998) Oxford University Press 
 MathWorks. MATLAB Reference Material Version R2000a. (2007) MathWorks 

 
I would like to give special thanks to my students and colleagues for their valued contributions in making 
this material a more effective learning tool. 
 
I invite the reader to forward any corrections, additional topics, examples and problems to me for future 
revisions. 
 
Thanks, 

Izad Khormaee 
www.EngrCS.com 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© 2010 Izad Khormaee, All Rights Reserved. 



Signals & Systems  Page 3 
 

Contents 
 

Chapter 1. Signals & Systems ...................................................................................................................... 5 

1.1.  Introductions .......................................................................................................................................... 6 
1.2.  Continuous-Time (CT) and Discrete-Time(DT) Signals ........................................................................ 8 
1.3.  Signal Energy and Power ................................................................................................................... 10 
1.4.  Independent Variable Transformations ............................................................................................... 12 
1.5.  Complex Exponential and Sinusoidal Signals .................................................................................... 16 
1.6.  Unit Impulse and Unit Step Functions ................................................................................................. 28 
1.7.  Fundamental System Properties ......................................................................................................... 33 
1.8.  Statistical Properties of Noise ............................................................................................................. 39 
1.9.  Chapter Summary ............................................................................................................................... 41 
1.10.  Additional Resources ........................................................................................................................ 42 
1.11.  Problems ........................................................................................................................................... 43 

Chapter 2. Linear Time-Invariant (LTI) Systems ......................................................................................... 44 

2.1.  Linear Time Invariant (LTI) System Overview .................................................................................... 45 
2.2. Convolution Sum in Discrete-Time LTI Systems ................................................................................. 46 
2.3.  Sidebar Notes (Useful Relationships) ................................................................................................. 53 
2.4.  Convolution Integral in Continuous-Time LTI Systems ....................................................................... 54 
2.5.  Linear Time-Invariant (LTI) Systems Properties ................................................................................. 58 
2.6.  Differential/Difference Equations ........................................................................................................ 62 
2.7.  Chapter Summary ............................................................................................................................... 65 
2.8.  Additional Resources .......................................................................................................................... 66 
2.9.  Problems ............................................................................................................................................. 67 

Chapter 3. Fourier Series Representation of Periodic Signals ................................................................... 68 

3.1.  Overview & History of Fourier series .................................................................................................. 69 
3.2.  Complex Exponential Signals and LTI System Responses ................................................................ 70 
3.3.  Fourier Series Representation of Continuous-Time Periodic Signals ................................................ 74 
3.4.  Convergence of the Continuous-Time Fourier Series ........................................................................ 82 
3.5.  Continuous-Time Fourier Series Properties........................................................................................ 86 
3.6.  Fourier Series Representation of Discrete-Time Periodic Signals ..................................................... 90 
3.7.  Discrete-Time Fourier Series Properties ............................................................................................. 93 
3.8.  Application of Fourier Series in LTI systems ...................................................................................... 95 
3.9.  Chapter Summary ............................................................................................................................... 97 
3.10.  Additional Resources ........................................................................................................................ 98 
3.11.  Problems ........................................................................................................................................... 99 

Chapter 4. The Continuous-Time Fourier Transform ................................................................................ 100 

4.1.  Introduction ....................................................................................................................................... 101 
4.2.  Fourier Transform for Aperiodic and Periodic Signals ...................................................................... 102 
4.3.  Fourier Transform Convergence ....................................................................................................... 106 
4.4.  Properties of the Continuous-Time Fourier Transform ..................................................................... 108 
4.5.  Chapter Summary ............................................................................................................................. 114 
4.6.  Additional Resources ........................................................................................................................ 115 
4.7.  Problems ........................................................................................................................................... 116 

Chapter 5. The Discrete-Time Fourier transform ...................................................................................... 117 

5.1.  Introduction ....................................................................................................................................... 118 
5.2.  Fourier Transform of Aperiodic and Periodic Signals ....................................................................... 119 



Signals & Systems  Page 4 
 

5.3.  Fourier Transform Convergence ....................................................................................................... 123 
5.4.  Properties of the Discrete-Time Fourier Transform .......................................................................... 124 
5.5.  Summary of Fourier Series and Transform Equations ..................................................................... 129 
5.6.  Additional Resources ........................................................................................................................ 130 
5.7.  Problems ........................................................................................................................................... 131 

Chapter 6. Sampling ................................................................................................................................. 132 

6.1.  Introduction ....................................................................................................................................... 133 
6.2.  Sampling Theorem ............................................................................................................................ 135 
6.3.  Aliasing Caused by Under Sampling ................................................................................................ 145 
6.4.  Interpolation Techniques for Signal Reconstruction From Samples ................................................. 148 
6.5.  Additional Resources ........................................................................................................................ 151 
6.6.  Problems ........................................................................................................................................... 152 

Chapter 7. Communication Systems ........................................................................................................ 153 

7.1.  Introduction ....................................................................................................................................... 154 
7.2.  Amplitude Modulation (AM) ............................................................................................................... 157 
7.3.  Sinusoidal Amplitude Demodulation - Synchronous and Asynchronous .......................................... 162 
7.4.  Sinusoidal Frequency Modulation (FM) ............................................................................................ 167 
7.5.  Frequency-Division and Time-Division Multiplexing ......................................................................... 168 
7.6.  Common Modulation Techniques ..................................................................................................... 169 
7.7.  Additional Resources ........................................................................................................................ 170 
7.8.  Problems ........................................................................................................................................... 171 

Chapter 8. Laplace Transform .................................................................................................................. 172 

8.1.  Laplace Transform “X(s) = L{x(t)}” .................................................................................................... 173 
8.2.  Inverse Laplace Transform “x(t)=L-1{x(t)}” ......................................................................................... 175 
8.3.  Region Of Convergence (ROC) ........................................................................................................ 177 
8.4.  Laplace Transform Properties ........................................................................................................... 183 
8.5.  Application of Laplace Transform to LTI Systems ............................................................................ 185 
8.6.  Additional Resources ........................................................................................................................ 187 
8.7.  Problems ........................................................................................................................................... 188 

Chapter 9. Z-Transform ............................................................................................................................. 189 

9.1.  Z-Transform, “X(z) = Z{x[n]}” ............................................................................................................. 190 
9.2.  Inverse Z-Transform, “x[n] = Z-1{X(z)}” .............................................................................................. 192 
9.3.  Region Of Convergence (ROC) ........................................................................................................ 193 
9.4.  Z-Transform Properties ..................................................................................................................... 197 
9.5.  Application of Z-Transform in LTI Systems ....................................................................................... 199 
9.6.  Additional Resources ........................................................................................................................ 200 
9.7.  Problems ........................................................................................................................................... 201 

Appendix A. Additional Resources ............................................................................................................ 202 

  



Signals & Systems  Page 5 
 

 
Chapter 1. Signals & Systems 

 
Key Concepts and Overview 
 
 Introduction 

 Continuous-Time (CT) and Discrete-Time (DT) Signals  

 Signal Energy and Power 

 Independent Variable Transformations 

 Complex Exponential Sinusoidal Signals 

 The Unit-Impulse and Unit Step Functions  

 Fundamental (CT & DT) System Properties 

 Statistical Properties of Noise 

 Additional Resources 
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1.1.  Introductions 

Study of signals and systems leverages mathematics, computer solutions, understanding of science and 
system engineering in order to analyze system behavior, design systems and derive information from 
signals.  Signal and systems application can be found in a broad range of fields including: 
 

 Communication 
 Aeronautics and Astronautics 
 Circuit design 
 Acoustics and visuals 
 Seismology and Geology 
 Biomedical Engineering 
 Energy generation 
 Distribution systems 
 Chemical Process Control 
 Speech Processing 
 Financial Analysis and Forecasting 

 
Although the underlying phenomenon or effect being studied in each field may be dramatically different, 
they all share two basic features: 
 

 Signals 
Signals are defined as functions that are dependent on one or more independent variables 
and carry information about the behavior or nature of one or more phenomenon. 
 
In this text we will focus on signals that depend only on a single independent variable.  For 
example x(t).  Although the dependent variable may vary, we will be using t as the default 
dependent variable. 
 

 Systems 
Systems are defined to respond to a particular signals by producing another signals which 
has a set of desired characteristics 

 
 
Here are some examples of signals and systems applications: 
 

 Electrical Circuits 
Voltage value over time may be considered a signal  x(t) 
Voltage or current in any other part of circuit may be used as system response  y1(t) and y2(t) 

 
 Seismology 

Signal may be the signal generated from the  impact of some physical device with ground  x(t) 
Response may be the reflection of signal as it bounces off different layers  y(t) 

R 

L C Vi 

+ 
 
Vo 
 
-

i 
+ 
-

 
System x(t) 

Input 
y(t) 
Response 
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 Financial Market 
Economic parameters such as interest rate, earning, past price   x1(t), x2(t), x2(t),… 
Output may be the future price of stocks  y(t). 
 

 Most commonly signal and systems techniques are used to: 
 
 Analyze and characterize existing systems 
 Design systems  to process signals based on a set of rules 
 Enhance and restore signals 
 Controlling characteristic of given systems based on input signals, system behavior and other 

systems. 
 

 
The remainder of this text provides a broad coverage of signal and systems with a focus on linear 
systems that are time invariant. 
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1.2.  Continuous-Time (CT) and Discrete-Time(DT) Signals 

As discussed earlier, the focus here is on signals with single independent variable.  Further the default 
independent variable will be time, t.  This enables the most efficient coverage of the topics but it is 
important to remember that the concepts may be applied to other signals with other types of independent 
variables. 
 
Natural phenomenon signals are continuous which means at any point time there is a value associated 
with the signal.  This type of signal is referred to as continuous-time signal where the independent 
variable is continuous.  For example, function x(t)=10sin(20t) represent a continuous function.  
 
In continuous-time, independent variable is represented by t (real number).  In general continuous time 
signals are plotted with connected lines as shown below: 
 

 
 
The second type of signal used in Signal & Systems is the Discrete-time signal where the independent 
variable only takes discrete values.   Discrete-time signal allows for signal to be constructed out of 
discrete observed values.   Each discrete value is a sample and we are not able of make any definite 
statements about the signal value between the sample points.  In many cases, we make assumptions 
based on the underlying system characteristic in order to approximate the values between the sample 
points.  
 
x[n] is used to represent Discrete-Time signal (Note the use of “[“ instead of “(“ and “n” instead of “t”).  n is 
an integer number.  For example, function x[n] = 10 cos(10n) represent a discrete function.  In general, 
discrete-time functions are plotted as stems: 
 

 
Although we sense and effect our environment in continuous-time, efficiency of digital (computer) 
systems has encouraged the use of discrete-time to approximate and model systems.  Digital systems 
are less expensive and more flexible in storing and processing system data.  These facts have resulted in 

x[n] 

n 
0 2 

4 
-2 -4 -6 

x(t) 

t 
0 
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majority of systems designed to convert continuous-time information to discrete-time for storage and 
processing and then convert them back to continuous-time for usage.  Below is an example of such a 
process in common audio systems: 
 

 
 

Band Playing 
Music (input) Microphone 

Analog to 
Digital 

Convertor 
(A/D) 

Storage and Processing 
of  

Digital Data 
(Computer) 

Digital to 
Analog 

Convertor 
(D/A) 

Audience Hearing 
the Music Speaker 

Sound Wave 
(Air Pressure) 

Continuous-time 
Elect. Signal 

Discrete-time 
Elect. Signal 

Discrete-time 
Elect. Signal 

Continuous-time 
Elect. Signal 

Sound Wave 
(Air Pressure) 
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1.3.  Signal Energy and Power 

In signals and systems, the first step is to relate the signals to the physical quantities. In electrical 
engineering, the focus is on power and by extension energy since power defines the ability of any 
electrical systems to effect change or sense change.   
 
In this section we will define three types of signals based on their energy profile.  Note that for each 
concept introduced, it will be discussed with respect to Continuous-Time signal and with respect to 
Discrete-Time signal.  In most cases, the two treatments will be similar but there are instances where the 
continuous (t) vs. discrete [n], effects the outcome. 
 
Let’s start from the basic concepts of Power (P) and Energy (E) in electrical engineering:  
 

  Power  )(
1

)()()( 2 tv
R

titvtp   

 

  The total energy over the time interval 21 ttt   

    
2

1

2

1

)(
1

)( 2
t

t

t

t

dttv
R

dttpE  

 

  The average power over the time interval 21 ttt   is represented by  

    





2

1

2

1

)(
11

)(
1 2

1212

t

t

t

t

dttv
Rtt

dttp
tt

P  

 
As discussed earlier, in the study of signal and systems, x(t) may be used to represent the magnitude of 
voltage therefore the energy equation for the discrete-time and continuous-time may be written as shown 
below: 
 

 Continuous-time Signal x(t) where |x(t)| is the amplitude of Complex value x(t) 

 The total energy over the time interval 21 ttt      
2

1

2|)(|
t

t

dttxE    

 The average power over the time interval 21 ttt      


2

1

2

12

|)(|
1

t

t

dttx
tt

P    

 
 Discrete-time Signal x[n] where |x[n]| is the amplitude of Complex value x[n] 

 The total energy over the time interval 21 nnn      



2

1

2|][|
n

nn

nxE  

 The average power over the time interval 21 nnn      



2

1

2

12

|][|
1

1 n

nn

nx
nn

P    

 

Next, the above derivations may be extended by allowing the independent variables to approach : 
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 Continuous-time signal - Energy and Average Power in interval  t  





  dttxdttxE

T

T
T

22 |)(||)(|lim  and 


 
T

T
T

dttx
T

P 2|)(|
2

1
lim  

 
 Discrete-time signal – Energy and Average Power in interval  n   





 

n

N

Nn
N

nxnxE 22 |][||][|lim  and 


 


N

Nn
T

nx
N

P 2|][|
12

1
lim  

 
The E and P. are used in classifying signals.  The classification applies to both Discrete-time signals 
and Continuous-time signals.  The three classes with respect to E and P.are: 
 

 E <     P. = 0 
Signals that have finite total energy E <  which in-turn will have Zero average power (P.). 
For example: Signal that takes on value of 2 for 0 ≤ t ≤ 2 and zero otherwise. In this case  E=4 
and P=0. 
 

 P>0  E=∞ 
Signal which have P>0 which in-turn will have E=∞. 
For example a constant signal x[n]=12 has infinite energy, but average power is 144.  
 

 P =    & E =     
Signals that neither P nor Eare finite. 
For example x(t)=t with both its average power and total energy are infinity. 
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1.4.  Independent Variable Transformations 

It is common in signal and systems to transform a system’s response by transforming the independent 
variable (t or n).  The three most common transformations used by engineers are time shift, time reversal 
and time scale.  The remainder of this section will outline each of the three transformations and how they 
may be combined for a more complex transformation.  As done earlier, each transformation is outlined for 
both discrete-time [n] and continuous-time {t}: 
 
 Time Shift 

Time Shift delays or advances the signal by adjusting the independent variable. 
 
 x(t)  x( t- t0) 

 If  t0  > 0 the signal is delayed 
 If  t0  < 0 the signal is advanced 

 
 x[n] -> x[n - n0] 

 If  n0  > 0 the signal is delayed 
 If  n0  < 0 the signal is advanced 

 
 Examples: 

 
 

 Time Reversal 
Time Reversal will reflect the signal about the origin with respect with independent. 
 
 x(t)  x( - t) 

 
 x[n] -> x[ - n] 

 
 Examples: 

x(t) 

t 
0 

x(-t) 

t 
0 

x[n] 

n 0 2 
4 

-2 -4 -6 

x[n -2] 

n 2 4 
6 

0 -2 -4 
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 Time Scaling 
Time Scaling expands or compresses by multiply independent variables with a constant. 
 
 x(t)  x( at) 

 
 x[n] -> x[ an] 

 
 Examples-Scaling 

Draw x(2t) for the following function, x(t): 

 
Solution: 

 
 

 Example-Scaling 
Find the frequency of x(20t) when x(t) = 25 cos(1000πt). 
 
Solution: 
  Student Exercise 
 

 General Form 
The above three transformations may be combined into a single step  in the general form shown 
here: 
 
 x(t)  x( at+b) 

 
 x[n] -> x[an - b] where a & b are integers 

 
 

  

x(2t) 

t 
0 2.5 -1.5 

x(t) 

t 
0 5 -3 
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 Example – Transformation 
Transform x(t) to x(5t/3 + 2) for the x(t) shown below. 

 
Solution:  

 
Note: This problem shifts first and scales second. 

 
  

0 2 4 -2 

1. x(t)  Original Signal 

2. x(t+2) shifted signal  

t 

0 2 4 -2 

t 

3. x(5t/3+2)  scaled & shifted signal  

0 6/5 2 -6/5 

t 

0 2 4 -2 
t 

x(t)
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 Example – Transformation 

Transform x(t) to x(t/3 + 6) for the x(t) shown below. 

 
Solution: (shift first and then scale) 
 

 
 Example – Transformation 

Transform x(t) to x(3(t+4)) for the x(t) shown below. 

 
Solution:  
  Student Exercise 
 

6 12 0 
t 

x(t) 

2 

-12 -6 3 -3 
t 

x(t/3+6)

20 

15 

2 4 7 5 
t 

x(t) 

20 

15 
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1.5.  Complex Exponential and Sinusoidal Signals 

This section introduces the most important signal class, Complex Exponential and Sinusoidal Signals that 
is the foundation of signal and systems analysis.  The first step is to re-examine the definition of periodic 
signal for Continuous-Time and Discrete-Time: 
 

 Continuous-time periodic signal with period T    x(t)=x(t+kT) 
 Smallest positive T (real number) that satisfies the above equation is called the Fundamental 

period T0. 
 

 Discrete-time periodic signal with period N  x[n]=x(n+kN) 
 Smallest positive N (integer) that satisfies the above equation is called the Fundamental 

period N0. 
 

One property that is utilized to simplify signal and systems analysis is Symmetry about the independent 
variable origin.  A signal may have even, odd or mixed Symmetry: 
 

 Even Symmetry exists when: 
 x(t) =x(-t)  
 x[n]=x[-n] 
 
For example, function x(t) has even symmetry. 

 
 

 Odd Symmetry exists when: 
 x(t) =-x(-t)  
 x[n]=-x[-n] 

Note:  odd symmetric function by definition must be 0 at n=0 or t=0.  
 
For example, function x[n] has odd symmetry. 

 

n

x[n] 

2

4

5

-4
-5

-2

-1 1 2 4 
t 

x(t) 

-4 -2 



Signals & Systems  Page 17 
 

 Examples – Odd/Even 
Are Sin() and Cos() functions odd or even? 
 
Solution:  
  Student Exercise 
 

If a signal is neither odd nor even then must be a function with mixed symmetry.  At times, it is useful to 
analyze the signal’s odd and even components independently.  Below is the process to find the even and 
odd components of any signal: 
 

 Continuous-time 
 Even {x(t)} = ½{x(t) + x(-t)} 
 Odd {x(t)} = ½{x(t) –x(-t)}  

 
 Discrete-time 

 Even {x[n]} = ½{x[n] + x[-n]} 
 Odd {x[n]} = ½{x[n] –x[-n]}  

 
For example, x(t) = 2t + 1 is neither purely even nor purely odd but has mixed symmetry.  Here is the 
process to find the even and odd parts of this mixed signal: 
 
  Even {x(t)} = ½{x(t) + x(-t)} = ½ {2t +1 -2t +1} = 1 
  Odd {x(t)} = ½{x(t) –x(-t)} = ½ {2t + 1 +2t -1} = 2t 
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 Examples – Odd/Even Part 

Find odd and even part of X[n] 

   
 
Solution:  
  Student Exercise 
 

 
 
 
 
 
 
 
 
 
 
 

 Examples – Odd/Even Part 
Find odd and even part of the following function: 
  x(t) = 3t + cos(t) 
 
Solution:  
  Student Exercise 
 

 
 
 
 
 
 
 
 
 
 
 
 
  

n

x[n] 

2

4

-4

-2        -1         0       1         2     3

-2



Signals & Systems  Page 19 
 

Now that we have the definition for periodic signals and symmetry, we are ready to introduce the 
Complex Exponential and Sinusoidal Signal classes.  This class of signals is the basis of signal definition 
throughout this text and is the most common approach to signal definition in the industry. These signals 
serve as a basic building block of many common signals.  
 
This section covers the Continuous-Time(CT) first, followed by Discrete-Time(DT) classes of Complex 
Exponential Sinusoidal Signals. 
 
 Continuous-Time Complex Exponential Sinusoidal Signals 

The general form of Complex Exponential and Sinusoidal is best stated by the following: 
 

  atCetx )(   Where C and a are both complex numbers 

   imagreal
j jaaeaa a  ||  

   imagreal
j jCCeCC c  ||  

 
The simplest form of x(t) is when a=0 which resolves x(t) to simple constant value.  The next simplest 
form of x(t) occurs when both a and C are real.  In this case x(t) resolves to real exponential signal.  
Depending on the sign of a, x(t) may be growing and decaying exponential as shown below: 

 

 
Another subclass of signals are when “a” is pure imaginary which results in: 
 

   tjwetx 0)(   Complex Periodic Exponential. 

 
The Complex Periodic Exponential signals have a number of important properties which are listed 
below: 
 
 Periodicity 

Of course this signal is periodic which means: 

  )(00)( Ttjwtjw eetx   Where 

   
0

0

2

w
T


  is fundamental period and T is multiple of T0 

 
Here is the proof that the above equality is true: 
 

x(t) 

t 

C 

x(t) has the exponential decay 
form when (a<0) 

x(t) 

t 

C 

x(t) has the exponential growth 
when (a>0) 
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jethen
w

nTSince

TwjTwelationsEulerapply
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0

000

)(

0

00

)(

)(

101
2

sincosRe'

)(













  

 
 Sinusoidal Signal 

The Sinusoidal Signal )cos()( 0  twAtx  is closely related to Complex Periodic Exponential 

(Real part of the signal) which is demonstrated below using Euler’s Relation: 
 

}{Im)sin(

}{Re)cos(

:
22

)cos()(

sincosRe':

)(
0

)(
0

0

0

0

00




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





















tjw

tjw

tjwjtjwj

jb

eanginaryAtwA

ealAtwA

itwritetowayAnother

ee
A

ee
A

twAtx

bjbelationsEulerNote

 

 
 Average Power and Total Energy 

Use the Average Power and Total Energy equations to calculate the corresponding for Complex 

Periodic Exponential signal tjwetx 0)(  . 

 

1
2

||
2

1
|)(|

2

1
lim 22 0 


 


 T

TT
dte

T
dttx

T
P

T

T

tjw
T

T
T

 

 

 







 dtedttxE tjw 22 |||)(| 0  

 

Note: 1|||)(| 0  tjwetx ; to prove this equality use Euler’s Identity "sincos" ajae ja  . 

 

 Finally, the General form of Complex Period Exponential Signals atCetx )(  Where: 

 

  jeCC ||  C is complex represented in Polar Form 

  0jwra   a is complex represented in Rectangular Form 

 
 

The above relationships may be used to rewrite atCetx )(  in a form that we are more familiar 

with, using Euler’s Identity: 
 

  
)sin(||)cos(||)(

||||)(

00

)()( 00







 

tweCjtweCtx

eeCeeCCetx
rtrt

twjrttjwrtat

 

 
Below are the graphical representations of Real Part of x(t) (imaginary is ignored): 
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 Example – Complex Exponential Signals 

Given the ability to generate complex exponential signal, x(t)=Ceat, show how you can generated 
cos(wt) signal. 
Note: a and C are complex numbers and you may utilize Euler’s Identity. 
 
Solution: 
 
 

 

x(t) 

t 

r=0 “a is pure imaginary” 
x(t)=|C|cos(w0t + ) 
Constant Sinusoidal Signal 

x(t)

t

r>0 
x(t)=|C|ertcos(w0t + ) 
Growing Sinusoidal Signal 

x(t)

t

r<0 
x(t)=|C|ertcos(w0t + ) 
Decaying Sinusoid Signal 
damped sinusoid- RLC Circuit 
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 Discrete-time Complex Exponential Sinusoidal Signals 
A similar process that was applied to Continuous-Time to explore, may be used to explore Discrete-
Time Complex Exponential Sinusoidal Signals.  The general form of complex exponential signal in 
Discrete-Time is defined by: 
 
  x[n]=Can  Where C and a are both complex numbers in general case 

   imagreal
j jaaeaa a  ||  

   imagreal
j jCCeCC c  ||  

 
Note this equation is similar to Continuous-time.  It may be easier to see the similarity if you replace a 
by eB which results in x[n]=CeBn 
 
In the simplest case, when “a” and “C” are both real the complex exponential signal will be reduced 
to:  
 
  x[n]=Can    Real Exponential Signals  
 
There are four types of Real Exponential Signal based on the values of “a” as shown below: 
 

 
Sinusoidal Signals are the next subclass that is deemed useful.  This subclass is derived when |a|=1 

n 

n 

n 
X[n] when a>1 

signal grows exponentially 
X[n] when 0<a<1 

signal decays exponentially

X[n] when a<-1 
signal grows exponentially, sign alternates

n 

X[n] when -1<a<0 
signal decays exponentially, sign alternates
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and B is pure imaginary (B=jwon) as shown below: 
  

  njwCenx 0][   Sinusoidal  Signals 

 
Using Euler’s identify, we can rewrite the above equation in term of complex exponential by: 
 

  njwjnjwj ee
A

ee
A

nwA 00

22
)cos( 0

   

 
Now is the time to explore general form of Complex Exponential Periodic Signals in Discrete-Time. 
First, let’s rewrite the General Complex Exponential Signals in order to interpret it in-term real 
exponential and sinusoidal signals. 
 
Apply the polar form of C and a to X[n] general form equation:  
 

  
)sin(||||)cos(||||][

||&||

00

0









nwaCjnwaCCanx

eaaeCC
nnn

jwj

 

 
The above general form may be represented by one of the following three graphs based on the range 
of “a” values. 

 
 

 

n

x(t) when |a| > 1  “Sinusoidal Multiplied by growing exponentials” 

n

x(t) when |a| = 1  “Real & imaginary part of complex exponential are sinusoidal” 
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 Discrete-time has similar periodic properties as Continuous-Time but there are also important 

distinctions.  The exponential signal with frequency wo is the same as any signal with frequencies 
(wo + 2k) where k is an integer: 
 

  
njwnjnjwnwj eeee 000 2)2(     Real part or Cos(w0n) is typically plotted. 

 

Although any 2 period may be used to as the period, commonly intervals 20 0  w  or 

  0w  are used. 

 
A few additional points to consider: 
 
 wo at 2n and 0 which produce the lowest rate of oscillation: 

102  jj ee 

 
 wo at n produces the highest number of oscillations njne )1(  

 
 

 x[n]= njwe 0  is periodic with period N only if woN is a multiple of 2. 
It is important to note that unlike the Continuous-Time, woN is not guaranteed to be a multiple 

n

N =2 sample Period 
w0 = 2/N =  
x[n]=cos(n) 

…  

n

N =1 sample Period 
w0 = 2/N = 2 
x[n]=cos(2n)=cos(0) 

…  

n

x(t) when |a| < 1 “Sinusoidal multiplied by decaying exponentials” 
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of 2.  Therefore we need to ensure it is true when analyzing a signal. 
 
Starting with the definition of periodicity.  IN order for x[n] to be periodic with period N, it must 
satisfy: 

  
)(00

Nnjwnjw ee    For this equation to be true, 

  equation mjNjw ee 210    must hold true 

  Which means mNw 20    

  therefore 

   fundamental frequency. 
N

m
w

2
0   

   fundamental period is )
2

(
0w

mN


  

     when integers m and N have no common factors 
 

Finally, note that 
2
0w

 must be rational number for signal njwe 0  to be periodic. 

 
 Examples – Fundamental Period and Frequency 

 Example – Find the fundamental period and frequency of the following Discrete-Time signals:  

 
Solution: 
  N =12 Sample Period 
 w0 = 2/N = /6 
 x[n]=cos(n/6) 
 

 Example – Find the fundamental period and frequency of the following Discrete-Time signals: 

 
Solution: 
  N =8 Sample Period 
 w0 = 2/N = /4 

n

…  

n

…  
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 x[n]=cos(n/4) 
 

 Example – what is the fundamental frequency and period of the combined discrete-time signals 
represented by the following equation: 

njnj eenx )6/2()8/4(][    

 
Solution: 
  First term has fundamental period N1=4 
  Second term has fundamental  period N2=6 
 
  x[n] fundamental period, N, is the lowest common multiplier by N1 & N2  
  N = 12 (evenly divisible to both terms fundamental period) 
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 Summary of comparison of Continuous-Time x(t)= tjwe 0 and Discrete-Time x[n]= njwe 0  
 

Continuous-time x(t)= tjwe 0  Discrete-time x[n]= njwe 0  
Each Distinct value of w0 results in unique signals w0 values separated by 2 are identical signals 

Signal is Periodic for all values of w0 = 2/T Signal is Periodic only if period N = 2m/ w0 is 
integer and positive for a integer value of m 

Fundamental frequency w0 w0 = 2m/N is fundamental frequency where 
integer m and period N do not have any common 

factors” 
 
 Example – Draw the following signals and find the period (if periodic) for the following signals: 

 
a) x[n] = cos(2n/12) 
b) x(t) = cos(2t/12)  
c) x[n] = cos(8n/27) 
d) x(t) = cos(8t/27) 
e) x[n] = cos[n/6] 
f) x(t) = cos(t/6) 
 
Solution 
a) Periodic with period N=12 
b) Periodic with Period T=12 
 
Remaining parts are to be completed by the students. 
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1.6.  Unit Impulse and Unit Step Functions 

Unit Impulse and Unit Step functions are two ideal signals specially defined as a tool for signal 
processing.  Both signals are crucial in our ability to model systems mathematically.  In this section we 
will define these functions. 
 
 Discrete-Time Unit Impulse and Unit Step Function 

 
 Unit impulse, [n] (or unit sample) 

Unit impulse is equal to 1 only when the independent variable is equal to 0; otherwise unit 
impulse is 0. 
 

 
Here are a couple of relationships that explain the reason for also referring to impulse function as 
sample function. 
 

  


n

[0]x = [n] x[0]= [n]x[n]   

  To prove refer to the definition of [n] which says [n] is only 1 at n=0 
 
The more general form of the above equation is shown below: 

  


n

][nx = ]n-[n] x[n= ]n-[nx[n] 0000    

 
Unit impulse is commonly referred to simply as impulse function. 
 

 Unit Step function, u[n] 
Step response is equal to 1 as long as the independent variable is larger or equal to 0. 
 

 
It is commonly referred to Unit Step function as simply Step function. 
 

 Relationships between Step and Impulse functions 
 
*  From Step to Impulse function conversion 
.  [n]=u[n]-u[n-1] 
 
*  From Impulse to Step Function conversion 

1 

0 

u[n] 
0,1

0,0




n

n

n 

. . .

1 

0 

 [n] 
0,1

0,0




n

n
 

n   “Greek character Delta” 
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  u[n]= 





0

][
k

kn  

 
 Example -  write the following function in term of step functions and then again in terms of 

impulse function. 

Solution: 
  Step Function Representation: 
  x[n] = 6u[t]  - 6u[t-5] 
 
  Impulse Function Representation: 
  x[n]= 6{ [0] + [1] + [2] + [3] + [4] } 
 

 Example -  write the following function in term of step functions. 

Solution: 
  <Student Exercise> 
 
 
 
 
 
 
 

 
 Continuous-time Unit Impulse and Unit Step Response 

 
 Unit impulse, (t)  (or unit sample) 

Unit Impulse function has no duration but the unit area is 1. 

 
Unit impulse is commonly referred to simply as impulse function.  Impulse function is also used to 
sample value of a continuous function utilizing the following property of impulse function: 

1 

0 

(t) 
0,1

0,0




t

t
 

t 

(t) 

n
0  1  2  3  4 

4 

-10  -9  -8  

n
0  1  2  3  4 

6 
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  x(0))()x( 




 d   

  This is true based on definition of (t) which say it is only 1 at t=0 
 
Here is a more general form: 

  )x(t)()x()()x( 0000 




tttdt    

 
 Unit Step, u(t) function 

Step function is equal to 1 when t>0 and is equal otherwise.  Step function is undefined at t=0. 

 
Unit Step function is commonly referred to simply as impulse function 
 

 Relationship between Impulse and Unit Functions 
Impulse function may be written in-term of Unit Step Function using the following relationship: 

  
dt

tdu
t

)(
)(   

 
Below is the graphical representation: 
 

 
Another approach is to write Unit Step function in-term of Impulse Function using: 

  



0

)()(  dtu  

 
 Example – Draw the function x(t)=u(t-5) + 3(t+3). 

 
Solution: 

1 

0 

t 

 

u(t) where 0 

1/ 

0 

t 



(t) where 0 

1 

0 

u[t] 
0,1

0,0




t

t
 

t 
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 Example – Write the function for the following function in term of step functions. 

 Solution: 
 
x(t) = u(t+3) – 3u(t-4) 
 
 
 
 
 
 

 Example – Draw the function represented by: 
  x(t)= u(t + 3)u(-t + 3) + 5∂(t - 4) 
 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 

-3       0           4 

t 

x(t) 

-2 

3 

1 

-3       0           5 

t 

x(t) 
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 Example – Determine the non-zero values of the function {x(t-6)u(t-9)} give the following x(t): 
 

 
Solution: 
 
The function is non-zero, {x(t-6)u(t-9)}=4 when t≥9. 
 
 

 Example – Determine the non-zero values of the function {x(t-4)u(-t+1)} give the following x(t): 
 

 
Solution: 
  Student Exercise 
 

2

-3      -2      -1                  1         2         3 

t 

x(t) 

-2 

4

-4 

2

-3      -2      -1                  1         2         3 

t 

x(t) 

-2 

4

-4 
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1.7.  Fundamental System Properties 

As it was discussed earlier the concept of signal and systems applied to a broad range of fields beyond 
Electrical Engineering.  The power of signal and system comes from the fact that all problems to be 
solved or analyzed can be modeled as a system. 
 
A System is a mathematical model of physical systems that has a set of inputs and outputs.  It 
additionally describes a transformation from the input to output signals.  A system diagram for fully 
discrete-time or fully continuous-time is shown below: 

 
 
More complex systems can be designed by interconnection systems in order to perform more complex 
tasks.  Systems are typically interconnected in one of the following four configurations: 
 

 

 

System 
A

System 
B

Parallel Interconnection 

Input + Output 

System 
A

System 
B

Cascade (Series) Interconnection 

Input Output 

Continuous-time 
System 

Discrete-time 
System x[n] 

y(t) X(t) 

y[n] 
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There are six fundamental system properties which are discussed here.  These properties will play crucial 
role in the development of additional signal and system tools used to analyze and design systems. 
 
The six properties are Memory, Invariability, Causality, Stability, Time Invariance and Linearity.  The rest 
of this section will explore each of these properties in more detail. 
 
 Memory 

A system with the ability to retain information is referred to as a system with memory.  For example 
Capacitors and inductors can be considered systems with memory.  While resistor is considered 
memory-less since it does not have the capacity to retain information and only depends on present 
input. 
 
Mathematically, the distinction is made by the following definition of memory-less system and system 
with memory: 
 

 Memory-less System 
In a memory-less system, output only depends on present input, x(t). Below are a few 
examples of Memory-less systems: 
 

(a) y[n] = 20x[n] – x4[n]  
(b) y(t) = Rx(t) 
(c) The simplest memory-less system is the identity system where output is identical to 

input  y(t)=x(t) or y[n]=x[n] 
 

 System with memory 
In a system with memory, output depends on either past or future input.  Below are examples 
of systems with memory: 
 

(a) y[n] = x[n+1] 
(b) y(t) = x(t) + 5x(t-3) 

(c) 



n

k

kxny ][][  

(d)  


t
dx

k
ty )(

1
)(  

The above equation represents a capacitor if y(t)=v(t), x(t)=i(t) and k=C or the 

System 
A

System 
B

Feedback Interconnection 

Input + Output 

System 
B

System 
C

Series-parallel Interconnection 

Input + Output 

System 
A
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equation represents an inductor if y(t)=i(t), x(t)=v(t) and k=L. 
 

 Invertibility 
A system is invertible if the system generates unique output in response to a unique input.  In this 
type of systems, output may be used to uniquely identify the input which is the benefit of Invertibility. 
 
In a invertible system, an inverse system exists such that when cascaded with the original system, 
the output of the combined system, w[n] is the same as the input x[n] 

 
For example y[n]=3 is not invertible since there is no way to identify a unique input on the other hand 
y(t) = 4x(t) is invertible since input is uniquely related to the output. 
 
The system described by y(t)=x2(t) is not invertible since the sign of input is lost therefore input cannot 
be uniquely identified based on output. 
 
The concept of Invertibility is key to any system that takes an input that needs to be recovered at 
some point in the future.  For example cell phones and computers.  Can you think of any other ones? 
 

 Causality 
A system is causal if the output depends only on present and past input.  The causal system does not 
anticipate input which is the reason it is also called no anticipative system. On the flip side, a non-
causal system depends on the future input. 
 
 Example -  Is the system described by y[n]=x[n]+x[n+3] Causal? 

Solution: 
  The system is non-causal since it depends on x[n+3] which is a future input. 
 

 Example -  Is the system described by y[n]= x[-n] Causal? 
Solution: 
  Before answering try n=-2  note that y[-2]=x[2] is noncausal 
 

 Example -  Is the system described by y(t)=x(t)sin(t+2) Causal? 
Solution: 
  Yes, since it only depends on current x(t).  Note that sin(t+2) is just a 
  factor and has nothing to do with the input. 
 
The concept of causality is a valuable concept in speech, image processing as well as 
geographical/meteorological signals. 
 

 Stability 
A Stable system is one in which small inputs lead to responses that do not diverge.  An example of a 
stable physical system is a ball sitting at the bottom of inverted cone. On the other hand if the ball is 
balance on top of a cone, it is unstable since the slightest force will dislodge the ball from the top.  In 
general, stability of physical systems results from the presence of mechanisms that dissipate energy. 
 
A system is said to be stable if the system output is bounded in response to all bounded input.  In 
other words, if the input is finite (|x(t)|<∞) then the output also will be finite. 
 
 Example -  Is the system described by y(t)=tx(t) stable? 

Solution: 
  The system is unstable since for bounded x(t)  y(t) is unbounded as  

y(t) = 5x(t) w(t) = (1/5) x(t) x(t) 
y(t) 

w(t)=x(t) 
System Inverse System 
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  t approaches infinity. 
 

 Example -  Is the system described by y(t)= ex(t)  stable? 
Solution: 
  The system is stable since y(t) is bounded as long as x(t) is bounded.  
 

 Time Invariance 
A system is time invariant if the system characteristic does not change over time. For example a 
typical RLC circuit is time invariant since its behavior does not change for one minute to the next. 
 
The formal definition is that a system is time invariant if an input shift-in-time results in an identical 
time-shift in the output. 
 
 Example - Is the system described by y(t)=5 cos[x(t)] time invariant? 

Solution: 
  First apply the input x1(t) to the system 
   y1(t)=5cos[x1(t)] and shift by t0   y1(t-t0)=5cos[x1(t-t0)] 
  Second apply the time shifted input x2(t) = x1(t-t0) to the system  
   y2(t)=5cos[x1(t-t0)] 
 
. Since y1(t- t0) = y2(t) then the system is time invariant.  
 
 

 Example: Is the system described by y[n]=2nx[n] time invariant? 
Solution: 
Using the formal approach… 
 
 First apply the input x1[n] to the system 
   y1[n]=2nx[n] and shift by n0   y1[n-n0]=2(n-n0)x1[n-n0] 
  Second apply the time shifted input x2[n] = x1[n-n0] to the system  
   y2(t)=2n x1[n-n0] 
 
. Since y1(t- t0) ≠ y2(t) then the system is not a time invariant system. 
  
Alternative approach - Sometime it is easier to find one input that violates the time invariant rule 
such as is done below:  
 
  1) set x1[n]=[n]    y1[n]=n[n]=0 always    (Hint:  [n]=1 only if n=0) 
  2) set x2[n]= [n-1]      y2[n]=n[n-1]= [n-1] 
 
  Since y2[n] from shifted input is not equal to shift output y1[n-1]  then  
  this is not a time invariant system.  
 
 

 Example: Is the system described by y(t)=x(t + 2) time invariant? 
Solution: 
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 Linearity  
A linear system exhibits the superposition property which defines linearity.  The superposition has the 
following two characteristics: 
 
  1) Additive Characteristic  response to x1(t) + x2(t) is y1(t) + y2(t) 
 1) Homogeneity Characteristic  response to ax1(t) is ay1(t) where a is any complex constant 
 
Both of the characteristics can be combined to a single statement which may be state for CT and DT 
as shown below:  
 
  Continuous-Time (CT):  ax1(t) + bx2(t)    ay1(t) + by2(t) 
  Discrete-Time (DT):  ax1[n] + bx2[n]  ay1[n] + by2[n] 
  Note: a and b can be complex numbers. 
 
The Superposition property statements can be generalized to: 
 

  Continuous-Time (CT):   
k

kk
k

kk tyatytxatx )()()()(  

  Discrete-Time (DT):   
k

kk
k

kk nyanynxanx ][][][][  

 
 
 Example - Is the system described by y(t)=tx(t) linear? 

 
Solution 
  Apply x1(t)  y1(t)=tx1(t) 
  Apply x2(t)  y2(t)=tx2(t) 
 
  x3(t)= ax1(t) + bx2(t)   y3(t)=t{ax1(t) + bx2(t)}  
 
  Since y3(t) = ay1(t) + by2(t), This is a linear system. 
 
 

 Example -  Define the properties of a system where x(t) is the input and y(t) is the output as 
defined below: 
  a) y(t) = 2t + 1 
  b) y(t) = 2x(t) +1 
  c) y(t) = t2 + x(t+1) 
  d) y(t) = (t-1)x(t) 
 
Solution 
  Student Exercise. 
 
 
 
 
 
 
 
 
 
 
 
 

Note 
if y3(t) = ay1(t) + by2(t)  
Then “a linear system” 
Else “Not a linear system” 



Signals & Systems  Page 38 
 

 Example -  Define the properties of a system where x[n] is the input and y[n] is the output as 
defined below: 
  a) y[n] = x[n] 
  b) y[n]=x[n+1] 
  c) y[n] = x[n]x[n-2] 

  d) 





0

0

][][
nn

nnk

kxny  

Solution 
  Student Exercise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Example -  Define the properties of a system where x[n] is the input and y[n] is the output as 
defined below: 
  y[n] = cos[w0n + ] x[-n + 3]{u[-5 + n] – u[n - 9]} 
 
Solution 
  Student Exercise. 
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1.8.  Statistical Properties of Noise 

Discussion of signal and system is not complete without an overview of noise in the system.  As the name 
implies noise is an unplanned, unwanted and in many cases an unknown quantity in the system.   Noise 
may have been introduced to the system from other devices, natural phenomenon or the system itself.  
The goal of designer is to be able to separate the signal which carries the information even in a noisy 
environment. 
 
In cases where Noise is understood and has a well define characteristic, then it may be filtered out but 
when the noise is distributed over a range and has a random nature then a broad solution is need based 
on the profile of noise.  The most common approach to understanding and treatment this type noise is 
through probabilities and statistics.  
 
In this section we will introduce one of the most common noise classes which are the white noise.   White 
noise is a random signal which is distributed with a uniform, Gaussian or other probability distributions. 
Before discussing an example of white noise distribution, let’s start with the definition of probability 
distribution. 
 
In statistics, a probability distribution is defined as: 
 

 the probability of occurrence of any value of an unidentified random variable for Discreet-Time. 
 the probability of occurrence of any value falling within a particular interval for Continuous-time. 

 
The most common type white noise is the uniformly distributed white noise which is a random signal with 
a uniformly distributed value distribute between two frequencies. 
 
 Discrete Uniform Distribution 

Discrete Uniform Distribution is a discrete probability distribution that allows all values of a finite set 
equal probability of occurring.  Let’s say the set of possibilities are A{A1, A2, … An) and they are 
distribution uniformallly.  At any given point, each possibility (Ai)  has probability equal to (1/n) to be 
present. 
 
In Matlab such a discrete uniformally distributed white noise may be created by the use of random 
number generator that is limited to the list of possibilities. 
 

 Continuous Uniform Distribution 
Continuous Uniform Distribution is a probability distribution where each value in a given range has 
equal probability of occurring.  Below is the probability function: 

Probability Density 
Function 

t 
Min                          Max 

1/(Max –Min) 
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
















MaxtorMintwhen

MaxtMinwhen
MinMaxtp

0

1
)(  

The uniformally distributed white noise plays an important role since it allows testing of design to verify 
that the signal can be recovered when noise is present at a given range of frequencies.  The random 
nature forces designer to solutions other than filter which are static in their basic implementation. 
 
Signal and Noise is an integral part of signal and systems student so will be encountering them again. 
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1.9.  Chapter Summary 
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1.10.  Additional Resources 

 
 Oppenheim, A.  Signals & Systems (1997) Prentice Hall 

Chapter 1. 
 

 Modern Digital & Analog Communication Systems (1998) Oxford University Press 
Chapter 2 
 

 Stremler, F. Introduction to Communication Systems (1990) Addison-Wesley Publishing Company 
Chapt 2 
 

 Introduction to Statistics 
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1.11.  Problems 

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 2. Linear Time-Invariant (LTI) Systems 

 
Key Concepts and Overview 
 
 Linear Time Invariant (LTI) System Overview 

 Convolution Sum in Discrete-Time LTI Systems 

 Convolution Integral in Continuous-Time LTI Systems:  

 LTI Systems Properties 

 Differential/Difference Equations 

 Additional Resources 
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2.1.  Linear Time Invariant (LTI) System Overview 

Fundamentals of signals and systems were introduced in previous chapter.  In this chapter, the focus is 
on defining Linear Time Invariant (LTI) systems which serve as the start point for modeling systems.  LTI 
systems also are the foundation for the topics covered in the next chapters.  Linear Time Invariant 
systems as the name implies have two defining properties: 
 

 Linearity 
In a linear system superposition hold true which means responses to individual input can be 
summed up to calculate the total system response. 
 

 Time-invariance 
Time-invariance provides for shifting input in time and expecting output to shift in time without 
changing its characteristic. 
 

The following sections explore the concepts of system impulse response, convolution sum/integration, 
and difference/differential equations for both the Discrete-Time and Continuous-Time Linear Time 
Invariant (LTI) systems. 
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2.2. Convolution Sum in Discrete-Time LTI Systems 

Any signal may be describe using impulse functions as discussed in the previous chapter.  In general any 
signal can be written as: 
 

  
][][][

...]2[]2[]1[]1[][]0[]1[]1[...][

knkxnx

nxnxnxnxnx

k













  

 
This equation is built based on the fact that impulse function can be used to isolate (or sample) a single 
value of the signal out of the total signal.  This feature is referred to as the sifting property of the unit 
impulse function.  Again, the unit impulse function [n-k] is non-zero only when k=n, so it sifts through the 
signal for value of x[k].  Also, step function u[n] is related to impulse function as it is described by the 
following equation: 
 

   ][][
0

knnu
k

k

 




  

 
 Examples – Use of Impulse Function to Describe a Discrete-Time Signal 

 
 Example – Use the sifting property of impulse response functions to mathematically describe the 

function described graphically by the following: 
 

 
Solution: 
 ]3[]1[][2]1[2][  nnnnnx   

 
 

 Example – Plot the function described by the following equation: 

 ]2[)1(]3[2][
3

2

knnnx
k

k  


  

 

x[n] 

. . . . . . 
-3     -2    -1    0        1       2      3         4       5 

2 

-2 

-1 

1 



Signals & Systems  Page 47 
 

Solution: 

 

x[n] 

. . . . . . 
-3      -2     -1     0        1       2        3       4      5      6  

2 

-1 

1 
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 Unit Impulse Response 
LTI systems may be characterized by their unit impulse response or simply impulse response, h[n].  
Impulse response is the superposition of responses of the LTI system to impulse function from 
negative infinity to positive infinity.  The following diagram shows the relationship among the impulse 
response, input and output: 
 

 
Another way of stating the same concept is that the response of a linear system to x[n] is the 
superposition of the scaled system responses to x[n].  This can be represented by: 
 
   h[n-k]=a[n-k]  when n=k 
 
The next section leverages this finding to calculate output based on input and impulse response. 
 

 The Convolution Sum 
The convolution sum is a method of finding output, y[n], of a system in response to an input signal 
x[n] that is not the impulse function, [n].  This is done with the use of the convolution sum and the 
impulse response function, h[n].  Conceptually, each non-zero value of input should be multiplied by 
each non-zero value of h[n] and summed to calculate the value of the output.  This is implemented by 
the following equation which is referred to as the convolution sum: 
 

  

][*][][

][][][

nhnxny

knhkxny
k

k



 


   “The Convolution Sum and corresponding notation” 

 
Another useful tool in understanding and applying the convulsion sum is graphical approach.  The 
following steps can be used to graphically calculate the output using the convolution sum: 
 

(1) Draw signal h[n-k] 
* Reflect h[k] about the k=0 axis which results in h[-k] 
* Shift h[n-k] from -  to + by changing n from -  to +.  
   Identify intervals where h[n-k] & x[k] hold their function and neither is zero.  
 

(2) Calculate the product of x[n] and h[n-k] from -  to + 
Note: There may be many intervals that the products are zero. 
 

(3) Sum the product of h[n-k] and x(k) 
 

  

h[n] 
Impulse Response 






k

k

knnx ][][   y[n]=h[n] 
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 Examples – The Convolution Sum 

 
 Example – For the following Linear Time Invariant (LTI) system, use the convolution sum 

equation and graphical method to find y[n]: 
 
 

 
Solution: 
 
   Using equation to calculate y[n] 
 

 ][][][ knhkxny
k

k

 




 

  Note: only at k=0 and 1, input is non-zero therefore y[n] is: 
  y[n]=x[0]h[n] + x[1]h[n-1] = h[n] + 3h[n-1]  
  Furthermore h is only non-zero at n=1,2 and 3 therefore: 
 

  

n 

y[n] 

0  1   2   3    4   5 

8 

2 

6 

n 

h[n] 

n 

x[n] 

1 2 3 

0 1

2 

1 

3 

h[n] y[n] x[n] 
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   Using Graphical application of the Convolution Sum to calculate y[n] 

 

h[-k] 
”reflected h[k]” 

y[n] 
”sum of the products of h[n-k] 
and x[k]” 

k 
-3   -2  -1 

2 

k 

x[k] 

0 1

1 

3 

h[n-k] 
”move h[n-k] as n 
goes from -∞ to +∞” 

k n-3  n-2  n-1 

2 

n 
{-∞ to +∞}

n=1   Overlap Region   n=4 

n 
0  1   2   3    4   5 

8 

2 

6 
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 Example - Find the value of y[n] by applying the convolution sum graphically to the following LTI 
system: 
 

   x[n] =  
otherwise

n

0

401 
      &          h[n]=   

otherwise

nan

0

60 
 

 
Solution: 

Apply ][][][ knhkxny
k

k

 




 graphically 

 

 

K 0 

K 

K 0 

K 

0 

0 

K 0 

K 

n 0 

0 

x[k] 

h[n-k] for n<0  no overlap 

0][][][
0

 


knhkxny
k

 

h[n-k] for 40  n   partial right Overlap 

40][][][
0

 


kknhkxny
n

k

 

Y[n] 
= 0 for  n < 0 

= 40
1

1 1

0










 nfor
a

a
a

nn

k

kn
 

= 64
1

146

4










 nfor
a

aa
a

nn

k

kn  

= 106
1

744

6










 nfor
a

aa
a

n

nk

kn  

= 0 for  n > 10 

n-6 n 

h[n-k] for 64  n   full Overlap 

40][][][
4

0

 


kknhkxny
k

 

h[n-k] for 106  n   partial left Overlap 

4)6(][][][
4

)6(

 


knknhkxny
nk

 

h[n-k] for 10n   no Overlap 
0][ ny  

Interval 1: 

Interval 5: 

Interval 4: 

Interval 3: 

Interval 2: 

4 6 10 

y[n]: 
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 Example – Convolution Find the value of y[n] by applying the convolution sum to the following LTI 
system and input: 

 
Solution: 
  Student Exercise  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Example – Find and plot y[n] for an LTI system where: 
  Input, x[n] = 20 sin(0.005πn){u[n-3]-u[n-9]} 
  Impulse response, h[n]= 10e-n{∂[n+1] + 3∂[n+10]} 
 
Solution: 
  Student Exercise  
 
 
 

  

h[n] =  

]2[][3  nnn   

y[n] x[n] =  

   ]}6[2]2[]5[{3  nununue n  
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2.3.  Sidebar Notes (Useful Relationships) 

 
Geometric Series are useful in simplifying the results of the Convolution Sum: 
  
  1) Finite Geometric Series:   

   
r

rr
r

nmn

mk

k








 1

1

 

 
  2) Infinite Geometric Series (n=∞) when |r|<1: 

   
r

r
r

m

mk

k






 1
 

 
 3) Infinite Geometric Series (n=∞) when |r|<1 and m=0:  

   
r

r
k

k






 1

1

0

 

 
The Geometric Series may be used to derive more complex series such as: 

  
)cos(21

)sin()sin(
2

0 xrr

xr

r

kx

k
k 





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2.4.  Convolution Integral in Continuous-Time LTI Systems 

The convolution integral approach to calculating output in Continuous-Time LTI system is similar to the 
one introduced in the previous section for the Discrete-Time.  Of course the main difference is that the 
interval between two adjacent points on the signal is infinitely small (∆t0). 
 
LTI systems may be characterized by their unit impulse response or simply impulse response, h(t).  
Impulse response is the superposition of responses of the LTI system to impulse function from negative 
infinity to positive infinity.  The following diagram shows the relationship amongst impulse response, input 
and output: 
 

 
 
Similar to the Discrete-Time, unit impulse function’s sifting property “x()(t-)= x(t)(t-)” can be used to 
represent a single value of the signal (sample) as shown below: 
 

 
Extending the sifting property of impulse function, all of input signal, x(t), to the LTI system is represented 

x(t) 

t 

(t-) 

t 
 

1 

Sifting Property: x()(t-)= x(t)(t-) 

t 
 

x() 

h(t) 
Impulse Response y(t)=h(t)  dttx )()(  




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by: 
 

 
 
The Continuous-Time convolution integral is a method of finding system output, y(t), that is generated in 
response to an input signal x(t), using the impulse response function, h(t).  It is important to note that x(t) 
is not necessarily just an impulse function, (t). 
 
Conceptually, each non-zero value of input should be multiplied by each non-zero value of h[n] and 
summed to calculate the value of output.  This is implemented by the following equation which is called 
the convolution integral: 
 

  

)(*)()(

)()()(

thtxty

dthxty



 





  “The Convolution Integral and corresponding notation” 

 
Another useful tool for understanding and applying the convulsion integral is using graphical approach.  
The following steps can be used to graphically calculate the output using the convolution integral: 
 

(1) Draw the impulse response transformation, h(t-) 
*  Reflect h()about the k=0 axis which results in h(-) 
*  Shift h(t-)from -  to + by changing n from -  to +.  
   Identify intervals where h(t-)& x() hold their function and neither is zero.  
 

(2) Calculate the product of x() and h(t-) from -  to + 
Note: There may be many intervals that the products are zero. 
 

(3) Sum the product of h(t-) and x() 
 

  

h(t) 
Impulse Response y(t)  dtxtx )()()(  




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 Example – The Convolution Integral 

 
 Example - Find y(t) for the Linear Time Invariant (LTI) system described by “h(t) = 2u(t)” when 

input is “x(t) = e-3t u(t)”. 
 
Solution: 
 

 

 

h() 

 

x() 

1 

2 

0 

0 

 

h(t-) 

2 

0 
t 

 

h(t-) 

2 

0 
t 

Interval 1:  For t<0  y(t)=0 

Interval 2:  For t≥0 

 

)1(
3

2
)(

)(
3

2
2)(

)()()(

3

03

0

3

0













t

t
t

t

ety

eedety

dthxty





  

t 
{-∞ to +∞} 
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 Example - Find y(t) for the Linear Time Invariant (LTI) system described by: 

 
Solution 
 

 
 

 Student Exercise - Find the value of y(t) by applying Convolution Sum to the following LTI system 
and input: 

 
 

h(t) =  

]2[]1[2  ttt   

y[n] x(t)=  

   )}6(2)2()5({4  tututue t  

 

h() 

 

x() 

1 

1 

5 

0 

 

h(t-) 

1 

0 t- 5 

 

h(t-) 

1 

0 

Interval 1:  For (t- 5)0    t5 

)5(9
5

9
5

9

1
)()()( 









  t
tt

ededthxty  
 

Interval 2:  For t -5 >0   t>5 

9

1
)()()(

0
9

0

 


  dedthxty  

t- 5 

h(t) = u(t-5) y(t) x(t) = e9t u(-t)  
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2.5.  Linear Time-Invariant (LTI) Systems Properties 

This section re-examines the system properties which were initially introduced in the previous section.  In 
this section, the focus is on Linear Time-Invariant Systems and the convolution operations.  The 
remainder of this section characterizes LTI systems in-terms of system’s Impulse response, h(t): 
 
 The Commutative Property 

The Commutative Property asserts that the order of convolution does not impact the results. The 
commutative property is represented by the following equations: 
 

  
























kk

knxnhknhkxnxnhnhnx

dtxhdthxtxththtx

)(][)(][][*][][*][

)()()()()(*)()(*)( 
 

 
The Commutative property may be proved by replacing “” with “t-p” in continuous-time or replacing 
“k” with “n-r” in discrete-time. 
 

 The Distributive Property 
The convolution may be distributed over addition without affecting the results.  The Distributive 
Property can be defined by: 
 

  
][*][][*][])[][(*][

)(*)()(*)()]()([*)(

2121

2121

nhnxnhnxnhnhnx

thtxthtxththtx




 

 
The Commutative property may be proved by writing out the convolution sum/integral and factoring 
out the terms.  The implication of Commutative property is that both of the following configurations are 
equivalent: 

 
 

 The Associative Property 
The Associative property states that the order of convolution does not affect the result.  Below is the 
restatement of this property in the equation form: 
. 

][*][*][])[*][(*][

)(*)(*)()](*)([*)(

2121

2121

nhnhnxnhnhnx

ththtxththtx




 

 
The Associative property may be proved by writing out the sum/integral and factoring out the terms.  
The implication of Associative property is that all of the following configurations are equivalent: 

h1[n] 

h2[n] 

y[n] x[n] 

h1[n]+ h2[n] x[n] y[n] 

+ 



Signals & Systems  Page 59 
 

 
Of course, the same is true for Discrete-Time LTI system. 
 

 LTI System with and without memory 
Memory-less LTI system’s output only depend on the value of present input.  Therefore, memory-less 
system impulse response, h(t) or h[n], satisfies the following relationships:  
 
  h[n]=0 for n0  h[n]=K[n]  y[n]=Kx[n] “Discrete-Time” 
  h(t)=0 for t0   h(t)=K(t)    y(t)=Kx(t)  “Continuous-Time” 
 
All other systems are LTI systems with memory, by definition. 
 

 Invertibility of LTI Systems 
A system is invertible only if an inverse system and impulse response exist that when connected in 
series to the original system, produces an output equal to the input of the first system. 

 
 
In order for the Invertibility to be true, h1(t) * h2(t) must be an identity function, (t) where  h1(t) is the 
original system impulse response and h2(t) is the inverse system impulse response. The following 
equation restates the definition of invertible system: 
 
  h1(t) * h2(t) = (t) 
  h1[n] * h2[n] = [n] 
 
 Example --  A system’s input and output are related by the following equation: 

 
  y(t)=5x(t- 4) 
 
Is this system invertible? 
 
Solution: 
We need the system impulse response in order to answer the question of Invertibility. By 
inspecting the given input/output relationship, it is clear that the output is equal to the input shifted 
and scaled. Therefore: 
 
  h1(t) = (1/5) (t - 4)  “System Impulse Response” 

Identity System, (t) x[n] x[n] 

h1[n] h2[n] x[n] x[n] 
y[n] 

h1(t) h2(t) y(t) x(t) 

h2(t) h1(t) x(t) y(t) 

h2(t) * h1(t) x(t) y(t) 

h1(t) * h2(t) x(t) y(t) 
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System is invertible only If an inverse impulse response, h2(t), can be find such that  
 
  h1(t)*h2(t) = (t). 
 
It can be seen that h1(t) = 5 (t + 4)  would satisfy the Invertibility requirement: 
 
h1(t)* h2(t)= (1/5) (t- 4)* (5)(t + 4)= (t) 
 

 Student Exercise – Show that LTI system with impulse response  h1[n]=u[-n+2] is invertible by 
calculate the inverse impulse response and testing it. 
Hint: u[n]*( [n] - [n-1]) = [n] 
 
 
 
 
 
 

 Causality of LTI Systems 
In a causal LTI system,  the system’s present output only depends on the present and past input. In 
other words, the system is non-causal if the system output depends on the future input. 
 
For a causal Discrete-Time LTI system, y[n] does not depend on x[k] where k > n.  This requirement 
translates to the rule that in a causal system, h[n]=0 for n<0.   

Examine the Convolution sum 





k

knxkhny ][][][ , to relate the two requirements. 

Similar requirements for causality exists in continuous-time which states that h(t)=0 for t<0 in causal 
systems. 
 
In summary, a system is causal if its impulse response “h(t) or h{n]” is zero for “t<0 or n<0”. 
 

 Stability for LTI Systems 
A system is stable if for every bounded input, the out is also bounded.  Below is a restatement of 
stability definition in-term of impulse response: 
 
 Discrete-Time 

Input is bounded  |x[n]| < A for all n  where A is a finite value 

|][|||][||][][||][| 









kk

khAnyknxkhny  for all n 

 
The above equation is true if: 

  




|][|
k

kh  then the system is stable 

 
 Continuous-Time 

Using a similar process to Discrete-Time, we can conclude that if: 

  



 dh |][|  then the system is stable 

 
 
Although impulse response is used commonly to characterize systems, LTI systems may also be 
characterized by the unit step response, s[n] or s(t).  The unit step response, s[n] or s(t), is the output of 
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the system when input is u[n] or u(t). 
 

 
Leveraging the relationship between impulse an unit function, we can derive the following relationships 
between impulse and unit response of a LTI system: 
 

  s[n] = u[n]*h[n] =  


n

k

kh ][      and   h[n] = s[n] –s[n-1]   “Discrete-Time” 

  s(t) = u(t)*h(t)  =  

t
d ][    and h(t) = s’(t) = ds(t)/dt   “Continuous-Time” 

 
  

Unit Response, s[n] x[n] =u[n] y[n] =s[n] 

Unit Response, s(t) x(t) =u(t) y(t)=s[(t) 
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2.6.  Differential/Difference Equations 

Differential/Difference equations can be used to describe important subclasses of LTI systems. The linear 
constant-coefficient differential equation is used for continuous-time and the linear constant coefficient 
difference equation is used for discrete-time.  Although these subclasses are more limited in scope, they 
serve as tools in analysis of an important subclass of systems such as the RC and RL circuits.  
Additionally, they serve as the basis for study of broader types of signals and systems.  This section 
introduces and applies difference and differential equations with linear constant-coefficient. 
 
 Linear Constant-Coefficient Differential Equations 

First, let’s use an RC circuit to derive linear constant-coefficient differential equation.  In the following 
LTI system, voltage is the input, x(t), and current is the system output, y(t):: 

.Using KVL    )(
)(

1.0)(200 tx
dt

tdy
ty   

One difference is that in this equation y(t) is not given in-term of x(t).  We must solve the differential 
equation to find the output.  The solution will have constants which would require additional 
relationships between input/output such as initial condition in order to find the constants’ value. 
 
Solution to an ordinary linear differential equation may be written as: 
 
  y(t) = yp(t) + yh(t)  where  
   yp(t) or the particular solution will be the same form as the input in this case yp(t)=Ae2t 
   yh(t) or the homogenous solution will have the form yh(t)=Best with x(t)=0  
 
Talking advantage of superposition property of the LTI system, we can find each portion of the 
solution (output or response) and then sum them to find the total solution. 
 
First, plug yp(t)=Ae2t  (same as input except for the coefficient) into the differential equation to find the 
Particular solution: 

  
t

p

t
t

t

etyAAA

e
dt

Aed
Ae

2

2
2

2

02.0)(2.200/442.0200

4
}{

1.0200




 

   
Second, plug yh(t)=Best (power or coefficient are unknowns) into the differential equation  where 
x(t)=0 to find the homogenous solution: 

  
t

h
st

st
st

BetyssBes

equationldifferntiaogeneousfortx
dt

Bed
Be

01.0)(01.00)2.0200(0)2.0200(

"hom0)("0
}{

1.0200




 

 
Therefore the total solutions is :  y(t)= yp(t)+ yh(t)= 0.02e2t + Be-0.01t 
 
Now, we need to find the coefficient B by using the initial state {if not given, assume y(t0)=0} with the 

+ 
- 

200 Ω 

100 mH 
v=L(di/dt) 

x(t)=4e2t 

y(t)=i(t) 
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total solution equation.  We will assume at the initial state (t0=0), the system is at rest {y(0)=0}, 
therefore: 

02.0002.0)0(  BBy  

 
Therefore y(t)= yp(t)+ yp(t)= 0.02e2t – 0.02e-0.01t 
 
Key take away from this section are: 

(1) Total solution consists of particular (with input) solution and homogeneous solutions (input 
set to 0).  Homogeneous solution is considered natural response since x(t)=0. 
 

(2) To find all the constants, equations based on system condition at a given time (t0) are 
required.  It is common to assume that system is at rest at time t=0 therefore y(0)=0. 
 

(3) In the example  and description presented in this section, we used first order equations. 
The same approach may be applied to higher order linear constant-coefficient differential 
equations such as the one shown by the following general form: 
 

  
k

kQ

k
kj

jP

j
j dt

txd
b

dt

tyd
a

)()(

00



  

 
 Linear Constant-coefficient Difference Equations 

Linear constant-coefficient difference equations are the Discrete-Time version of their Continuous-
Time Invariant Linear constant-coefficient differential equations.  The general form of Linear constant-
coefficient difference equations is shown below: 
 

  ][][
00

knxbjnya
Q

k
k

P

j
j  



 

 
The process to obtain the solution to this higher order difference equation is the same as the higher 
order differential equation in continuous time.  The solution consists of particular solution (with input, 

][][
00

knxbjnya
Q

k
k

P

j
j  



) and homogeneous solutions (input is 0, 0][
0




jnya
P

j
j ). 

Homogeneous solution is considered natural response since input is set to 0.  
 
To find all the constants, equations based on system condition at given time is required.  It is common 

to assume at that n≤n0 was at rest as an initial condition { 0][ 0
0




nya
P

j
j }. 
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 Graphical representation of the difference and differential equations 
One advantage of these equations is that they can be intuitively and easily described by graphical 
representation.  Here are some of the common symbols used in the graphical representations: 
 

 

For example the differential equation )(
)(

1.0)(200 tx
dt

tdy
ty   may be rewritten as: 

  )(005.0
)(

0005.0)( tx
dt

tdy
ty   and can be represented graphically as shown below: 

 
The same system may also be represented using integrators by rewriting it as 

 


t
dyxty  )](2000)(10[)(  and presented graphically as: 

 
 

y(t) 

-2000 

+ x(t) 
10  



y(t) 

-0.0005 

D 

+ x(t) 
0.005 

+ x1 

x2 

x1+x2 

Adder Scalar 

kx x 
k 

D 

Unit Delay or Differentiator  

x[n] 
x[n-1] 

D x(t) dx(t)/dt 

Integrator 

 
x(t)  

t
dx )(
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2.7.  Chapter Summary 

This section is a summary of key concepts from this chapter. 
 
 
 Discrete-Time Convolution Sum 

][*][][

][][][

nhnxny

knhkxny
k

k



 


  

 
 

 Continuous-Time Convolution Integral 

)(*)()(

)()()(

thtxty

dthxty



 





 

 
 

 Linear Time-Invariant (LTI) System Properties 
 Associativity 
 Causality 
 Commutativity 
 Distributivity 
 Invertibility 
 Linearity 
 Memory 
 Stability 
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2.8.  Additional Resources 

 
 Oppenheim, A.  Signals & Systems (1997) Prentice Hall 

Chapter 2 
 

 Modern Digital & Analog Communication Systems (1998) Oxford University Press 
Chapter 2 
 

 Stremler, F. Introduction to Communication Systems (1990) Addison-Wesley Publishing Company 
Chapt 2 
 

 Birkhoff, G. Ordinary differential equations (1978) J. Wiley and sons 
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2.9.  Problems 

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 3. Fourier Series Representation of Periodic Signals 

 
Key Concepts and Overview 
 
 Overview & History of Fourier Series  

 Complex Exponential Signals and LTI System Responses 

 Fourier Series Representation of Continuous-Time Periodic Signals  

 Convergence of the Continuous-Time Fourier Series  

 Continuous-Time Fourier Series Properties 

 Fourier Series Representation of Discrete-Time Periodic Signals  

 Discrete-Time Fourier Series Properties 

 Application of Fourier Series in LTI systems  

 Filtering in Continuous-time and Discrete-Time  

 Additional Resources 
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3.1.  Overview & History of Fourier series  

This chapter introduces Fourier series in the context of Linear Time Invariant (LTI) Systems when input 
signal is periodic.  The concepts will be developed both in Continuous-Time and Discrete-time.  As 
discussed earlier, all periodic signals can be represented using complex exponential form.  Additionally, it 
will be shown that most periodic signals may be represented as a Fourier series which is a weighted sum 
of harmonics (integer multiples) of the fundamental frequency. 
 
Fourier series and LTI system properties lead to relationship between input and output which are useful in 
finding the LTI system response to periodic signals. In future chapters, the concepts developed here will 
be broaden to include aperiodic (Not periodic) signals. 
 
Form a historical point-of-view, the work started with Euler in 1748 but Fourier made the key observation 
that period signals can be represented as a trigonometric series in 1802 and he also understood that this 
is a very important class of signals.  Fourier’s findings are viewed as the core concept which is the reason 
for the series being named for Fourier. 
 
Dirichlet in 1829 developed the precise mathematical representation, now known as Fourier series.  But it 
was not until 1965,  when Cooley and Tukey discover a method called Fast Fourier Transform (FFT) 
which enable engineers to design computer programs that would perform functions such as filtering fast 
enough to make it useful.  FFT along with the advent of higher performance computer has led to use for 
Fourier transforms and series is design majority of signal processing devices.  
 
In a nutshell, Fourier series allows us to represent any signal as a series of harmonic signal components.  
So to filter any frequency, simply zero the coefficient for the corresponding harmonic. In general, we can 
reshape any signal by simply changing the coefficient of its harmonic components. 
 
Although in this text, our interest in Fourier series is in its application to audio, video, electrical and 
computing fields, the Fourier series concept has much wider use including heat transfer and mechanical 
systems. 
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3.2.  Complex Exponential Signals and LTI System Responses 

As discussed earlier, Complex Exponential signals can be used to represent any periodic signal.  Since 
we are focusing on LTI systems then the response to a periodic signal will be a linear combination of the 
complex exponential terms. 
 
Let’s start by defining a few terms to use in our development of Fourier series for complex exponential 
signals and LTI systems. The following table defines input and Responses: 
 

 Input Response 
Continuous-time est H(s)est 
Discrete-time zn H(z)zn 
 
Where: 

 s and z are complex numbers but for the purposes here we can define them 
as: 

(1) s = jw  “pure imaginary” 
(2) z=ejw 

 H(s) and H(z) are complex functions of s and z accordingly 
 Response may or may not be complex  
 Input est or zn are referred to as the eigen function 
 H(s) for a specific value of sk is referred to as the eigen value associated with 

eigen function sk. This is the value that is multiplied by eigen function to find 
the response. 

 
 
Using the above definition for input, our next step is to find eigen values H(s) and H(z) in terms of the 
system impulse response h(t) and h[n] for continuous-time and discrete-time respectively. 
 
 Determining the value of H(s) in terms of h(t) for a continuous-time LTI System 

Here is a graphical restatement of the LTI system with Impulse response h(t) and a periodic input 
signal x(t) and response y(t). 

 
In order to find the eigen value H(s), we need to apply the convolution definition to find the response 
to this system: 
 

 









dehsHWhereesHty

dehedehdtxhtxthty

sst

sstts




























)()()()(

)()()()()(*)()( )(

 

Notes: 
 ejwt is referred to as the eigen function (input) 
 H(s) for a specific value of sk is referred to as the eigen value associated with eigen function 

sk. System Response is equal to eigen function multiplied by eigen function. 
 

 Determining the value of H(z) in terms of h[n] for a discrete-time LTI System 
Following a similar process as the Continuous-Time, H(z) can be determined in term of h[n]. 

LTI system 
h(t) 

x(t)=est y(t)=H(s)est 
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


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





















k

kn

k

kn

k

kn

k

zkhzHWherezzHny

zkhzzkhknxkhnxnhny

][)()(][

][][][][][*][][ )(

 

Notes: 
 zn or ejwn is referred to as the eigen function (input) 
 H(s) for a specific value of zk is referred to as the eigen value associated with eigen function 

zk. System Response is equal to eigen function multiplied by eigen function. 
 

 Response to Generalized Input 
Generalized input signal may have many terms (eigen functions) which leads to system response 
being sum of responses to each eigen function and will have associated eigen value. 
 
Starting with the Continuous time  LTI system, Let’s use the multi-term input 
 

  tststs eaeaeatx 321
321)(   

 
Applying the eigen function property, the response (output) to each input terms can be written as 
follows: 
 

  

tsts

tsts

tsts

esHaea

esHaea

esHaea

33

22

11

)(

)(

)(

333

222

111







 

 
Now, we can apply the superposition since the system is linear which means response to the sum of 
inputs is the sum of individual responses: 
 

  tststs esHaesHaesHaty 321 )()()()( 332211   

 
We can generalize the above derivation  for LTI systems as: 
 

   
k

ts
kk

k

ts
k

kk esHatyeatx )()()(  

 
Similar process can be used to derive the generalized response for Discrete-time  LTI system which 
is shown below: 
 

   
k

n
kkk

k

n
kk zzHatyzanx )()(][  

 
 Examples - eigen value and eigen function 

 

LTI system 
h[n] 

X[n]=zn Y[n]=H(z)zn 
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 Example 1:  In a LTI System, output is related to input by a  time shift of -4 find eigen value 
associate with eigen function x(t) = ej2t 
 
Solutions 
y(t) = x(t+4) = ej2(t+4) = ej8 ej2t 
 
So we can say that eigen function is ej2t =est= ejwt  which means  s=2j  or  w=2. 
Also eigen value H(s)= e4s for s=j2 is H(s=j2) = ej8 

 

Note: h(t) =  δ(t-4), so we can use the convolution to confirm the output. 
 

 Example 2: Given the eigen value H(s) = e-2s find the response to the input (eigen function) x(t) = 
cos5t 
 
Solutions: 
x(t) = cos(5t) = cos(wt)    w=5 rad/s    s=j5 
y(t) = H(s)x(t) = e-2scos(5t) = e-j10cos(5t) 
Applying Euler’s Identify   cos(a) = ½ (eja + e-ja)    y(t)= ½ (ej(5(t-2) + e-j(5(t+2)) 
Applying Euler’s identify again  y(t) =cos(5(t-2)) 
 
So input is shifted in time by 2 when the eigen value is H(s) = e-2s  
 

 Example 3: Given the eigen value H(s) = e-2s, find the response to the input x(t) = cos(5t) + 
sin(9t). 
Note: Find eigen value for each component. 
 
Solutions: 
”Student Exercise” 
 
 
 
 
 
 
 
 
 

 Example 3: Find eigen value, H(s), for the following Circuit:  

 
Solutions: 
”Student Exercise” 
 
 
 
 

- 

+ 

+ 
x(t) 

-
+ 

y(t) 
-

R 

C
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3.3.  Fourier Series Representation of Continuous-Time Periodic Signals  

As mentioned earlier, Fourier Series is a representation of Continuous-Time periodic signals in terms of 
weighted sum of signal’s harmonics.  The first step in the Fourier Series development process is to define 
the Periodic signal.  A signal is periodic, if for some positive value of Period, T, the following equality 
holds: 
 
  x(t) = x(t+T) for all t. 
 
Fundamental period of x(t) is the minimum, positive, nonzero value of T that satisfies the above equation. 
Further, W0 = 2/T is referred to as fundamental frequency. 
 
Harmonically related periodic signal representations with fundamental frequency w0 simply uses signals 
with frequencies that are integer multiples of w0. This  means that the harmonic signals have period Tk 
which is a fraction of the fundamental Period T= 2/w0.  Below are some examples of harmonically related 
signals: 
 

 Sinusoidal Signal, x1(t) = cos (w0t) 
The harmonically related signals of x1(t) can be represented as: 
 

...,2,1,0/T)t)2cos(k( t)cos(k  (t) 0k  kwherew   

 

 Pure Imaginary Exponential Signal, tjw
2

0e  (t)x   

The harmonically related signals of x2(t) can be represented as: 
 

...,2,1,0e e  (t) /T)tjk(2tjk
k

0  kwherew   

 
The following facts are important to consider when working with the harmonically related periodic signal 
representations: 
 

(1) Each of the harmonics has a frequency which is multiples of fundamental frequency. 
(2) Signal component with k=0 is constant 
(3) Signal component with k=+1 and -1 is referred to as the first harmonics or fundamental 
(4) Signal component with k=+2 and -2 is referred to as the second harmonics 
(5) Signal component with k=+N and -N is referred to as the Nth harmonics 

 
The linear combination of harmonically related signals is also periodic which means that the following 
general form of harmonically related signals is periodic: 
 

  









k

tTjk
k

k

tjkw
k eaeatx )/2(0)( 

   Fourier Series Representation 

 
This representation of Periodic signal is referred to as the “Fourier Series Representation” where ak is 
referred to as the Fourier Coefficient. 
 
 Examples - Fourier Series Representation 

 
 Example 1: Plot a periodic signal x(t), with fundamental frequency w0=  with the following Fourier 

series Coefficients: 
 
a0 = 1;  a1=a-1=1/3; a2=a-2=1/2; all other coefficients are 0 
 
Solutions 
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First write out the Fourier Series  
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1
)(
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eeeeeatx

eeeeeeatx






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













 

Apply Euler’s Identity  (eja + e-ja) = 2cos(a) 
x(t) = 1 + 2/3 cos(t) + cos(2t) 
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x0(t)=1 

t 

x1(t)= 2/3 cos(t) 

t 

x2(t)= cos(2t) 

t 

x(t)= x0(t) + x1(t) + x2(t)= 1 + 2/3cos(t) +cos(2t) 

t 
 0 

  3 
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 Example - Plot a periodic signal x(t), with fundamental frequency w0=/2  with the following 

Fourier series Coefficients: 
 
a0=1;  a1=a-1=2; a2=a-2=3; a3=a-3=1/5; all other coefficients are 0 
 
Verify your results using Matlab. 
 
Solutions 
”Student Exercise” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Example – Draw time domain and frequency domain, and find values of non-zero Fourier series 
coefficients (ak) for the following signals: 
  a) A DC signal with magnitude of 2. 
  b) x(t) = ej50πt 
  c) x(t) = sin(200πt) 
 
Solutions 
”Student Exercise” 
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 Alternative Forms of Fourier Series Representations 
There are three forms of Fourier Series Representation which are commonly used.  All these forms 
are mathematically equivalent:  
 







k

tjkw
k eatx 0)(  “This is the form that is most commonly use in this text” 

 

kj
kk

k
kk eAawheretkwAatx  
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

 
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00 )cos(2)(  

 

  kkk
k

kk jCBawheretkwjCtkwBatx  


1
000 )sin()cos(2)(  

 
It is highly recommended that students proof that all three are mathematically equivalent. 
 
 

 Calculation of the Fourier Series Representation of a Continuous-time Periodic Signal 
In order to derive the Fourier Series Representation, we need to have the original signal’s 
fundamental frequency and Fourier Series Coefficient ak.  The fundamental frequency can be 
obtained from the signal.  Below is the process for finding the Fourier Series Coefficient, ak. 
 
We know that any periodic signal can be represented by the following Fourier Series Representation: 
 







k

tjkw
k eatx 0)(   Fourier Series Synthesis Equation 

 
Our objective here is to find the Fourier Coefficients, ak for a given signal x(t).  We will start by 
multiplying both side of the Fourier Series Synthesis Equation by e-jnwot. 
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Next, integrate both side over one fundamental period (from 0 to T=2/w0) 
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Side Bar 
We can simplify the integral inside the bracket as shown below using the Euler’s identity: 

 
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When (k-n)= 0 or k=n  then  
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)( 00  

When (k-n)≠ 0 or k≠n  then 
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Using the derivation of the side bar, we can rewrite the above equation as: 

Tadttxe k

T
tjnw  

0

)(0  

 
Which can be re-arrange to find the Fourier Coefficient an 
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 Fourier Series Analysis Equation 

 
 
 Summary of Fourier Series equations for a periodic continuous-time signal 

 


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*  {ak} is referred to as the Fourier Series Coefficient or the spectral coefficients of x(t) 
Note of interest:  Euler and Lagrange both knew this equation in 18th century but they did not see it as 
important since they did not feel it cover large enough class of periodic signal.  Fourier a hundred 
years later showed that they indeed cover a large class which is the reason these equations are 
named for Fourier. 
 

 Example - Fourier Series Application 
 Example - What are the Fourier Series Coefficients of x(t)=sin(wot)? 

 
Solutions 

You can use the analysis equations to find the coefficient Twdttxe
T

a o

T

tjkw
k /2,)(

1
0     

But the easier way would be to use Euler’s identity )(
2

1
sin jaja ee

j
a   



Signals & Systems  Page 80 
 

so tjwtjw
o

oo e
j

e
j

twtx 
2

1

2

1
sin)(  

a1 = 1/2j ,  a-1 = -1/2j ,  ak = 0  for k≠-1 & k≠+1 
 
Below is the bar graph of the Fourier Series Coefficient: 

 
 

 Example:  What is the Fourier Series Coefficient for the period Square Wave where: 
 

 

  
T

tTjk

T

tjkw
k dttxe

T
dttxe

T
a )(

1
)(

1 )/2(0    

“Fourier Series Coefficient can be calculated over any period”, for this problem period from –T/2 
to T/2 is one of the easiest. 
 





1

1

0
1

T

T

tjkw
k dte

T
a  

for k=0  
T

T
dt

T
a

T

T

o
121 1

1

 


 

for k≠0  
k

Tkw

Tkw

Tkw

j

ee

Tkw
dte

T
a o

o

o
TjkwTjkw

o

T

T

tjkw
k

)sin()sin(2

2

21 11
10101

1

0 






 






  

Note:  above simplification uses Euler’s identity )(
2

1
sin jaja ee

j
a   & wo = 2/T 

x(t) 

1

-T  T -T1     T1 T/2 -T/2 

. . . . . . 

x(t) = 1    for    |t| < T1  
          0    for   T1 < |t| < T/2 

Coefficient Magnitude 

-1 0 1

Coefficient Phase 

k

1/2

-1 0 1
k

+90o 

-90o

1/2 
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For a Square wave with 50% duty cycle   T=4T1 , therefore we can rewrite the coefficients as: 
for k=0  ao = (2T1)/( 4T1)= 1/2  

for k≠0  






 k

k

k

TTk

k

Tkw
a o

k

)2/sin())4/2(sin()sin( 111   

  a1 = a-1 = 1/ 
  a2 = 0 
 a1 = a-1 = -1/3 
  … 
In general we can conclude that 
ak = 0 for even k 
ak = 1/k with alternative sing for odd k 
 
Therefore the signal can be represented as a linear combination of harmonically related 
exponentials: 

...)(
3

1
)(

1

2

1
)( 00000 33  




 twjtwjtjwtjw

k

tjkw
k eeeeeatx


 

or by applying Euler’s identity, we get: 

...)3sin(
3

2
)sin(

2

2

1
)(  tw

j
tw

j
tx oo 

 

 
 

 Example – For the following signals draw the time-domain representation, find non-zero Fourier 
series coefficients (ak) and draw the frequency domain representation: 
 
a)  DC signal with magnitude of 2. 
b)  ej50πt 
c) sin(200πt) 
 
Solution: 
student exercise. 
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3.4.  Convergence of the Continuous-Time Fourier Series  

Fourier Series can represent an extremely large class of periodic signals including square wave as shown 
earlier.  The full representation is a linear combination of an infinite number of harmonically related 
complex exponentials. The immediate question is how many terms are sufficient in representing the 
signal accurately.  From the previous section, we know that x(t) is fully described by the following: 
 

 





k

tjkw
k eatx 0)(  

 
In a finite sum, the positive and negative infinity limits needs to be replaced by a finite value of  (-N to N) 
which means xN(t) value is a Nth approximation of x(t) and is written as: 
 







N

Nk

tjkw
kN eatx 0)(   Nth approximation of x(t) 

 
To answer the question of when finite sum is a good enough approximation, we need calculate the 
approximation  error as shown below: 
 

 





N

Nk

tjkw
kNN eatxtxtxte 0)()()()(   Approximation Error 

 
The goodness of approximation is quantitatively measured by the energy of the error in one period as 
shown below: 
 

  
T

N dtperiodainerrorofPowerE   Energy of Error over one period = 

or 


T

NN dtteE 2|)(|  

 
An approximation with EN  equal to zero means that the original and approximated signal have the same 
energy so it is a good approximation to the original signal.   It is important to realize that it does 
necessarily mean that the approximated signal is the same as the original signal x(t). 
 
A signal has a Fourier Series representation if and only if: 
  as  N ∞ , eN(t)  0   and xN(t)  x(t) 
 

This type signal are said to converge which means as k goes to infinity,  
T

tjkw
k dttxe

T
a )(

1
0  and 







k

tjkw
k eatx 0)(  converge. 

 
The good news is that there are large classes of signals that have no convergence problem. And for 
these signals Fourier Series representation exists.  Even though a Fourier Series representation exists for 
convergent signals, it does not mean that the Fourier Series representation and original signal have the 
same value at every point.  For example in the case of signals with discontinuities such as a square 
wave, at the discontinuities the Fourier Series Representation takes on the average value of signal from 
the two sides of the  discontinuity. 
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 Convergence Conditions and Dirichlet’s three Conditions 
Again, a signal does not converge if: 
 

(1)  
T

tjkw
k dttxe

T
a )(

1
0  does not converge (meaning ak goes to ∞) 

or 

(2) At times ak converge but the sum 





k

tjkw
k eatx 0)( does not converge 

(meaning x(t) goes to ∞) 
 

Criteria for deciding if a signal has a (Converging or valid) Fourier Series Representation 
The periods that have finite energy over a single period will have Fourier Series Representation. 
 
Dirichlet developed three conditions that when met, it is given x(t) equals its Fourier Series 
representation excluding for values of t that x(t) is discontinuous. 
 
 Condition 1 

Over any one period, x(t) Must be absolutely integrable; meaning  
T

dttx |)(|  

For example  the following x(t)t fails condition 1: 

 
Other signals that fail this condition include e1/sin(t) and tan(1/sin(t)). 
 
 

 Condition 2 
In any finite interval of time, x(t) is has finite variation; meaning there is no more than a finite 
number of maximum of minimum during a single period. 
 
For example  the following x(t)t fails condition 2: 
 

t 

x(t) 

-2a                     -a                      0                       a                     2a 
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sin(1/sin(t)) is example of a signal that fail this condition. 
 

 Condition 3 
In any finite interval of time, there are only a finite number of discontinuities.  Each discontinuity 
also must be finite. 
 

 
 
As you can see signal that do not meet the Dirichlet’s three conditions are not common.  It is safe to 
say that most natural signals are convergent and have a Fourier Series Representation. 
 

 Observations Relating to Signal Discontinuity  
For a periodic signal that has no discontinuity, the Fourier Series Representation converges and 
equals the original signal at every value of t as N∞ where N is number of terms used in 
approximation. 
 
For a periodic signal with a finite number discontinuities in each period, the following holds true: 
 

  the Fourier Series Representation equals the signal everywhere except at the isolate 
points of discontinuity at which the series converges to the average value of signal on 
each side of the discontinuity. 
 

 Gibbs phenomenon is also present, meaning as the finite N (number of terms) increases, 
the peak amplitude of the error move toward the discontinuities but the error peak values 
remain constant. 
 

t 

x(t) 

-2a                     -a                      0                       a                     2a 

… … … …… 

t 

x(t) 

-2a                     -a                      0                       a                     2a 

… … … … … 
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The following diagram demonstrated the two stated properties for a square wave as the number of 
terms to approximate the signal, N, is increased: (N=1, 5, 17)  
 

 
 

t 

xN(t)  with N=1 

 -T                         0                            T 

a/2 

a 

t 
 -T                         0                            T 

a/2 

a 

xN(t)  with N=5 

t 
 -T                         0                            T 

a/2 

a 

xN(t)  with N=17 
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3.5.  Continuous-Time Fourier Series Properties 

In this section we will cover some of the  properties of Fourier Series which are used in future exercises 
and analysis of signal and systems.  These properties not only provide us with insights, they also are 
crucial is reducing complexity.  
 
The following notation to show that ak is the Fourier series coefficient of signal x(t): 
 

  k
FS atx )(  

 
The proofs for the properties presented in this section are left to the reader.  The proofs consist of 
plugging in the values into the synthesis or analysis equations in order to show that equality holds.  The 
remainder of this section is dedicated to Fourier Series Properties: 
 
 Linearity 

Let x(t) and y(t) denote two periodic signals with period T and fundamental frequency wo = 2/T.  x(t) 
and y(t)  have  Fourier Series coefficient ak and bk respectively: 
 

  
k

FS

k
FS

bty

atx





)(

)(
 

 
Linearity property states that: 
 

 kkk
FS BbAactBytAxtz  )()()(  

  ck is Fourier coefficient of z(t) where A and B are constants. 
 

 Time Shifting 
When a time shift is applied to a periodic signal x(t), the period T, fundamental frequency wo = 2/T 
and magnitude of the signal is preserved. 
 
Time Shifting property states that: 
 

  
k

tjkwFS

k
FS

aettx

atx
oo



)(

)(

0

 

 
 Time Reversal 

When a time reversal is applied to a periodic signal x(t), the period T, fundamental frequency wo = 
2/T and magnitude of the signal is preserved. 
 
Time Reversal property states that: 
 

  
k

FS

k
FS

atx

atx





)(

)(
 

 
Two note of interest relating to time reversal: 

 If x(t) is even, meaning x(t)=x(-t)  ak = a-k 
 if x(t) is odd , meaning x(t) = -x(-t)  ak = - a-k 

 
These two observations can be used to determine if a function is odd or even based on their Fourier 
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Series Coefficients. 
 

 Time Scaling 
Time scaling is an operation that may change the period of the signal.  If x(t) is periodic with period T 
and fundamental frequency wo = 2/T then the time scaled signal, x(bt), has the period T/b and 
fundamental frequency is bwo.  It is assumed that b is positive and real., is periodic with 
 
Time Scaling property states that: 
 

  









k

tbwjk
k

FS

k
FS

oeabtx

atx

)()(

)(

 

 
Note the Fourier Series coefficient ak has not changed, but the Fourier Series has changed due to 
change in the fundamental frequency. 
 

 Multiplication 
Multiplication property states that: 
 

 











l
lklk
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k
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k
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bahtytx

Then

bty
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)()(

)(

)(

 

 
 Conjugation and Conjugate Symmetry 

Complex Conjugate is shown by * and means that j  -j   so (a+jb)* = (a-jb).  The Conjugate 
Symmetry states that: 

  
*)(*

)(

k
FS

k
FS

atx

atx




 

 
A number of useful observations to consider: 
 

 If x(t) is real then a-k = ak* which means 
 a0 is real since a0 = a0* 
 |a-k| = |ak|  same magnitudes 

 
 If x(t) is real and even using the fact that { ak = a-k  for even function} we can prove that ak 

is real and even.   
 If x(t) is real and odd using the fact that { ak = -a-k  for odd function}. then we can assert 

that ak is pure imaginary and odd. By the way, a0 must be 0 in this case. 
 
 

 Parseval’s Relation 
Parseval relates average power of a signal to its Fourier Series Coefficient as shown below: 
 

  





k

k

T

adttx
T

PowerAverage 22 |||)(|
1
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To prove, replace x(t) with the synthesis equation and simplify the equation.  The process is similar to 
proving the properties. 
 
 

 Properties of continuous-time Fourier Series 
 

 
Properties 

Periodic Signal 
x(t) and y(t) with w0 = 2/T 

Fourier Series Coefficient  
ak  and bk 

Conjugate symmetry Real x(t) ak=a-k* 
Conjugation x*(t) a-k

* 
Convolution, Periodic  dtyx

T

)()(   T ak bk 

Differentiation 

dt

tdx )(
 

jkw0ak 

Frequency Shifting )(txe
tjQwo  ak-Q 

Integration 




t

dx  )(  periodic & finite only if a0 =0 
ak / jkw0 

Linearity Ax(t) + By(t) Aak + Bbk 
Multiplication x(t)y(t) 







l
lklba  

Parseval’s Relation 
Average Power for 
Periodic signals 







k

k

T

adttx
T

PowerAverage 22 |||)(|
1

 

Real and Even Signals Real and even x(t) ak is real and even 
Real and Odd Signals Real and odd x(t) ak is purely imaginary and odd 
Time Reversal x(-t) a-k 
Time Scaling x(bt) 

b>0  Period =T/b and w0 = 2b/T 
ak 

Time Shifting x(t-t0) 
k

tjkw ae oo  

 
 
 Examples – Properties of continuous-time Fourier Series 

 
 Example - Use the following properties of x(t) to determine the x(t) function: 

 
1) x(t) is periodic with T=2 
2) x(t) has Fourier Series Coefficient ak 
3) ak =0 for |k| ≥ 2 
4) x(t) is a real signal 
5) DC component of the signal is 1/3 
6) Magnitude of fundamental frequency component is 1/5. 
 
Solution 
 
Property 1  w0 = 2/T =  
Property 2 & 3  all ak=0  except a-1, a0, a1 

Property 4  a1 = a-1* 

Property 5  a0 = 1/3 
Property 6  a1 = 1/5 
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Using above information and synthesis equation: 
 

tjtjtjkwtjkw

k

tjkw
k eeeaaeaeatx  )5/1(3/1)5/1()( 000

101  





  

 
 Example – Find x(t+5) given x(t) has the following non-zero Fourier Series Coefficients: 

  a-1 = 2, a0 = 5+j, a4 = 3. 
 
Solution 
 
 
 
 

 Example – Given real function x(t) with non-zero Fourier Series Coefficients a-1=a1=3 and a-

2=a2=4,  
  a) Find Fourier Series Coefficients for  x(9t). 
  b) What’s fundamental frequency of x(9t). 
  c) What’s the approximation of x(t) using Fourier Series. 
 
Solution 
a)  Same as x(t) 
b) 9w0 

c) 
twjtwjtwjtwj

twjtwjtwjtwj

k

tjkw
k

eeee

eeeeeatx

0000

00000

189918

9)2(9)1(9)1(9)2(

4334

4334)9(













 

 
 

 Example – Given that function x(t) has the Fourier Series Coefficients {a-1 = 2+j , a0 = 5, a+1 = 2-j}, 
determine if x(t) is real and/or even/odd. 
 
Solution 
 
  ak = a-k*    x(t) is real 
  It’s neither odd or even. 
 
 

 Example – for a 100 Hz square wave signal with 50% duty cycle, maximum of 5v and minimum of 
0v, 
 
a) Find the Fourier Series Coefficients 
b) find N-term approximation of x(t) 
 
Solution 
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3.6.  Fourier Series Representation of Discrete-Time Periodic Signals 

Development of Fourier Series Representation of Discrete-Time Periodic Signals is similar to the process 
used for the Continuous-time and the results are similar also.  The one key difference is that Discrete-time 
Fourier Series representation is a finite series as opposed to infinite series representation required for 
continuous-time periodic signals.  This difference means that the Discrete-Time Fourier Series does NOT 
have convergence issue.  
 
Now let’s start the process of finding the relationship between the discrete-time signal and its Fourier 
Series (Synthesis and Analysis equations) 
 
Again, periodic Discrete-time Signal x[n] is a signal that meets the following definition: 
 

 x[n]=x[n+N]  
 The Fundamental period is the smallest positive integer N for which x[n]=x[n+N] 
 Fundamental Frequency w0=2/N 

 
 Discrete-Time Fourier Series Equations  

Any periodic signal can be represented mathematically in complex exponential form. Each term of the 
complex exponential signal may be represented by: 
 

  ,...3,2,1][ 00 )/2(  keen nwNjknjkw
k

  

 
Signals represented by these terms have frequencies which are multiple of the fundamental 
frequency (w0=2/N). These terms represent the signal harmonics.  We can restate the definition of 
Periodic signal in Discrete-time by the fact that all terms of the complex exponential signal with same 
relative location in the period are equal.  The following equation restates this fact: 
 

  ][][ )( nn rNkk     where r is an integer and N is the fundamental Period. 

 
The Discrete-Time Fourier Series is also a linear combination of harmonically related complex 
exponentials. The proof is similar to the Continuous-Time and starts by writing the convolution sum. 
The following equation pair are the general Discrete-Time Fourier Series Synthesis and Analysis 
Equations: 
 

1,...,1,

][ )/2(
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 Fourier Series Synthesis Equation 

 







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Nn

nNjk

Nn

njkw
k enx

N
enx

N
a o )/2(][

1
][

1   Fourier Series Analysis Equation 

 
Where: 
  1)  x[n] is a periodic signal 
  2)  N is the Fundamental Period 
  3)  m is an arbitrary integer 
  4)  ak is Fourier Series coefficient (ak = a{k + N}) 
 
 

 Example - Fourier Series Representation of Discrete-Time Periodic Signals 
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 Example1: Find the Fourier Series coefficients For the signal x[n] = sin(w0n). 
 
Solution 
Although we could use the analysis equation to find ak, an easier way would be to use the Euler 
equation to reshape the signal to its linear exponential format select coefficients so that would be 
equivalent to the x(t) representation with the synthesis equation. 
 

0;
2

1
;

2

1
)(
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1
)sin(][ 110
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j
a

j
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j
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 Example 2: Find the Fourier Series coefficient for the following discrete time periodic square wave 

signal.  

We see that the signal period is N.  If we look at period  -N/2 ≤ n ≤N/2 then only values in 
between –N1 and +N1 are one and the rest are zero.  So we can write the analysis equation as: 
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by lettering n=m-N1, we can rewrite the equation as: 
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applying the finite sum  
b

b
b
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 which would allows to write ak as  
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 Question of Convergence for Discrete-time periodic Signal Fourier Series 
As discussed earlier, all Discrete-time signal Fourier Series coefficients converge so there is no issue 
with convergence unlike Continuous time. 
 
Gibbs Phenomenon at discontinuity which states that as the number of terms used in synthesis 
equation, the error ripples become compressed but the error peak values remain constant hold true 
for discrete-time same as continuous time. 
 
For a signal, x[n], with the period N, x[n] is approximated using the following equation: 
 

Approximation of x(n) = 



M

Mk

njkw
k eanx 0

^

)(  Using terms from –M to M 

  where: 
   Even N  -M ≤ N/2    “x(t) approximation is error free when M=N/2” 

n 

-N1       0       N1 -N N 

1 
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   Odd N   M ≤ (N-1)/2  “x(t) approximation is error free when M=(N-1)/2” 
.  Note: N is the period. 
 
The following diagram demonstrated the effect of M on approximate square wave signals x[n]:  
 

 

n 

Approximation of x[n] with M=5 
”Approximation is error free since M=N/2=5”

Period, N=10 

Approximation of x[n] with M=3 

n 

Approximation of x[n] with M=1 

n 
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3.7.  Discrete-Time Fourier Series Properties 

The properties of Discrete-time Fourier Series and Continuous-Time Fourier Series are similar.  Below is 
a summary table of Discrete-time Fourier Series Properties: 
 
 
Properties 

Periodic Signal 
x[n] and y[n] with w0 = 2/N 

Fourier Series Coefficient  
ak  and bk  “Period N” 

Conjugate symmetry Real x[n] ak=a-k* 
Conjugation x*[n] a-k

* 
Convolution, Periodic 




Nl

lnxlx ][][  N ak bk 

First Difference X[n] - X[n-1] 
k

jkw ae )1( 0  

Frequency Shifting ][nxe
njQwo  ak-Q 

Linearity Ax[n] + By[n] Aak + Bbk 
Multiplication X[n]y[n] 





Nn

ikiba|  

Parseval’s Relation 
Average Power for 
Periodic signals 





Nk

k
Nn

anx
N

PowerAverage 22 |||][|
1

 

Real and Even Signals Real and even x[n] ak is real and even 
Real and Odd Signals Real and odd x[n] ak is purely imaginary and odd 
Running Sum 




n

k

kx ][  periodic & finite only if a0 =0 kjkw a
e

)
1

1
(

0
 

Time Reversal x[-n] a-k 
Time Scaling x(b)[n] =  x[n/b] if n is a multiple of b 

              0 if n is not a multiple of b 
”Periodic with Period bN” 

(1/b)ak 

 

”Periodic with Period bN” 
Time Shifting X[n - n0] 

k
njkw ae oo  
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 Examples – Discrete-Time Fourier Series Properties 
 
 Example – Write the expression for a Discrete-Time signal with the following characterization: 

 
  1) Real periodic signal with period of 12  
  2) With nonzero Fourier Series Coefficients: 
   a0=-2,   a-1=-5j,   a6= a7= a8=3, a-14= a-15=-(2+j). 
 
Solution: 
use the properties: 
. Real  ak= a-k* 
  Discrete-time Periodic  ak= ak+12 

  w0 = 2π/N = 2π/12 = π/6  rad/sec 
resulting in: 
   a-6=3,  a-5=3,  a-4=3,  a-3=2+j,  a-2=32+j,  a-1=5j,  a0=-2,  a1=-5j,  a2=2-j,  a3=2-j,  a4=3,   a5=3.     
 





5

6

6/][
k

jkn
k

Nk

njkw
k eaeanx o   

 
 

 Example – Given two signals with period of 10 and the following nonzero Fourier Series 
Coefficients : 
  x[n]  a0=5,  a1=29,  a3=-30. 
  y[n]  b1=3,  b5=10,  b6=-15. 
 
Calculate Fourier Series Coefficients of X[n]Y[n]. 
 
Solution: 
 

 
Nl

klk baa  
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3.8.  Application of Fourier Series in LTI systems  

Fourier Series represent signals as linear combination of weighted harmonics and LTI systems is linear 
by definition.  These two facts enable us to determine the response to the LTI system by applying the 
concept of Fourier Series. 
 
In this section we will use the Fourier Series to calculate the system response firs in Continuous-Time and 
then in Discrete-Time. 
 
 Continuous-time LTI System Response 

Earlier in this chapter, the system function, H(s), was derived in terms of system impulse response of 
LTI system , h(t), which is show below: 
 

  




  dehsHFunctionSystem s)()(  

 
In general “s” is a complex number, but here we will use s as pure imaginary (s=jw) which results in: 
 

  




   dehjwHesponseRFrequency jw)()(  

 
Input signal may be written as a Fourier Series Representation: 
 

  





k

tjkw
keatx 0)(  

 
Using the Response equation y(t) = H(s)est, and the above equation for input signal, LTI system 
response can be re-written as a Fourier series also: 
 

   





k

tjkw
k ejkwHaty 0)()( 0  

 
A few observations to consider include: 

 Fourier Series Coefficient of response y(t) is akH(jkw0) where ak is Fourier Coefficient of 
input and H(jkw0) is the frequency response. 

 y(t) has the same Fundamental Frequency w0 as the input. 
 Fundamental Frequency W0=2/T 

 
 Discrete-time LTI System Response 

Earlier in this chapter, the system function, H(Z), was derived in terms of system impulse response of 
LTI system , h[n], which is show below: 
 

  





n

nznhzHFunctionSystem ][)(  

 
In general z is a complex number but here we will use |z|=1  z=ejw which results in: 
 

  





n

jwnjw enheHesponseRFrequency ][)(  
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Input signal may be written as a Fourier Series Representation: 
 

  



Nk

njkw
keanx 0][  

 
Using the Response equation y[n] = H(z)zn, and the above equation for input signal, LTI system 
response can be re-written as a Fourier series also: 
 







Nk

njkwjkw
k eeHany 00 )(][  

 
A few Observations to consider include: 

 Fourier Series Coefficient of response y[n] is akH(ejkw0) where ak is Fourier Coefficient of 
input and H(ejkw0) is the frequency response. 

 Y[n] has the same Fundamental Frequency w0 as the input. 
 Fundamental Frequency W0=2/N 

 
 

 Examples – Application of Fourier Series in LTI Systems Properties 
 
 Example – Signal, x(t) = 20 + 3 cos(3πt/8 – π/3), is passed through a low pass filter with cut off 

frequency of 10 Hz.  Write the output signal equation. 
 
Solution: 
 
  response, y(t) = 20 + 3 cos(3πt/8 – π/3) 
 
 
 
 
 
 
 
 
 

 Example – x(t) is a square wave with the period of 1 msec. and 25% duty cycle with maximum of 
5V and minimum of 0V.  This signal is input to a band pass filter with cut off frequencies of 5,000 
and 10,000 rad/sec. Calculate and plot the response in frequency and time domain. 
 
Solution: 
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3.9.  Chapter Summary 

This section is a summary of key concepts from this chapter. 
 
Continuous-Time Fourier Series 
x(t) must be periodic and converging. 











k

tTjk
k

k

tjkw
k eaeatx )/2(0)( 

  Synthesis Equation  

  
T

tTjk

T

tjkw
k dttxe

T
dttxe

T
a )(

1
)(

1 )/2(0 
   Analysis Equation 

 
 
Discrete-Time Fourier Series 
X[n] must be periodic and is by definition converging. 

1,...,1,

][ )/2(



 


Nmmmkfor

eaeanx
Nk

nNjk
k

Nk

njkw
k

o 

 Synthesis Equation 








 
Nn

nNjk

Nn

njkw
k enx

N
enx

N
a o )/2(][

1
][

1   Analysis Equation 

 
 
Euler’s Identity  

j

ee
a

ee
a

ajae

jaja

jaja

ja

2
)sin(

2
)cos(

)sin()cos(














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3.10.  Additional Resources 

 Oppenheim, A.  Signals & Systems (1997) Prentice Hall 
Chapter 3. 
 

 Lathi, B. Modern Digital & Analog Communication Systems (1998) Oxford University Press 
Chapter 3. 
 

 Stremler, F. Introduction to Communication Systems (1990) Addison-Wesley Publishing Company 
Chapter 3. 
 

 Nilsson, J.  Electrical Circuits. (2004)  Pearson. 
Chapter 16 and 17. 
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3.11.  Problems 

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 4. The Continuous-Time Fourier Transform 

 
Key Concepts and Overview 
 
 Introduction 

 Fourier Transform of Aperiodic and Periodic Signals 

 Fourier Transform Convergence 

 Properties of the Continuous-Time Fourier Transform 

 Systems Characterized by Linear Constant-Coefficient Differential Equations 

 Additional Resources 
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4.1.  Introduction 

This chapter introduces Fourier Transform for Aperiodic signals.  We will leverage the work from pervious 
chapter on Fourier series for the periodic signal.  Aperiodic signal will be approached as if it is a periodic 
signal with period, T  .  This would also imply that the fundamental frequency W0   0.   
 
The resulting Fourier Transform has a number of useful properties that will be used to describe the 
characteristics of the original signal. Additionally, the Fourier Transform plays an important role in study of 
signal & systems by providing a Frequency spectrum analysis tool. 
 
It will also be shown that Fourier Transform is also applicable to periodic signal.  This chapter is dedicated 
to Continuous time signal and it’s Fourier Transform.  Next chapter applies Fourier Transform to the 
Discrete-time aperiodic signals. 
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4.2.  Fourier Transform for Aperiodic and Periodic Signals 

The development of Fourier Transform for Continuous-time Aperiodic signals starts by revisiting the 
definition of Aperiodic signal.   An Aperiodic signal has non zero value of interested from some time value  
T1 to T2 which would fit within an interval t0 to (t0 + T).  As shown below: 
 

We can consider that the signal shown above is a single period of a periodic signal with a period of T.  
With this consideration, the Continuous-Time Fourier Series synthesis and analysis equation can be used 
to write the following equations for x(t) approximation and ak: 
 

  

dtetx
T

a

eatx

T

T

tjkw
k

tjkw

k
k




















2/

2/

0

0

)(
1

)(

  for the  Interval:    0  t   T where w0 = 2/T 

 
Since the signal in reality is not periodic and the value of x(t) is zero outside of the interval, we can 
change the integration limit to infinity and use x(t) instead of approximation.  These modifications results 
in the following analysis for calculation of Fourier Series Coefficient: 
 

  dtetx
T

a tjkw
k 





 0)(
1

 

 
At this point we can define the Fourier Transform X(jw) as T multiplied by ak.    
 

  dtetxjwX jwt




 )()(  Fourier Transform or Fourier Integral of x(t) 

 
From the above equation, the Fourier Series Coefficient for a periodic signal may be calculated by setting 
w to kw0 as shown below: 
 

  )(
1

jwX
T

ak    where w = kw0 

 
using the above two equations, we can write the x(t) approximation in-term of X(jw) as shown below:  
 

  tjkw

k

ejkwX
T

tx 0)(
1

)( 0






  

 

X(t)

t 
T2 T1
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we know that wo = 2 /T or T =2 / wo so we can rewrite the above equation as: 
 

  dwejwXwejkwXtx jwt

k

tjkw

k











 )(
2

1
)(

2

1
)( 00

0


 

 
In the case of an Aperiodic signal, T, wo 0 and dw  0 which means the sum of terms in the above 
equation changes to an integral.  This change results in the following integral which is referred to as an 
Inverse Fourier Transform: 
 

  




 dwejwXtx jwt)(
2

1
)(


   Inverse Fourier Transform 

 
 
Below is a summary of the three equations resulting from the above derivations:  
 

  

periodiciftCoefficienSeriesFourierjkwX
T

jwX
T

a

txofegralFourierortransformFouriertxFdtetxjwX

equationtransformFourierInversejwXFdwejwXtx

ok

jwt

jwt

)(
1

)(
1

)(int)}({)()(

)}({)(
2

1
)( 1





















 

 
 
 Example:  Continuous-Time Fourier Transform for Aperiodic Signals 

 
 Example 1 – Find the Fourier Transform for the signal x(t) =e-2t u(t). 

 
Solutions: 

jw
jwX

e
jw

dtedteedtetuejwX tjwtjwjwttjwtt





 











 

2

1
)(

2

1
)()( 0

)2(

0

)2(

0

22

 

 
 

 Example 2 – Find the x(t) with Fourier Transform  
  X(jw) = 5    2 < w < 4 
   0   Otherwise 
 
Solution: 

)(
2

5
5

2

1
)(

2

1
)( 24

4

2

tjtjjwtjwt ee
t

dwedwejwXtx  


 
 

 
 Example 3  - Find Fourier transform of the signal: 

  x(t) = e-a|t| {u(t-1) – u(t-5)} 
 
Solutions: 
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Student Exercise. 
 

 Example 3  - Find Fourier transform of the signal: 
  x(t) = e-a|t| {u(t+1) – u(t+5)} 
 
Solutions: 
Student Exercise. 
 
 
 

 Fourier Transform of Periodic Signals 
The Fourier Transform of Continuous-time Aperiodic signal derivation can be extended to find the 
Fourier Transform of  periodic signals.  Let’s start with a Fourier Transform of the following form: 
 
  X(jw) = 2δ(w-w0) 
 
We can apply inverse Fourier Transform to find x(t): 
 

  tjwjwtjwt edwewwdwejwXtx 0)(2
2

1
)(

2

1
)( 0  












 

Note: δ(w-w0)f(w)=f(w0) 
 
We can generalize the above derivation to: 
 

  tjkwetx 0)(   which  has a Fourier Transform of the form X(jw) = 2δ(w-kw0) 

 
As it was developed in the previous section, Periodic signals may be written as linear sum of their 
harmonic using Fourier Series Coefficients which is shown below: 
 

  tjkw

k
k eatx 0)( 





  

 
Using the above relationships, Fourier Transform of Periodic signal may be written as: 
 

  





k

k kwwajwX )(2)( 0  

 
The Fourier transform of a periodic signal with Fourier Series Coefficients aK is an impulse train at the 
harmonic frequencies.  The impulse train will be used in later chapters for the analysis of sampling 
systems.  
 
Here is a summary of relationships for Fourier Transform of periodic signals: 
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EquationTransformFourierkwwajwX

EquationAnalysisSeriesFourierdtetx
T

a

EquationSynthesisSeriesFouriereatx

k
k

T

T

tjkw
k

tjkw

k
k

























)(2)(

)(
1

)(

0

2/

2/

0

0



 

 
 Example 1– Find the Fourier Transform for the signal x(t) = sin(300t). 

 
Solutions: 
 
w0 = 300 = 2/T  T = 2/300 

)]()([)(2)(

00
2

1

)(
2

1

2

300

)300(sin
2

300
)(

1

000

11

300/

300/

300300300

300/

300/

300
2/

2/

0

wwww
j

kwwajwX

kforaand
j

aa

dteee
j

a

dtetdtetx
T

a

k
k

k

tjktjtj
k

tjk
T

T

tjkw
k














































 

 
 

 Example 2 – Find the Fourier Transform for a periodic square wave with 25% duty cycle a with 
the period of 10 uSec.,  high value of 2v and low of -1v.  
 
Solutions: 
Student Exercise 
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4.3.  Fourier Transform Convergence 

The discussion of the Continuous-Time Fourier Transform for Aperiodic signals convergence is similar to 
the convergence of Fourier Series for periodic signals.  Fourier Transform of x(t) converges and the  

equation 




 dwejwXtx jwt)(
2

1
)(

^


 accurately represent the original signal x(t) only if x(t) has finite 

energy as shown by the following equation: 
 

   




dttxEnergy 2|)(|  

 
If the original x(t) and x(t) approximated by inverse Fourier Transform have the same finite energy then 
the total error energy is 0 as shown below:  
 

  
0|)(|

)()()(

2 










dtteEnergy

txtxteerror
 

 
Another way to state the same concept is that “the approximated signal has the same energy signature 
as the original x(t) signal”. 
 
Much like the periodic case, Dirichlet conditions are sufficient to ensure the approximation of x(t) using 
Inverse Fourier Transform is equal to x(t) except at the discontinuities.  As discussed earlier, the value at 
the discontinuities is equal  to the average of the values on either side of discontinuity.   
 
Again, the three Dirichlet conditions required for convergence are listed here: 

1)  x(t) is absolutely integrateable which means 




dttx |)(| . 

2)  x(t) has finite number of oscillations within any finite interval. 
 
3)  x(t) has finite number of discontinuities within any finite interval and each discontinuity is finite.  
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 Example – Fourier Transform Convergence 
 
 Example 1 – determine the Fourier Transform For the following signal if it converges: 

 
  x(t)=e-b|t|  where b>0. 
 
Solution: 
Since all three of Drichelet’s condition holds, X(jw) converges and x(t) has a valid Fourier series.  
The following process is used to calculate x(jw): 
 

22

0

0

2
)(

11
)()(

wb

b
jwX

jwbjwb
dteedteedtetxjwX jwtbtjwtbtjwt








 













 

 
 

 
 

t w 

x(t) 

1 

-b b 

1/b 

X(jw) 
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4.4.  Properties of the Continuous-Time Fourier Transform 

The development of Fourier transform X(jw) provides us with a frequency description of signal (frequency-
domain) while x(t) provides us with time description of signal (time-domain).  The following table presents 
the properties of Continuous-time Fourier Transform: 
 
Properties of Fourier Transform of Aperiodic Signal 
Properties Aperiodic Signals: x(t) and y(t) Fourier Transform: X(jw) and Y(jw) 
Conjugate symmetry Real x(t) X(jw)=X*(-jw) 
Conjugation x*(t) X*(-jw) 
Convolution  X(t)*y(t) X(jw)Y(jw) 

Differentiation in 
Frequency 

tx(t) 

dw

jwdX
j

)(
 

Differentiation in Time 

dt

tdx )(
 

jwX(jw) 

Frequency Shifting )(txe tjwo  X(j(w-w0)) 

Integration 




t

dx  )(  )()0()(
1

wXjwX
jw

  

Linearity Ax(t) + By(t) AX(jw) + BY(jw) 
Multiplication x(t)y(t) 






 




dwjYjX

orjwYjwX

))(()(
2

1

)(*)(
2

1

 

Symmetry Real and even x(t) 
 
Real and odd x(t) 

X(jw)  is real and even 
 
X(jw) is purely imaginary and odd 

Time & Frequency 
Scaling 

x(bt) 
)(

1

b

jw
X

b
 

Time Reversal x(-t) X(-jw) 
Time Shifting x(t-t0) )( jwXe ojwt  

Parseval’s Relation 
Total Energy of the 
Aperiodic signal 










 dwjwXdttxEnergyTotal 22 |)(|
2

1
|)(|


 

 
 
All these properties are important in analysis and to our ability to move between time-domain and 
frequency-domain view of the signal.  This access to the two domains enables us to perform the analysis 
in the domain which provides the most effective environment for signal analysis.  Later in this chapter, the 
Convolution and Multiplication property will be explored further due to their importance.  We also will 
discuss Duality which is not listed in the table. 
 
To prove the any of the relationships listed in the above Properties table,  simply apply x(t) and X(jw) to 
either the Fourier Transform equation or Inverse Fourier Transform shown below: 
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)(int)}({)()(

)}({)(
2

1
)( 1

txofegralFourierortransformFouriertxFdtetxjwX

equationtransformFourierInversejwXFdwejwXtx

jwt

jwt


















 

 
 Example – Fourier Transform  

 
 Example – Prove the frequency shifting Property of Fourier transform: 

 

 ))(()}({ 0wwjXtxeF tjwo   or ))}(({)( 0
1 wwjXFtxe tjwo    

 
Solution: 
 
 
 
 
 

 Example2 – Using the properties in the properties table find the Fourier transform in terms of 
F{x(t)}=X(jw) for the following signal: 
 
  y(t) = 2 x(t - k/3) + 4 x(t + n/5) 
 
Solution: 
 
 
 
 
 

 Example – Find Fourier Transform of y(t) = )25(
)(

 tx
dt

tdx
 when Fourier Transform of x(t)is 

X(jw). 
 
Solution: 
 

  )()()( 25 jwXejwjwXjwY wj  

 
 

 Example – Find Fourier Transform of y(t) = ))25(200sin(
))2000(sin(

 t
dt

td 
. 

 
Solution: 
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 Convolution Property and Application 
Convolution property states that a time-domain convolution is replaced by multiplication in frequency 
domain as shown below: 
 

  )()()()}({)(*)()( jwHjwXjwYtyFtxthty
F

  

 
Here is the proof that Convolution Property holds true: 

  

)()()(

)(
2

1
)(sin

)()(
2

1
)()(

2

1
lim)(

sup

)()()()(

)(
2

1
lim)(

0

)(
2

1
)(

000
0

0

00
0

0

0

0

0

0

0

jwHjwXjwY

Then

dwejwYtyce

dwejwHjwXwejkwHjkwXty

erpositionandproductsfrequencycrossnoassuchpropertiesLTIApplying

dtethjkwHdtethsH

wejkwXtx

kandwwhensumaasrewritecanyou

dwejwXtx

jwt

jwt

k

tjkw

w

tjkwst

k

tjkw

w

jwt




































































 

 
The importance of Convolution property is the fact that it can be applied to LTI systems to determine 
the System Response.  In earlier work, it is known that in time-domain the system response is equal 
to input x(t) convoluted with impulse response h(t): 
 
  y(t) = h(t) * x(t)      
 
By taking the Fourier Transform of both side, we can state that in frequency-domain, response Y(jw) 
is the product of input X(jw) and Frequency Response H(jw): 
  
  Y(jw) = X(jw)H(jw)  where X(jw) = F{x(t)}, Y(jw) = F{y(t)} and H(jw) = F{h(t)}. 
 
Below is a system diagram annotated in time-domain and frequency-domain: 
 

 
Like the unit impulse response, h(t), frequency response H(jw) completely characterizes the LTI 
System and it does not depend on the order. Therefore, the following system configurations are 

LTI System 
h(t)  “Impulse Response” 

H(jw)=F{h(t)} “Frequency Response” 

x(t) 
X(jw) =F{x(t)} 

y(t) 
Y(jw) =F{y(t)} 
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equivalent: 

 
Furthermore, H(jw) converges and exists if its energy is bounded.  This means we can apply 
Drichlet’s three conditions.  If all three condition are met then H(jw) converges and therefore it exists: 

 x(t) is integrable; that is 




dttx )(  

 x(t) has finite number of oscillation within any finite interval 
 x(t) has finite number of discontinuities within any finite interval. Furthermore, each of 

these discontinuities must be finite.  
 

 Example - Given dttxty
t




 )()(  is response of an LTI system with input x(t) what is the impulse 

response h(t) of the LTI system? 
 
Solution: 

Take an inverse Fourier transform of dttxty
t




 )()(  

  

)()(

sin

)(
1

)(:

)()()(:

)()}(
1

{)(

)()()(
1

)(

)()()()0(:

)()0()(
1

)(

tuth

tablepropertygu

w
jw

jwHTherefore

jwHjwXjwYKnown

jwXw
jw

jwY

wjwXjwX
jw

jwY

wjwXwXknown

wXjwX
jw

jwY

























 

 
 Multiplication Property and Application 

Multiplication property states that a time-domain multiplication is replaced by convolution in frequency 
domain as shown below: 

H1(jw) H2(jw) y(t) x(t) 

H2(jw) H1(jw) y(t) x(t) 

H1(jw) H2(jw) y(t) x(t) 

Y(jw)=X(jw)H1(jw)H2(jw) 
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  


dwjPjSjwHjwxjwRtrFtptxtr
F

))(()(
2

1
)(*)(

2

1
)()}({)()()( 





  

 
To prove this property take Fourier transform of both side of time-domain equation and show that the 
right side is a convolution. 
 
The multiplication property is used to scale signal.  It is also used to move the signal up or down the 
frequency spectrum which is referred to as modulation. 
 
 Example:  x(t) is a signal with Fourier Transform X(jw). 

 

 
Sketch the Frequency Spectrum of the signal resulting from the multiplication of x(t) and 
p(t)=cos(WMt). 
 
Solution: 
Student Exercise 
 
Hints: 
 * Find the Fourier transform of p(t) and plot it. 
 * Perform the convolution between the two signals.  Remember the 1/2  factor. 
 

 Duality Property 
Fourier transform and inverse Fourier Transform exhibit symmetry such that by interchange time and 
frequency variables in the transform, a new dual transform is derived.  This is referred to as Duality. 
 
For example the following is the time shift property of Fourier transform: 

  )()}({)( 0
00 jwXettxFttx jwt

F
  

 
The dual pair of above transform can be derived by exchanging time and frequency variables as 
shown below: 

  )()}({)( 0
00 wwXtxeFtxe tjw

F
tjw    

 
  

w 

X(jw) 

M 

-wM                                  wM 
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 Time-Domain Signal, Fourier Transform and Fourier Series Coefficient  
The following table summarizes some of the most common Signals and their Fourier transforms.  
Also included is the Fourier Series Coefficient for the signal if the signal is periodic. 

 
Time-Domain Signal, Fourier Transform and Fourier Series Coefficient  
Signal, x(t) =F-1{X(jw)} Fourier Transform, X(jw)=F{x(t)} [1] Fourier Series Coefficient, ak 

tjkw

k
kea 0





 )(2 0kwwa
k

k 




  dtetx
T

tjkw




 0)(
1

 

tjwe 0  )(2 0ww   a1=1 
ak =0 for all other k values 

cos(w0t) )]()([ 00 wwww    a1 = a-1 =1/2 
ak =0 for all other k values 

sin(w0t) 
)]()([ 00 wwww

j
 

 
a1 = -a-1 =1/(j2) 
ak =0 for all other k values 

1 )(2 w  a0= 1 
ak =0 for all other k values 

Periodic Square Wave 
x(t) = 1   |t| <T1 
          0   T1< |t| <T/2 
    with Period T. 

)(
)sin(2

0
10 kww

k

Tkw

k






  
k

Tkw )sin( 10  

Pulse Train in Time 







n

nTt )(  






k T

k
w

T
)

2
(

2 
 

ak = 1/T   for all k 

x(t) = 1  |t|<T1 

         0  |t|≥T1 w

wT1sin2
 

N.A. 

t

Wt


sin

 
X(jw) = 1   |w| < W 
             0   |w| > W 

N.A. 

)(t  1 N.A. 

u(t) 
)(

1
w

jw
  

N.A. 

)( 0tt   0jwte  N.A. 

)(tue at  for Re{a}>0 

jwa 
1

 
N.A. 

)(tute at  for Re{a}>0 
2)(

1

jwa 
 

N.A. 

)(
)!1(

1

tue
n

t at
n





 

 for Re{a}>0 

njwa )(

1


 

N.A. 

Note: [1]Fourier Series Coefficient  exists only if signal is periodic. 
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4.5.  Chapter Summary 

This section is a summary of key concepts from this chapter. 
 
 Continuous -time  Fourier Transform 

x(t) may be aperiodic but must be converging. 
 
 Fourier Transform - Analysis Equation 

X(jw) is the Fourier Transform of x(t) and is aperiodic in frequency domain. 






 dtetxtxFjwX jwt)()}({)(  

 Fourier Inverse Transform - Synthesis Equation  
x(t) is the Fourier inverse Transform of x(t) and is aperiodic in time domain. 






  dwejwXtxFtx jwt)(
2

1
)}({)( 1


 

 Fourier Transform and Fourier Series relationship (valid only if x(t) is periodic) 
ak =X(jw) = X(jkw0) 
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4.6.  Additional Resources 

 Oppenheim, A.  Signals & Systems (1997) Prentice Hall 
Chapter 4. 
 

 Lathi, B.  Modern Digital & Analog Communication Systems (1998) Oxford University Press 
Chapter 3. 
 

 Stremler, F. Introduction to Communication Systems (1990) Addison-Wesley Publishing Company 
Chapter 3. 
 

 Nilsson, J.  Electrical Circuits. (2004)  Pearson. 
Chapter 16 and 17. 
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4.7.  Problems 

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 5. The Discrete-Time Fourier transform 

 
Key Concepts and Overview 
 
 Introduction 

 Fourier Transform of Aperiodic and Periodic Signals 

 Fourier Transform Convergence 

 Properties of the Discrete-Time Fourier Transform 

 Summary of Fourier Series and Transform Equations 

 Systems Characterized by Linear Constant-Coefficient Differences Equations 

 Additional Resources 
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5.1.  Introduction 

As discussed earlier, a major benefit of Fourier Transform is the ability to perform Frequency-Domain 
analysis for LTI system in addition to time-domain analysis.  Specifically, the convolution property in time-
domain and its equivalent multiplication in frequency-domain relate the response and input of a LTI 
system.  
 
Development of Discrete-Time Fourier Transform for Aperiodic signals follows a similar process to the 
Continuous-Time Fourier Transform development.  As it was done in the last chapter, the development of 
Discrete-Time Fourier Transform starts with the Fourier series and the assumption that any aperiodic 
signal can be treated as a single period of periodic signal. 
 
Many of the Discrete-Time Fourier Transform properties are counterparts of the Continuous-Timer Fourier 
Transform properties.  One difference is that the Discrete-Time Fourier Transform of an aperiodic signal is 
always periodic with period 2.   
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5.2.  Fourier Transform of Aperiodic and Periodic Signals 

 
The development of Fourier Transform for Discrete-Time Aperiodic signals starts by revisiting the 
definition of aperiodic signal.   An Aperiodic signal has non zero value of interested from some time value 
N1 to another time value N2 which would fit within an interval n0 to (n0 + N).   As shown below: 
 

We can consider that the signal shown above is a single period of a periodic signal with a period of N.  
With this consideration, the Continuous-Time Fourier Series synthesis and analysis equations can be 
used to write the following equations for x[n] approximation and ak: 
 

  
njkw

Nn
k

njkw

Nk
k

enx
N

a

eanx

0

0

][
1

][


















  for the Interval:   0   n   N where w0 = 2/N 

 
The signal in reality is not periodic and the value of x[n] is zero outside of the finite interval, we can 
change the integration limit to infinity (N∞ or w0 0) to fully represent the Aperiodic signal x[n].  By 

substituting the limits for the period and replacing the with x[n], the Fourier Series Coefficient 

equation can be written as: 

  





n

nNjk
k enx

N
a )/2(][

1   

 
Given that w=k(2/N)=kw0,  Discrete Fourier Transform is defined as: 
 

  





n

jwnjw enxeX ][)(   Fourier Transform Equation (Analysis equation)  

  X(ejw) is sometimes referred to as spectrum of x[n]. 
 
Using the above definition, relationship between ak and X(ejw)  may be represented by: 
 

  )(
1

0jkw
k eX

N
a   

 
Plugging the above value of ak into the following Fourier Series equation: 
 

  



Nk

njkw
k eanx 0][  

 

][nx


0 N2 N1 

x[n], a finite duration (aperioidc) signal  
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Results in: 

  



Nk

njkwjw eeX
N

nx 0)(
1

][   where N = 2/w0 

  



Nk

o
njkwjw weeXnx 0)(

2

1
][


  

 
As N increases and  w0 decreases, the above summation transitions to an integral where {dw=w0 = 
(k+1)wo – kw0}   0. 
 

  
N

jwnjw dweeXnx )(
2

1
][


 

 
X(ejw)ejwn is periodic in frequency domain (w) with a period of 2  therefore x[n] can be written in terms of 
X(ejw) as shown below: 
 

  dweeXnx jwnjw
 2

)(
2

1
][    Inverse Fourier Transform (Synthesis equation)       

 
The above derivation of Discrete-Time Fourier Transform of Aperiodic signal can be summarized: 
 

 





n

jwnjw enxeX ][)(  Fourier Transform Equation (Analysis equation)  

 dweeXnx jwnjw
 2

)(
2

1
][   Inverse Fourier Transform (Synthesis equation) 

 
 
 Example – Discrete-Time Fourier Transform for Aperiodic Signal 

 
 Example – Calculate Fourier Transform for the following x[n]: 

 

  
Solution: 
 

wjjwjwwjwj

n

jwn

n

jwnjw eeeeeenxenxeXnxF 223
2

3

272856][][)(]}[{ 








  
 

-3 -2 -1  0 1  2 

n  

2 

7 
8 

5 6 

2 
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 Example -  Find and plot the magnitude and phase of Fourier Transform of  x[n]=anu[n]   where 
a<1. 
 
Solution 





















 
00

)(][][)(
n

njw

n

jwnn

n

jwnn

n

jwnjw aeeaenuaenxeX  

 
Applying the finite sum equation: 
 

jw
jw

ae
eX 


1

1
)(  

 
Plot the magnitude and phase of X(ejw) and use Matlab to plot the equation. 
 

 Example 2:  Find and plot the magnitude and phase of Fourier Transform of 
  x[n] = 1   where  |n| ≤ N1 
   0   where  |n| > N1 
 
Solution 













 
1

1

1

1

][)(
N

Nn

jwn
N

Nn

jwn

n

jwnjw eeenxeX  

let n=m-N1 








 
1

1

1

1

2

0

2

0

)()()(
N

m

mjwjwN
N

m

Nmjwjw eeeeX  

Applying Finite Sum Equation 

)2/sin(

)2/1(sin2

)(1

)(1
)( 1

12 1

1

w

Nw

e

e
eeX

jw

N
jw

jwNjw 





 



 

 
Plot the magnitude and phase of X(ejw) and use Matlab to plot the equation. 
 
 

 
  Fourier Transform of Discrete-Time periodic Signals 

The remainder of this section is focused on derivation of Fourier Transform for Discrete-Time periodic 

Signals.  First, consider a periodic Signal njwenx 0][   which has a period of 2.  We will suggest that 

the Fourier Transform of x[n] should be sum of  impulses at w0, w0 ± 2, w0 ± 4, … .  So here is the 
Fourier Transform of x[n]: 
 

  





l

jw lwweX )2(2][ 0   

 
To check validity of the Fourier Transform, one has to take the Inverse Fourier Transform of X(ejw) 
and prove that x[n] is indeed a periodic signal:  
 

  njwjwn

l

jwnjw oedwelwwdweeXnx   






 2 02

)2(2
2

1
)(

2

1
][  

  Note : there is only one impulse per 2  period. 
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The general form of periodic signal (sequence) with period N and its transform can be written as 
follows: 
 

  














k
k

jw

Nk

nNjk
k

N

k
waeX

eanx

)
2

(2)(

][ )/2(





  

 
Fourier Transform of a periodic signal can be directly constructed from the Fourier Series Coefficients 
as shown by the above equation. 
 

 Example – Discrete-Time Fourier Transform of Periodic Signal 

 Example1:  Find Fourier Transform of Periodic Signal:  nwnx 0cos][   where 
5

2
0


w . 

 
Solution 
 
Apply Euler’s identity: 

njwnjw oo eenx 
2

1

2

1
][  

Now we can apply the Fourier Transform equation where
5

2
0


w  N=5  















lll

jw lwlwlwweX )2
5

2
(2

2

1
)2

5

2
(2

2

1
)2(2][ 0   

That is for each period (0 to 2) we have: 

  wwherewweX jw )
5

2
()

5

2
(][  

So the whole signal is shown below: 

 
 

|X[ejw]|

w 
w0 -w0 0 

 

(-2+w0) (-2-w0) -2 (2+w0) (2-w0) 2 

. . . . . . 
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5.3.  Fourier Transform Convergence 

In the Discrete-Time Fourier Transform case, convergence is required in order for Fourier Transform to 
exist.  This is another similarity between the Continuous-Time and Discrete-Time Fourier Transform.  
Here again we have to deal with infinite summation to find the Fourier Transform. So we need to ensure 
that the signal, x[n], is convergent before using the following Fourier Transform equation to find the 
Fourier Transform of x[n]. 
 

  





n

jwnjw enxeX ][)(   Fourier Transform Equation 

 
As discussed earlier, in order for x{n] to be convergent and have a Fourier Transform, the following must 
be true: 
 

  





n

nx |][|   which says the x{n] is absolutely summable 

 
or 
 

  





n

nx 2|][|   which says that the sequence x{n] has finite energy 

 
In this case unlike the continuous-time situation we do not expect to see any behavior similar to the Gibbs 
Phenomenon since limits are finite.  You may recall that Gibbs Phenomenon says that as the period 
increases, the ripples in the partial sums become compressed toward the discontinuity, but for any finite 
value of period, the peak amplitude of the ripples remains constant.  
 
Further, not all LTI systems have impulse responses that converge. For example 2nu[n] does not 

converge since 





n

notisnh |][|  or diverges which means that it does not have a Fourier transform.  

 
We will introduce an extension to Discrete-Time Fourier Transform called z-transform that will allow us to 
use the transformation techniques for LTI systems for which the frequency response does not converge. 
 
Finally, the issue of convergence does not exist for Inverse Fourier transform since the limits are defined 
within any 2  period: 
 

  dweeXnx jwnjw
 2

)(
2

1
][    Inverse Fourier Transform 
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5.4.  Properties of the Discrete-Time Fourier Transform 

The development of Fourier transform X(ejw) provides us with a frequency description of signal 
(frequency-domain) while x[n] provides us with time description of signal (time-domain).  The following 
table presents the properties of Discrete-time Fourier Transform: 
 
Properties of Discrete-Time Fourier Transform of Aperiodic Signal 
 
Properties 

Aperiodic Signal 
x[n] and y[n] 

Fourier Transform: X(ejw) and Y(ejw)

”always periodic with period 2” 
Linearity Ax[n] + By[n] AX(ejw) + BX(ejw) 
Time Shifting x[n – n0] )( jwjwn eXe o  

Frequency Shifting ][nxe njwo  )( )( owwjeX   

Conjugation x*[n] X*(e-jw) 
Time Reversal x[-n] X(e-jw) 
Time Expansion x(k)[n]  =  x[n/k]   if n = multiple of k 

               0         if n ≠ multiple of k 
X(ejkw) 

Convolution x[n]*y[n] X(ejw)Y(ejw) 
Multiplication x[n]y[n] 






 




 deYeX

oreYeX

wjj

jwjw

)()(
2

1

)(*)(
2

1

)(

 

Differencing in Time x[n] – x[n – 1] (1 – e-jw)X(ejw) 
Summation 




n

k

kx ][  )(
1

1 jw
jw

eX
e

 

Differentiation in 
Frequency 

nx[n] 

dw

edX
j

jw )(
 

Conjugate symmetry Real x[n] X(ejw)=X*(e-jw) 
Symmetry Real and even x[n] 

Even x[n] 
Real and odd x[n] 

X(ejw)  is real and even 
X(ejw)  is real 
X(ejw) is purely imaginary and odd 

Parseval’s Relation 
Total Energy of the 
Aperiodic signal 

 


  2

22 |)(|
2

1
|][| dweXnxEnergyTotal jw

n

 

 
 
All these properties are important in analysis and to our ability to move between time-domain and 
frequency-domain view of the signal.  This access to the two domains enables us to perform the analysis 
in the domain which provides the most effective environment for signal analysis. 
 
To prove that any of the relationships listed in the above Properties table,  simply apply x[n] and X(ejw) to 
either the Fourier Transform equation or Inverse Fourier Transform shown below: 
 

  





n

jwnjw enxeX ][)(   Fourier Transform Equation  

  dweeXnx jwnjw
 2

)(
2

1
][    Inverse Fourier Transform       
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Two important property to consider: 
 

 Periodicity:  Discrete-time Fourier transform is always Periodic in w with period 2 for all x[n] 

][][ 2 jwjw eXeX    

 Convolution: 
where y[n]=x[n]*h[n]    and  y(ejw)= X(ejw) H(ejw) 
 

 Example -  Discrete-Time Fourier Transform Properties 
 
 Example 1: Consider the following LTI system where the frequency response Hlp(e

jw) are ideal 
low pass filter with cutoff frequencies /4 and unity gain in the pass-band. 

Find the Frequency response of the whole system. 
 
Solution 

 First work through the top path. 

*  We know that ))sin()(cos()1( njne njn    

 
*  We also know that this is a linear system therefore and applying frequency shifting 
property 

)(][ )( 00 wwjnjw eXnxe   
)(

1 ()(  wjjw eXeW  

)()()()()()(

)()()()()(
)()()2()(

23

)(
12












wj

lp
jwwj

lp
wjwjjw

jw
lp

wjjw
lp

jwjw

eHeXeHeXeWeW

eHeXeHeWeW
 

 
 Now the bottom branch  

)()()(4 jw
lp

jwjw eHeXeW   

 

X Hlp(e
jw) X

Hlp(e
jw) 

x[n] 

W1[n] 

(-1)n 

W2[n] 

(-1)n 

W3[n] 

+

W4[n] 

y[n] 
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 Now the final addition of top and bottom branch: 

 

)()()(

)()()()(

)()()()()()()(

)(

)(

)(
43



















wj
lp

jw
lp

jw

wj
lp

jw
lp

jwjw

wj
lp

jwjw
lp

jwjwjwjw

eHeHeH

Therefore

eHeHeXeY

eHeXeHeXeWeWeY

 

 
  

* We know )( jw
lp eH  is low pass filter with cut off frequency /4 Therefore  

* ][)1()( )( nheH lp
nwj

lp   which is impulse response of high pass filter with cut off 

frequency of 3/4 
 
based on above two facts the system is a band pass filter with cut off frequencies at /4 
and -/4 as shown below: 

 
  

/4 -/4 -3/4 3/4 

H(ejw) 

w 
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The following table summarizes some of the most common Discrete-Time Signal with corresponding 
Discrete-Time Fourier Transform and Fourier Series Coefficient. Note that  the Fourier Series Coefficient 
only exists for periodic signals. 
 
Time-Domain Signal, Fourier Transform and Fourier Series Coefficient  
Signal, x[n] =F-1{X(jw)} 
Period N,  w0 =2m/N 

Fourier Transform 
X(ejw)=F{x[n]} [1]Fourier Series Coefficient, ak 

njkw

Nk
k ea 0



 )(2 0kwwa
k

k 




  njkw

Nn

enx
N

0][
1 



 

njwe 0  





l

lww )2(2 0   
If w0 = 2m/N  
   ak = 1   for  k= ..  m-N, m, m+N,  
           0   otherwise 
 
if w0 /2   irrational   
   the signal is Aperiodic 
 

cos(w0n) 






l

lwwlww )]2()2([ 00 

 

If w0 = 2m/N  
   ak = 1   for  k= ..  m-N, m, m+N,  
           0   otherwise 
 
If w0 /2   irrational   
   the signal is Aperiodic 
 

sin(w0n) 






l

lwwlww
j

)]2()2([ 00 

 

If w0 = 2m/N  
  ak = 1/2j   for  k= ..m-N, m, m+N… 
       -1/2j   for  k= ..-m-N, -m, -m+N… 
          0     otherwise 
 
If w0 /2   irrational  
   the signal is Aperiodic 
 

1 






l

lw )2(2   
a0 = 1  for k = 0, N, 2N, … 
       0  otherwise 

Periodic Square Wave 
x(t) = 1   |n| <N1 
          0   N1< |n| ≤ N/2 
    with Period N. 







k

k N

k
wa )

2
(2

  
If k = 0, N, 2N, … 

   
N

N
ak

12 1   

 
Otherwise 

   
)/sin[(

)]
2

1
)(/2sin[( 1

NkN

NNk

a k 

 
  

Pulse Train 







n

kNn )(  






k N

k
w

N
)

2
(

2 
 

 
ak = 1/N   for all k 

anu[n]   |a| < 1 
jwae1

1
 

N.A. 
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x[n] = 1  |N| ≤ N1 

         0  |N| > N1 
)2/sin(

)2/1(sin2 1

w

Nw 
 

N.A. 

n

Wn


sin

 0 < W <  
 1  for  0 ≤ |w| ≤ W 
 0  for  W < |w| >  
X(ejw) is periodic with period of 2 

N.A. 

][n  1 N.A. 

u[n] 




 

 k
jw

kw
e

)2(
1

1   
N.A. 

][ 0nn   0jwne  N.A. 

][)1( nuan n    |a|<1 
2)1(

1
jwae

 
N.A. 

][
)!1(!

)!1(
nua

nn

rn n




 |a|<1 
rjwae )1(

1


 
N.A. 

Note: [1]Fourier Series Coefficient exists only if signal is periodic. 
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5.5.  Summary of Fourier Series and Transform Equations 

This section is a summary of key concepts from this chapter. 
 
 Discrete-time  Fourier Transform 

x(t) may be aperiodic but must be converging. 
 
 Fourier Transform -Analysis Equation 

X(ejw) is the Fourier Transform of x[n] and is periodic in frequency domain. 







n

jwnjw enxnxFeX ][]}[{)(  

 Fourier Inverse Transform -Synthesis Equation 
x(t) is the Fourier Inverse Transform of  X(ejw) and is aperiodic in frequency domain. 

 

 2

1 )(
2

1
)}({][ dweeXeXFnx jwnjwjw   

 Summary of Phase transform, Fourier series and Fourier Transform 
 

Transform Time Domain (t) Frequency Domain (w) 
Phasor Transform x(t) a sinusoidal signal in steady 

state system.  
 

Fourier Series x(t) is periodic CT Signal 
x{n] is periodic DT Signal 

ak is periodic 
ak is periodic 

Fourier Transform 
(s=jw) 

x(t) is aperiodic CT Signal 
x[n] is aperiodic DT Signal 

X(jw)=F{x(t)} is aperiodic 
X(ejw)=F{x[ejw]} is periodic 

Laplace Transform 
(s=jw+σ) 

x(t) is aperiodic CT Signal 
 

X(jw)=L{x(t)} 
 

Z Transform 
(s=jw+σ) 

x{n] is aperiodic DT Signal X(z)=Z{x[n]} 
 

 
 
 The following table summarizes the Fourier Series and Transform relationships.  

 
 Continuous time Discrete time 
 Time Domain Frequency 

Domain 
Time Domain Frequency Domain 

Fourier 
Series 








k

tjkw
k ea

tx

0

)(

 

 
Periodic in time 
 

 



0

0)(
1

0 T

tjkw

k

dtetx
T

a

 
Aperiodic in freq. 
 






Nk

nNjk
kea

nx
)/2(

][
  

 
 
Periodic in time 








Nn

nNjk

k

enx
N

a

)/2(][
1 

 
Periodic in frequency 

Fourier  
Transfor
m 








dwejwX

tx

jwt)(
2

1

)(


 
Aperiodic in time 
 










dtetx

jwX

jwt)(

)(

 

 
Aperiodic in freq. 
 





 2

)(
2

1

][

dweeX

nx

jwnjw

 
Aperiodic in time 










n

jwn

jw

enx

ex

][

)(
 

 
Periodic in frequency 
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5.6.  Additional Resources 

 Oppenheim, A.  Signals & Systems (1997) Prentice Hall 
Chapter 5. 
 

 Lathi, B. Modern Digital & Analog Communication Systems (1998) Oxford University Press 
Chapter 3. 
 

 Stremler, F. Introduction to Communication Systems (1990) Addison-Wesley Publishing Company 
Chapter 3. 
 

 Nilsson, J.  Electrical Circuits. (2004)  Pearson. 
Chapter 16 and 17. 
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5.7.  Problems 

 
Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.  
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Chapter 6. Sampling  

 
Key Concepts and Overview 
 
 Introduction 

 Sampling Theorem  

 Aliasing Caused by Under Sampling  

 Interpolation Techniques for Signal Reconstruction From Samples  

 Statistical Approach to Sampling 

 Additional Resources 
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6.1.  Introduction 

This chapter focuses on sampling theory and its application to signals and systems.   Natural signals such 
as images/light, sound/air pressure and movement are all continuous-time signals.  This is of course true 
both in the sensing of this signal as well as control/generation of these types of signals.  Prior to the 
advent of high speed computers and Fast Fourier Transform techniques, systems were designed to 
process the continuous-time signals directly, producing continuous-time output as depicted by the 
following diagram: 
 

 
 
A filter build with active or passive electrical component is a good example of traditional continuous-time 
processing system.  The flexibility of such systems are limited in-term of their ability to adapt to changing 
requirements of bandwidth, pass and no-pass transition time and cost.  Additionally, it would be difficult to 
build systems that behave ideally with transitions that are instant such as in ideal filters. 
 
On the other hand, using the ability to convert the continuous-time (analog) input signal to discrete-time 
(digital) signals then processing it in discrete-time (digitally) and converting it back to continuous-time 
output (analog), enables designer to reduce cost while increase flexibility and precision.  The following 
diagram graphically describes such a system. 
 

 
With the advent of high speed computers and Fast Fourier Transforms techniques, this process delivers a 
more cost effective, flexible and precise system than direct continuous-time (analog) approach.  Today, 
systems are designed using this approach except in cases where some unusual circumstance may exist.  
An example of unusual circumstance is extreme high conversions (sampling rate) requirements. Sampling 
rates of Giga samples per second is considered too high for this approach and it would be best designed 
in direct continuous-time.  
 
The key question that this chapter is concerned with is the conversion from continuous to discrete-time 
and back such that the original signal can be uniquely reconstructed.  Sampling is the process of taking 
values of continuous-time signal at equal intervals and using them to construct a discrete time signal 

Convert to Discrete-time signal using Analog-to-Digital (A/D) Converter  

Continuous-time input, x(t)

Process the signal in Discrete-time (Digitally) using computer programs 

Convert to Continuous-time signal using Digital-to-Analog (D/A) Converter  

Continuous-time output, y(t)

Sampled Input xp(t)=x[n] 

Sampled Output y[n]

Continuous-time signal 
Processing System 

Continuous-time  
output Signal 

Continuous-time  
input signal 



Signals & Systems  Page 134 
 

representing the original signal.  First question to be answered in this chapter is how many samples per 
seconds are required for complete reconstruction which leads to the Sampling Theorem. 
 
In the next section, Sampling Theorem is introduced.  The Sampling Theorem is a critical element in 
system design since it is the bridge between continuous-time and discrete-time. 
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6.2.  Sampling Theorem  

Let‘s start by accepting the fact that a signal may not be uniquely specified by a sequence of equally 
spaced samples.  For example, it is clear that x1(t)  x2(t)  x3(t) but the samples at equally spaced 
intervals are equal. x1(kT) = x2(kT) = x3(kT) as shown below:   
 

 
However if the signal is band-limited which means the value of signal above a finite frequency is equal to 
0, and we sample the signal at short enough intervals then the samples uniquely represent the signal.  
Let’s explore the previous sentence in more detail: 
 
First, signal is band-limited.  This means that maximum frequency of the signal may be represented with a 
finite value WM. In other words, the Fourier Transform of signal at frequencies above WM is equal to 0.  
 
Second, the sample must be high enough frequency (short intervals) which we show latter means that the 
sample frequency, WS, must be more than twice the maximum signal frequency, WM .   This key concept 
is known as Sampling Theorem.  If Sampling Theorem conditions are met then the samples uniquely 
specify the signal, and we can reconstruct it perfectly. 
 
Now, let’s focus on the process of sampling a continuous-time signal.  You may recall from earlier 
chapters, the concept of an Impulse Train Signal, p(t): 
 

  





n

nTttp )()(   

 
The impulse train signal is used to sample the signal.  Basically, regularly space impulses are applied to 
the signal x(t) to obtain the sampled sequence as shown below: 
 

  )()()( tptxtx p   where Impulse Train 





n

nTttp )()(   

 

T 

x1(t) 

x2(t) 

x3(t) 

Sample 
at kT

Sample 
at (k-1)T 

Sample 
at (k-2)T 

Sample 
at (k+1)T 

Sample 
at (k+2)T 

t 
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Therefore: 

  









nn

p nTxnTttxtptxtx ][)()()()()(   

 

Remember the sifting property of impulse function which implies )()()()( 000 tttxtttx   .  The 

following diagram graphically represents the sampling process and the process used to generate the 
sampled signal, xp(t): 
 

 
Therefore the equation describing the xp(t) may be written as: 
 

  





n

p nTxtx )()(  

 
 

 Example – For the signal x(t) = sin(2000πt) and sampling period, Ts = 0.4 msec: 
a) Write the equation for the impulse train, p(t), and sampled signal, x(t). 
b) Draw the signals x(t) and p(t). 
 
Solution: 

Xx(t) 

p(t) 

)()()( tptxtx p   

0 

0 

0 

T 

xp(0) 
xp(T) 

t 

t 

t 

x(t)  Signal 

xp(t) 
Sampled Signal 

Sampling Frequency = Ws = 2/T 
  Where T = Sampling Period  

Impulse Train  







n

nTttp )()(   
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Student Exercise. 
 
 
 
 
 
 
 
 

 
Applying the Multiplication property from Continuous-Time Fourier Transform Property: 
 

  


dwjPjXjwPjwXjwX p ))(()(
2

1
)(*)(

2

1
)(  




 

 
Remember that the following two facts:  

  1)  Fourier Transform of p(t) is 





k

skww
T

jwP )(
2

)( 
 Note: Ws = 2/T 

  2) Convolution of impulse function and X(jw) results in a shifted signal X(jw) as shown below:  

   ))(()(*)( 00 wwjXwwjwX   

 
Using the above two facts in combination with Xp(jw), we can rewrite the sampled signal equation as: 
 

  





k

sp kwwjX
T

jwX ))((
1

)(  

 
Now that we have the Fourier Transform of the sampled signal in terms of the Fourier Transform of the 
shifted original signal, we can explore the signal and sampling in frequency spectrum.  This view provides 
the basis to discuss the implication of the equation: 
 

  





k

sp kwwjX
T

jwX ))((
1

)(  
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The signal Frequency WM and  Sampling Frequency Ws relationship determines if the original signal can 
be recovered from the sampled signal.  There are two possible scenarios which are outlined below: 
 
Scenario 1) The Maximum signal Frequency WM and  Sampling Frequency Ws relationship meeting the 

following condition: 
 
  WM < (Ws - WM)    Ws > 2WM 

 
As shown in the following diagram, the sampled signal does not overlap with the harmonics 
which are the side effect of the sampling process. Therefore the original signal can be 
uniquely recovered from the sampled signal. 
 

 
In this scenario, the signal can be recovered by using a low pass filter with a gain of T and 

0 w 

Xp(jw) 

wM -wM 

(ws – wM) 

ws 

1/T 

0 w 

0 w 

X(jw) 

P(jw) 

wM -wM 

-ws -2ws 2ws ws 

X(jw) represent a signal with Maximum 
frequency of WM.y and Ws is Sampling 
Frequency Then: 

P(jw) represents a pulse train that will be 
used to sample at the frequency of Ws. 
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cut-off frequency greater than WM and less than (Ws - WM). 

 
Scenario 2) The Maximum signal Frequency WM and  Sampling Frequency Ws relationship meeting the 

following condition: 
 
  WM ≥ (Ws - WM)    Ws ≤ 2WM 

 
As shown in the following diagram, the sampled signal overlaps with the harmonics of the 
original signal which results in a side effect refers to aliasing.  This means that content of 
an alias (Harmonic) is corrupting the original signal spectrum.  Therefore the original signal 
cannot be uniquely recovered from the sampled signal.  Below is frequency spectrum of 
sampled signal under aliasing scenario: 

 
This leads us to the Nyquist-Shannon Sampling Theorem or simply Sampling Theorem which are stated 
below: 
 

If the signal x(t) is band-limited (X(jw)=0 for |w| > WM), then the signal x(t) is completely 
(uniquely) determined by its samples x(nT) only if  Ws > 2WM. 

Notes: 
[1]  sampling frequency, Ws  = 2/T. 
[2]  n=0, 1, 2,  … 
 

The frequency 2WM, which, under the Sampling Theorem, must be exceeded by the sampling frequency, 
is commonly referred to as the Nyquist Rate.  Nyquist Frequency refers to WM which is one half of the 
Nyquist Rate. 
 
The process to sample a continuous-time signal under the Sampling Theorem can be accomplished by 
multiplying the continuous-time signal x(t) with an impulse train signal p(t) to generate the sampled signal 
xp(t).  Assuming the condition of Sampling Theorem is met (Ws > 2WM) then the original signal can be 
uniquely reconstructed using an ideal  low pass filter with cut-off frequency wc between WM & Ws.  
 
Below is an example of the process used for sampling a continuous signal and then reconstructing the 
signal from the samples using a low pass filter (this example meets the sampling theorem requirement of 

0 w 

Xp(jw

wM -wM 

(ws – wM) 

ws 

1/T 

0 w 

Xp(jw) 

wM -wM ws 

1/T 

Ideal filter to recover the 
original signal. 
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Ws > 2WM):  

   
This example uses an ideal low pass filter to recover the signal.  Since real filters will not have the exact 
characteristic of an ideal low pass filter which means that there may be distortion in the reconstructed 
signal depending on how closely the recovery low pass filter matches the characteristic of an ideal low 
pass filter.  Just a quick reminder that ideal low pass filter meets the following conditions: 
 
  H(jw) = 1 for  |w| < wM 

  0 for |w| > (ws – wM) 
 

0 w 

X(jw), Original Signal 

wM -wM 

0 w 

Xp(jw), Signal Samples 

wM -wM 

(ws – wM) 

ws 

1/T 

X x(t) 

p(t) 

Sampled Signal 
xp(t) Hlp(jw) 

1 

Recovered Signal 
Xr(t) 

Sampling Recovery 

0 w 

Xr(jw), fully recovered Signal 

wM -wM 

1 

Using sampling rate, ws the 
satisfies ws > 2 wM. 

0 w 

Hlp(jw), Ideal Low Pass Filter Transfer Function 

Wc -wc 

1 Cut-off frequency, wc Satisfies: 
         wM < wc < (ws – wM) 
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The process of sampling described earlier requires the use of impulse train.  Impulse function is a pulse 
of zero duration but finite amplitude.  Of course, creating a signal that approaches impulse function 
definition is difficult even though the impulse function was useful in the process of arriving at the Sampling 
Theorem. 
 
A more practical approach to sampling is a method called “ Sampling with a zero-order hold”.  Zero-order 
hold system samples x0(t) at a given instant and holds that value until next instant at which another 
sample is taken.  Here is an illustration: 
 

 
 
  

t 

x(t) 

X x(t) 

p(t) 

xp(t) Zero-hold sampled signal 
Xo(t) 

Sampling 

t

h0(t) 

1

Ts

t 

xp(t) – using  impulse train  

t 

x0(t) – using zero-hold approach 
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 Example – For the signal, x(t), with only nonzero coefficients (a0 -=1, a1=2, a3=2j) with 

fundamental frequency of 22 Khz. 
 
a) What is the maximum frequency of signal x(t)? 
b) What are the nyquist frequency and rate? 
c) What is the Minimum and maximum sampling period so that x(t) is recoverable? 
d) What is the Minimum and maximum sampling frequency so that x(t) is recoverable? 
 
Solution: 
 
 
 
 
 
 
 
 
 
 

 Example – What is the minimum sampling frequency, fs, so that x(t)=sin(2000πt) is recoverable. 
 
Solution: 
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The Sampling and Recovery for the Zero-order hold system is as follows: 
 

 
h0(t) is a square wave with duration from –T/2 to T/2 (shifted by T/2) therefore its Fourier Transform 
Function (using Fourier Transform Tables) can be written as: 
 

  



 

w

wT
ejwH jwT )2/sin(2

)( 2/
0  

 
The next step is to find the frequency response for the reconstruction filter, Hr(jw). As we saw earlier a low 
pass filter was sufficient to recover x(t) from xp(t) which means the following relationships has to be true: 
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Substituting the value of H0(jw) in the Hr(jw) results in the following equation: 
 

  

w

wT
jwHe

jwH lp
jwT

r )2/sin(2
)(

)(
2/

  

 
With the Hlp(jw) cut off frequency equal to Ws/2, the ideal magnitude and phase for the reconstruction filter 
following a zero-order hold is shown below: 
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Remember, your actual result varies depending on how close your filter design and implementation can 
get to the ideal filter characteristics. 
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6.3.  Aliasing Caused by Under Sampling  

As Sampling Theorem states Sampling frequency (ws) must at least two times the maximum signal 
frequency (wM) in order to be able to completely reconstruct the original signal. In other words, the 

reconstructed signal xr(t) will be equal to the original signal. Ms ww 2  

 

If above conditional is violated, Ms ww 2 , then xr(t) is no longer equal to x(t), even though, the sample 

values are equal to the original signal at the point of sample { xr(nT)= x(nT)}. 
 
Let’s use x(t)=cos(w0t) to demonstrated the idea of aliasing. The Fourier Transform of x(t) can be written 
as: 
 
  X(jw) = [(w - w0) + (w + w0)] 
 
Based on the equation for the Fourier Transform, we can draw the frequency spectrum of cos(w0t) as: 
 

 
Depending on the Sampling frequency, we can have full recovery or aliasing defects in the reconstructed 
signal preventing full recovery.  Below are examples of the two scenarios: 
 

 No Aliasing Scenario  - Sampled at frequency ws = 4 wo 
In this case the maximum signal frequency is wm which is equal to wo therefore ws > 2 wm  
meeting the requirement of sampling theorem. 
 

 
The time domain implication is that the original signal can be fully recoverable.  Time-domain of 

w0 -ws 

Ideal low pass filter response overlay 
with cut off frequencies wc=ws/2. 

w 
ws/2 ws 

(ws - w0) (Ws + W0) 
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w0 -w0 
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original signal, sample impulses and recovered signal when ws = (4) w0. is shown below: 

 
 Exercise  - Students are encouraged to draw the time-domain of original signal, sample 

impulses and recovered signal when ws = 8 w0.. 
 

 Aliasing Scenario  - Sampled at frequency ws = (3/2) wo 

In this case the maximum signal frequency is also wm which is equal to wo therefore ws < 2 wm.  
Therefore the sampling frequency does not meet the requirement of sampling theorem. 
 

w0 -ws 
w 

ws/2 ws 

Impulse at (ws - w0) is reflected from different harmonic into the idea low pass filter pass-
band while the fundamental signal (w0) has moved out of the pass-band. 

Xp(jw), Sampled Signal  ws=(2/3)w0 =(2/3) wM  

Ideal low pass filter response overlay 
with cut off frequencies wc=ws/2. 
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In this case the original signal cannot be uniquely recovered.  Time-domain of original signal, 
sample impulses and recovered signal when ws = (3/2) w0. is shown below: 
 

 
 
  Exercise  - Students are encouraged to draw the time-domain of original signal, sample 

impulses and recovered signal when ws = 2 w0. 
 

 observations 
As the w0 increases the dashed lines move to the right and solid lines move to the left.  If 
frequency is increased so that w0 > ws/2 then aliasing will occur.  It is important to note that the 
sampling frequency must be greater than twice the maximum signal frequency; even equal 
results in aliasing. 
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6.4.  Interpolation Techniques for Signal Reconstruction From Samples  

In previous sections, we developed and discussed the Sampling Theorem and used it to sample 
continuous-time signals such that the sampled signal had sufficient information to fully recover the original 
signal from it.  Further, it was shown that low pass filter would allow full recovery of the original signal 
without any aliasing as shown below again: 
 

 
In other words, for band-limited signals, if the sampling rate is higher the twice the maximum frequency of 
signal, the signal can be constructed uniquely using Low Pass Ideal Filter. 
 
The challenge is that although it is possible to approximate an ideal low pass filter, it is impossible to 
implement an ideal low pass filter.  Interpolation is an attempt to fit a continuous-time signal to a set of 
samples that approximates the original function.  Two of the simplest interpolations are: 
 

1) zero-order hold which simply holds the last sampled value of the signal until it is time for the next 
signal sample. 

2) one-order hold or linear interpolation uses a straight line from one sample to next sample to 
approximate the original signal. 
 
There are higher-order hold approaches which use higher order polynomials to approximate 
between the two samples. 

 
One way to compare the two basic reconstruction approaches (zero-order hold and first-order hold) is by 
comparing their transfer function with an ideal low pass filter: 
 

0 w 

Xp(jw), Signal Samples 

wM -wM 

(ws – wM) 

ws 

1/T 

0 w 

Xr(jw), fully recovered Signal 

wM -wM 

1 

0 w 

Hlp(jw), Low Pass filter transfer 

Wc -wc 

1 Cut-off frequency, wc Satisfies: 
         wM < wc < (ws – wM) 



Signals & Systems  Page 149 
 

 
As it is shown in the above responses, both zero-order and first-order hold have potential for aliasing 
which may distorts the reconstruction. 
 
By revisiting the process of ideal interpolating (low pass filter), we can describe the reconstructed signal 
xr(t) in terms of the ideal low pass filter characteristics as shown below:  
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Interpolation using impulse response of low pass filter is commonly referred to as band-limited 
interpolation, since it implements exact reconstruction of x(t) is band limited and the sampling frequency 
satisfies the sampling frequency (ws>2wc).  
 
The zero-hold process was described in pervious section so at this point, we will explore the first-order 
hold which although more complex than zero-hold, it is simple enough to implement and provide 
improved approximation of the original signal: 
 
First-order hold or Linear Interpolation which means that Xp(t) is convoluted with h(t) that is linear in the 
form of a triangle. With the transfer function: 
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A comparison of transfer functions for Ideal (ideal low pass), zero-order hold and first-order hold 
interpolation is shown below again: 
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6.5.  Additional Resources 

 
 Oppenheim, A.  Signals & Systems (1997) Prentice Hall 

Chapter 7. 
 
 Lathi B. Modern Digital & Analog Communication Systems (1998) Oxford University Press 

Chapter 6. 
 

 



Signals & Systems  Page 152 
 

6.6.  Problems 

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 7. Communication Systems 

 
Key Concepts and Overview 
 
 Introduction 

 Amplitude Modulation (AM) 

 Sinusoidal Amplitude Demodulation - Synchronous and Asynchronous 

 Frequency-Division and Time Division Multiplexing  

 Frequency Modulation(FM) 

 Additional Resources 
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7.1.  Introduction 

Communication systems are integral part of every activity in the society.  It would be challenging to think 
of any program that does not require the use of some type of communication system.  Study of 
communication systems is a major field of electrical engineering and integral part of organizations in all 
section including Healthcare, transportation, technology and government.  
 
Communication systems are designed to transmit information from one location to another.  Most 
common means of transmission is Electro-Magnetic signals (electrical, light) through a communication 
channel as shown below: 
 

 
 
Most communication channels are band-pass filters which are tuned to carry information in a specific 
range of frequencies.  Modulator is part of transmitter and is used to convert the information-bearing 
signal such that it is tuned to the channel characteristic.  The demodulator is part of receiver and is used 
to recover the information-bearing signal from the modulated signal.  Another common reason for 
modulation/demodulation is to share the same physical channel to carry multiple signals across the same 
channel by dividing the frequency spectrum amongst the signals. 
 
Two of the common modulation techniques used in communication system is:  
 

 Amplitude Modulation (AM)  
Information-bearing signal is used to modulate the amplitude of another signal (carrier 
signal). 
 

 Frequency Modulation (FM) 
Information-bearing signal is used to modulate the frequency of another signal (carrier signal) 
 

 
One of the most common communication channels is the air/atmosphere.  Frequency and wavelength are 
used to describe the ability of atmosphere to transmit signals across the electro-magnetic spectrum.  The 
relationship between frequency and wavelength for an electro-magnetic signal is described by: 
 

  = c/f     where 
 c = 300x106 Meters/Sec (Speed of light) 
 f = signal  frequency in Hertz (Cycles/Sec) 
 =  signal wavelength in meters  

 
The following chart shows the Electromagnetic spectrum and identifies few key ranges with their uses:  
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Below is the profile of atmosphere response or opacity to signals based on frequency range: 
 

 
 
Other channels such as glass-fiber optics, metal-transmission lines or space have their own unique 
opacity profile (response) with respect to various signal frequencies. 
 
Let’s start by considering a basic simplex system which is shown below with its components:  

 
The word simplex refers to the fact that data only travels in one direction.  The role of each component is 
described below: 
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  Transmitter - Prepares the signal for efficient transfer over the channel 
  Encoder – Converts information into signal that is optimized for detection at the output 
  Modulator – Generates the modulated waveform to carry the Signal 
  Channel - Transmission medium (Air, glass-fiber optics, metal-transmission line, Space)  
  Receiver – Optimally extract the information from the channel 
  Demodulator – Extracts the signal from the modulated waveform 
  Decoder – Extracts the information from the signal received 
 
Frequency Modulated (FM) Radio is an example of a simplex system which is shown below: 
 

 
 
The rest of this chapter explores these modulation techniques and their corresponding demodulation 
techniques.  
 

Encoder Modulator 
Transmission 

Medium Demodulator Decoder 
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7.2.  Amplitude Modulation (AM) 

As discussed in the introduction, modulation is used to move the signal to a frequency range that is 
available and effective in the selected communication channel.  For example, AM radio is typically 
broadcasted in frequencies from 500 Khz to 2 Mhz.  Human audible signal frequency range is within 20 
Hz - 20 Khz range.  So the recorded signal x(t) has to modulated using a carrier signal c(t) in order to 
generated modulated signal y(t)=x(t)c(t) for transmission.  Below is system diagram of a Modulator: 

 
In Amplitude Modulation (AM),  the signal we want to transmit (Information-bearing signal) x(t) is used to 
modulate the amplitude of the carrier signal, c(t).  The carrier signal typically is either a complex 
exponential signal or a sinusoidal signal as shown below: 
 

  tjwcetc )(   Complex exponential carrier signal 

  )cos()( twtc c  Sinusoidal carrier signal 

 
In both cases, wc is the Carrier Frequency and the carrier phase is assumed to be zero for simplicity. 
 
For the first case, let’s use the complex exponential carriers and apply it to the information bearing signal 
in order to obtain the equation for the modulated signal: 
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From the results, we can conclude that the modulated signal y(t) is information-bearing signal x(t) shifted 

Information-bearing Signal, x(t) 
”Modulating Signal” 

Complex exponential or sinusoidal signal, c(t) 
”Carrier Signal” 

y(t)=x(t)c(t) 
”Modulated Signal” X 
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by the carrier frequency wc which is shown below graphically: 

 
On the receiving end, the information bearing signal can be recovered by demodulating the signal which 
means shifting the signal back.  Here are the mathematical equivalents of demodulation: 
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The exponential carrier signal has real cosine and imaginary sine part (Application of Euler’s relationship).  
Typically the actual implementation requires the use of the following system: 
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It would be equally effective to only use one of the two paths shown above to modulate and demodulate 
signals.  And, designer commonly use the sinusoidal carrier signal {x(t)=cos(wct) to modulate the signal 
and simplify the communication system and has equally effective solutions. 
 

 
Below are the derivations for the Fourier transform of the modulated signal Y(jw) when the sinusoidal 
carrier signal c(t) is used: 
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From the results, we can conclude that the modulated signal y(t) is information-bearing signal x(t) shifted 
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by the carrier frequencies - wc and +wc which is shown below: 

When using sinusoidal Amplitude Modulation, it is required that wc > wM  (Carrier Freq > Max. Signal 
Freq.) in order for the information-bearing signal to be recoverable.  As it can be seen from the diagram, if 
wc ≤ wM  then there will be an overlap between two replicas which mean that the information-bearing 
signal x(t) is not recoverable from the modulated signal y(t). 
 
The following diagram provides a time-domain representation of the Amplitude Modulation process: 
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 Example – Available Modulator/Demodulator (Modems) 
 
Refer to MC 1496 Balanced Modulator/Demodulator data sheet for description of a typical FM/AM 
Modem available on the Market. 
 
MC 1496 is priced at less than $1 in 2010. 
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7.3.  Sinusoidal Amplitude Demodulation - Synchronous and Asynchronous 

Pervious section introduced Amplitude Modulation (AM) for both complex exponential and sinusoidal 
carrier signal.  As discussed earlier,  the sinusoidal AM is simpler and equally effective which is the 
reason it is commonly used.   
 

 
 
In this section, we will introduce synchronous and asynchronous demodulation for the amplitude 
modulated signal.  
 
The synchronous demodulation requires that the demodulating carrier signal be synchronized with the 
modulating carrier signal which means there is no phase shift between the signals.  Additionally, 
sinusoidal amplitude demodulation requires that the carrier frequency be higher than the maximum 
frequency of information-bearing signal (wc > wM). 
 
Information-bearing signal x(t) is modulated using sinusoidal carrier signal cos(wct) which results in the 
modulation signal of  y(t)=x(t)cos(wct).  Synchronous demodulation is built on the fact that the information-
bearing signal can be recovered by multiplying y(t) with the sinusoidal carrier signal (cos wct) and applying 
a low pass filter. 
 

 
Here are the derivations that prove we are able to use the above demodulation technique to recover the 
information-bearing signal x(t) from the modulated signal y(t): 
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We are able to extract x(t) by passing the intermediate function w(t) through a low pass filter with a gain of 
2 and cut off frequency wc0  (wM  wc0 <wc).  Below are the frequency spectrum diagrams representing the 
steps of AM modulation and demodulation graphically: 
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The following diagram provides a time-domain representation of the demodulation process: 

 
 
The one challenge with synchronous demodulation is the requirement that the carrier signal at the 
receiver used to demodulate has to be synchronized with the signal used to modulate the signal at the 
transmitter (no phase shift).  The asynchronous sinusoidal demodulation removes the requirement that 
the carrier signal at transmitting and receiving side have to have be in-phase (have the same phase). 
 
Asynchronous sinusoidal demodulation occurs when the demodulating signal w(t) is not in-phase with 
modulating signal y(t) 
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Given trigonometry relation   )cos()cos(
2

1
coscos BABABA  , w(t) can be rewritten as: 
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In this situation, we can attempt to recover information-bearing signal x(t) from the modulated signal y(t) 
by only using the envelop (Peaks): 
 

 
 
The two conditions required for this type of demodulation are: 
 
  1)  x(t) must be  positive 
  2)  Carrier frequency wc is much higher than the maximum signal frequency, wM 
 
An example of modulator/demodulate system used to implement the asynchronous demodulation is 
outlined below: 
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positive.  Since K is the maximum amplitude of x(t) then in order for x(t) + A to be positive, A must be 
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In order to derive a close approximation to the x(t), we can utilize the following low pass circuit:  
 

 
 
An advantage of asynchronous modulation-demodulation over synchronous approach is that it does not 
need synchronized carriers at the modulation and demodulation.  Disadvantage is that it requires the 
transmitter to transmit higher power since x(t) must be positive and A>K.  Although it adds cost to the 
transmitter, it reduces the cost of the receivers.  For example in the case of an AM radio, this is a 
desirable trade off, since there is only one transmitter station but many receivers. 
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t 

y(t) 

A = 6 

K = 4 
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7.4.  Sinusoidal Frequency Modulation (FM)  

Frequency Modulation (FM) is another important modulation technique which is used in a variety of 
communication system including the FM Radio systems.  In Frequency Modulation, the information-
bearing or modulating signal x(t) controls the frequency of the carrier signal c(t). 
 
Advantage of FM over AM comes from the fact the transmitted signal has constant amplitude. This 
enables the transmitter to use maximum power all the time since the information is carried by varying the 
frequency of transmitted signal.  This results in higher quality reproduction which is the reason most 
music radio station are FM.  On the other hand FM required a larger range of frequency for the signal and 
it is a nonlinear signal which means our techniques are not sufficient to analyze FM systems. 
 
Here is an example of Frequency Modulation where x(t) is the information-bearing signal and y(t) is the 
modulated signal.: 
 

 
 

t 

x(t) 

1-2 

t 

y(t) 
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7.5.  Frequency-Division and Time-Division Multiplexing  

In addition to using the modulation (shifting signal frequency) for matching the optimal frequency range of 
the selected channel, the modulation/demodulation technique may be used to transmit many signals on 
the same channel.  This is accomplished by allocating each signal different parts of the frequency 
spectrum.  This technique is referred to as Frequency-Division Multiplexing (FDM).  Below is a system 
diagram for modulation and demodulation required for Frequency-Division Multiplexing: 
 
 

 
 
The key requirement is that the signal carrier frequencies  be far enough from each other so that 
frequency spectrum signals do not overlap.  Below is an example of n signals being Frequency-Division 
Multiplexed onto a single channel signal as shown by the following frequency spectrum of the signals: 
 

 
Another way to share the channel is Time-Division Multiplexing (TDM) which means each signal is given 
a defined period of time to use the channel.  In other word, the channel is shared over time and at any 
given time there is only one signal being transmitted through the channel.  
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7.6.  Common Modulation Techniques 

 Analog Modulation 
 

o AM 
Amplitude modulation (AM) is a technique used modulate analog signal by changing the 
amplitude of the carrier signal. 

o FM 
Frequency modulation (FM) is a technique used modulate analog signal by changing the 
frequency of the carrier signal. 

o PM 
Phase modulation (FM) is a technique used modulate analog signal by changing the 
phase of the carrier signal. 

 
 Digital Modulation 

 
o ASK 

Amplitude-shift keying (ASK) represents digital data as changes in amplitude of carrier 
signal. 

o FSK 
Frequency-shift keying (FSK) represents digital data as changes in Frequency of carrier 
signal. 

o CPM 
Continuous phase modulation (CPM) is a form of digital data modulation. 

 
 Digital Data Transmission Support Encodings 

 
o NRZI 

Non-Return-to-Zero-Inverted (NRZI) is a method of mapping a binary signal to a physical 
signal for transmission. The two level NRZI signal has a transition at a clock boundary if 
the bit being transmitted is a logical 1, and does not have a transition if the bit being 
transmitted is a logical 0. 
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7.7.  Additional Resources 

 Oppenheim, A. Signals & Systems (1997) Prentice Hall 
Chapter 8. 

 
 Lathi, B. Modern Digital & Analog Communication Systems (1998) Oxford University Press 

Chapter 4. 
 

 Stremler, F. Introduction to Communication Systems (1990) Addison-Wesley Publishing Company 
Chapt 5,6 and 7. 
 



Signals & Systems  Page 171 
 

7.8.  Problems 

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 8. Laplace Transform 

 
Key Concepts and Overview 
 
 Laplace Transform  

 Inverse Laplace Transform   

 Region Of Convergence (ROC) 

 Laplace Transform Properties 

 Application of Laplace Transform to LTI Systems 

 Additional Resources 
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8.1.  Laplace Transform “X(s) = L{x(t)}” 

The continuous-time Fourier Transform has proven to be an effective tool in analysis of LTI system 
behavior across a broad range of signals.  Fourier Transform provides representation of signals as linear 
combinations of complex exponential signals in the form: 
 
  est where s=jw    “pure imaginary” 
 
This chapter introduces Laplace Transform which is an extension of continuous Fourier Transform.  The 
Laplace Transform extends the definition of s such that: 
 
  s = σ + jw    “s is a complex number” 
 
In addition to covering a broader range of signals, Laplace Transforms enables analysis of system that 
may only be stable in a some regions.  Later in this chapter, Laplace transform will be used in analysis of 
such LTI systems.  Throughout this chapter, we will discuss bilateral Laplace transform.  There is a 
special case  Laplace transform which is called Unilateral Laplace transform where t ≤ 0- is assume to be 
zero.  Unilateral Laplace transform is typically used for LTI systems with zero initial conditions. 
 
In this chapter, it will be demonstrated that there exist many similarities between Fourier transform and 
Laplace transform operation.  Therefore we can leverage our knowledge of Fourier transform and take 
advantage of Laplace transform’s additional benefits and flexibility.  The following relation is a 
restatement of result of earlier work on time-domain to frequency domain transforms:  
 

  




 dtethsHwhereesHty stst )()()()(  

  where  
 s=jw (pure imaginary) 
 Frequency response H(s) is the Fourier Transform of impulse response h(t). 

 
The above relationship may be generalized by stating that s is a complex variable (s=σ+jw).  The change 
in the value of s to a complex numbers instead of pure imaginary yields: 
 

  




 dtetxsX st)()(   Referred to as the Laplace Transform equation (s=σ+jw) 

 

Laplace Transform is Represented by )()( sXtx L   or L{x(t)} = X(s) 

 
It can be seen from the following equation that when s=jw, Laplace transform changes to a Fourier 
transform: 
 

  
jws

jwt sXdtetxtxFjwX






   )()()}({)(  

 
Another observation is the relationship between the Fourier Transform and Laplace Transform when 
(s=σ+jw).  The following derivation demonstrates the relationship: 
 

    })({)()()}({)( )( tjwtttjw etxFdteetxdtetxtxLSX  









    

  or 
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  L{x(t)} = F{x(t)e-at} 
 
 Example – Laplace Transform derivation 

 Example 1 – Find  the Laplace transform of the signal x(t) = [2e-at + 5e-bt]u(t). 
 
Solution: 

))((

)52(752
)(

52
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]52]52[)(

}52{)(}52{)()(
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)(

0
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0

)jw(
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sX

e
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e
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sX

dtedtedteesX

dteeedtetueedtetxsX

tsbtsa

tbtatsbtsa

stbtatstbtatst
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
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
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
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






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


















 

 
Another consideration is the convergence which requires the integrals to have values less than 
infinity: 

asbb

asaa

requireseConvergenc

dteedteedtedtesX jwttbjwttatbta


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




 

 
Latter in this section the topic of Region of Convergence (ROC) will be covered in more detail. 
 

 Example 2 - Find  the Laplace transform for the signal x(t) = 5 sin(3t) e-2t u(t) 
 
Solution: 
  Student Exercise 
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8.2.  Inverse Laplace Transform “x(t)=L-1{x(t)}” 

A given transform is only useful if an inverse transform exists.  Inverse of Laplace transform exists only if 
X(s) converges which will be discussed in detail in the next section.  In this section, the focus is on 
developing the Inverse Laplace transform.  Let’s start with the relationship between the Fourier Transform 
and Laplace Transform when (s=σ+jw) from previous section: 
 

    })({)()()}({)( )( tjwtttjw etxFdteetxdtetxtxLSX  









    

 
The following relationship may be derived by applying the inverse Fourier transform integral 






 dwesXtx jwt)(
2

1
)(


: 

 

  




  dwejwXjwXFetx jwtt )(
2

1
)}({)( 1 


  

 
Multiply both sides of the above equation by eσt:  
 

  




 dwejwX
e

tx jwt
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)(
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  or 

  
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2

1
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1
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



  

 
Replace w with s= σ + jw which means the limits of the integral change to (σ + j∞) and (σ + j∞).  finally dw 
is replaces with ds/j resulting in the Inverse Laplace transform equation: 
 

. 





j

j

stdsesX
j

tx



)(

2

1
)(   Referred to as the inverse Laplace transform equation (s=σ+jw) 

 
 Example – Inverse Laplace Transform 

 Example 1 – Find the signal, x(t), with Laplace Transform 
)3)(2(

1
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
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In order for the two side to be equal: 
  A+B = 0 
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  3A+2B =1 
Solve the system of two equation and two unknowns to find  A=1 and B =-1, therefore: 
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Need to make the power of est and the denominator the same by multiply/dividing powers of e: 
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As it can been seen from the above example, we can find the inverse Laplace transform with the 
use of inverse Laplace transforms equation for a class of ration Laplace transforms of the form: 
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 Example 2 – Find the signal x(t) with Laplace transform 
3212

2
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2 
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sX  

 
Solution: 
  Student Exercise 
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8.3.  Region Of Convergence (ROC) 

The Laplace Transform Region of Convergence (ROC) is the range of value of (s=σ + jw) where valid 

Laplace transform 




 dtetxsX st)()(  exists.  For valid Laplace transform to exist, we only need to 

show that the following inequality is true: 
 

  




 dtetx t|)(|  

 
Typically, ROC is shown in a rectangular coordinate which is referred to as s-plane.  The vertical axis (jw-
axis) is the imaginary part of s (Im{s}=w) and horizontal axis (σ-axis)is the real part of s (Re{s}= σ).  The 
shaded area of the s-plane is the ROC.  Below are two examples of ROC  in s-planes: 
 

 
In the case where the signal x(t) is a linear combination of real or complex exponential, its Laplace 
transform is rational.  Which means, it is ratio of numerator over denominator in term of complex variable 
s: 
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sD

sN
sX   

 
As simple example would be x(t) = 5e-4tu(t) + 2e-3tu(t).  In this case x(t) is a linear combination of real 
exponential.  Its Laplace transform is rational and can be calculated by: 
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a)  ROC is Re{s} < -2 b)  ROC is Re{s} > -4 
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Applying the convergence condition 




 dtetx t|)(|  and s=σ+jw to this function yields: 

  







 
0

)3()4( ]25[|)(| dteedtetx tstsst  

 
Note that above quantity is only less than infinity if the exponentials are decaying which means powers of 
e must be less than 0, therefore: 
 
  Re {4+ s} > 0  & Re{3 + s} > 0     Re{s} > -4 and Re{s} > -3  ROC is Re{s} > -3 
 
Note that we could have determine the ROC by ensuring that the denominators in the equation 

ss
sX


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2
)(  are all less than 0.   

 
The roots of the numerators are called zeros and are shown by “o” on the s-plane.  The roots of the 
denominator are called poles and are shown by “x” on the s-plane.  Additionally, poles are where X(s) is 
infinity and zeros are where X(s) is zero.  ROC and location of poles are related,  therefore the zero-pole 
plot is a useful tool in identifying ROC.  Below is the s-plot or zero-pole plot for X(s): 
 

 
 

We can generalize the process of determining the ROC for all rational Laplace transforms 
)(

)(
)(

sD

sN
sX   

by considering the following: 
 If x(t) is a linear combination of real or complex exponentials then the Laplace transform is 

rational. 
 if the power of s in the numerator is higher than the power of s in the denominator, X(s) becomes 

unbounded as s approaches infinity. 
 If the power of numerator is less than denominator, poles identify the ROC.   

 
In general, ROC for rational Laplace transform can be defined by the following relationships: 
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ROC is Re{s} > -3 
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   


i i

i

as

A

sD

sN
sX

)(

)(
)(    ROC is  where: 

   Re{s} > - Re{ai} when Ai > 0 
  Re{s} < - Re{ai} when Ai < 0 
 
 Example – ROC for Rational Laplace Transform 

 Example 1 - Find the Laplace transform  with its ROC for the function x(t) = e-7tu(t) + e-3tu(-t). 
 
Solution: 

It is understood that L{x(t)}=X(s)= 
3

1

7

1





 ss

 

  ROC for first term    R{s} > -7 
  ROC for second term  R{s} < -3 
 
Therefore the ROC for X(s) is   -7 < R{s} < -3 
The following s-plan shows the ROC (shaded area): 

 
 Example 1 – Find the Laplace transform  with its ROC for the function  

x(t) = [e-4t + e-2t cos(5t)] u(t). 
 
Solutions: 
x(t) = [e-4t + ½ e-2t{ ej5t + e-j5t }] u(t) = [e-4t + ½  e(-2 + j5)t + ½  e(-2 - j5)t]u(t) 
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L{[e-4t + e-2t cos(5t)] u(t)} = 2}Re{
)52(
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 Example 3 – Find the Laplace transform  with its ROC for the function  
x(t) =  
 
Solution: 
 Student Exercise 
 

Now that we have experienced the process of finding ROC for rational Laplace transform, it is time to 
expand the discussion to the process of identifying ROC from the algebraic X(S) in frequency domain and 
characteristic of x(t) in time domain.  The ROC are values of s for which |x(t|e-t is integratable: 
 

   




 dtetx t|)(|  where σ = Re{s} = RE{σ+jw} 

 
From the above requirement and the fact that ROC is shown on s-plane, we can derive 8 rules or 
properties to guide the process of ROC determination.  The remainder of this section outlines the these 8 
rules:  
 
Rule 1 ROC of X(s) is defined by parallel lines to the jw-axis in the s-plane since the ROC is define 

only by the real part of s (or σ) as shown below: 

 
Rule 2 ROC of rational Laplace transforms does not include poles. 

Poles are roots of denominator of X(s) where X(s)  .  Therefore X(s) ROC cannot contain 
poles. 
 

Rule 3 ROC covers all of s-plane when x(t) has a finite duration and is absolutely integrateable. 
It can be shown that for the above condition, the following relationship is true for all s: 
 

 




 dtetx t|)(|   ”Meaning X(s) converges for all values of s” 

 
Rule 4 All values of s where Re{s} > σ0 is in the ROC if x(t) is right sided and  the line Re{s} = σ0 is in 

the ROC. 
 
A right sided signal is one where has the form x(t)u(t-).  The fact that Re{s} = σ0 is in the ROC 
leads to the following relationship: 
 

Re{s}, σ  

Im{s}, jw 

-a
X
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  




 dtetx t0|)(|   

 
The above inequality holds true for any Re{s} = σ1 > σ0 
 

 




 dtetx t1|)(|   

 
From this inequality, we can conclude that for all values of s where Re{s} > σ0 is in the ROC. 
 

Rule 5 All values of s where Re{s} < σ0 is in the ROC if x(t) is left sided {x(t)u(-t-)} and the line Re{s} = 
σ0 is in the ROC. 
 
The proof of this rule is similar to Rule 4 and students are encouraged to do the proof. 
 

Rule 6 ROC includes a strip in the s-plane that contains line Re{s} = σ0 when x(t) is two sided and the 
line Re{s} = σ0 is in the ROC. 
 
A two sided signal goes from – to + and we can leverage rules 4 and 5 in the proof of this 
rule. 
 
x(t) can be restated as a sum of a right sided signal xr(t) and a left sided signal xl(t) as shown 
below: 

 
 
Based on rules 4 and 5, we are able to draw the ROC for Xl(s) and Xr(s) as shown below:  
 

x(t) 

t 

xl(t) 

t 

xr(t) 

t 

 

 
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Rule 7 When the Laplace transforms X(s) of x(t) is rational, The following holds true: 
  1) ROC is bounded by poles or extends to infinity, and 
  2) no X(s) poles are constrained in the ROC. 
 

Rule 8a When the Laplace transform X(s) of x(t) is rational and x(t) is right sided, its ROC is the region 
in the s-plane to the right of the rightmost pole. 
 

Rule 8b When the Laplace transform X(s) of x(t) is rational and x(t) is left sided, the ROC is the region in 
the s-plane to the left of the leftmost pole. 

 

Im{s}, jw 

Re{s},  
r 

ROC 
Right-sided 

Xr(s) 

Im{s}, jw 

Re{s},  
l 

ROC 
left –sided 

Xl(s) 

Im{s}, jw 

Re{s},  
r 

ROC 
Two-sided 

X(s) 

l 
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8.4.  Laplace Transform Properties  

Laplace Transform has properties that are similar to the Fourier Transform.  The following table contains 
the most common properties of Laplace Transform: 
 

 
Property 

Time-Domain 
x(t), x1(t), x2(t) 

Laplace s-Domain 
X(s), X1(s), X2(s) 

ROC 
R, R1, R2 

Linearity ax1(t) + bx2(t) aX1(s) + bX2(s) At least R1 ∩ R2 
Time shifting x(t - t0) )(0 sXe t

 
R 

Shifting in the s-Domain )(0 txe ts
 

X(s – s0) Shifted R 
”s is in R if (s – s0) is in R” 

Time scaling x(at) 

)(
||

1

a

s
X

a
 

Scaled R 
”s is in R if s/a is in R” 

Convolution x1(t) * x2(t) X1(s)X2(s) At least R1 ∩ R2 
Conjunction x*(t) X*(s*) R 

Differentiation in t 

n

n

dt

txd )(
 

snX(s) At least R 

Differentiation in s (-1)n tn x(t) 

n

n

ds

sXd )(
 

R 

Integration in t 

)()( 


t

dx  )(
1

sX
s

 

At Least R ∩ [Re{s} > 0] 

Note: 
  ∩  “Intersection of sets”  resulting set includes only the common elements of the two sets. 
  U  “Union of sets”  resulting set includes all the elements of both sets. 
 
One may proof these properties by apply the Laplace transform or Laplace inverse transform equations. 
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The following table contains the Laplace Transform of common signals and corresponding Regions of 
Convergence (ROC): 
 

Function Time Domain, x(t) Laplace s-domain, X(s) ROC 
Unit Impulse δ(t) 1 All s 
Ideal Delay δ(t - T) e-Ts All s 

Unit Step u(t) 

s

1
 

Re{s} > 0 

Unit Step -u(-t) 

s

1
 

Re{s} < 0 

Ramp t u(t) 
2

1

s
 

Re{s} > 0 

nth Power 
)(

!
tu

n

t n

 1

1
ns

 
Re{s} > 0 

nth Power 
)(

!
tu

n

t n

  1

1
ns

 
Re{s} < 0 

Delayed Step u(t- T) 

s

e sT

 
Re{s} > 0 

Exponential decay )(tue at  

as 
1

 
Re{s} > -a  

Exponential decay )(tue at  

as 
1

 
Re{s} < -a  

nth power 
exponential decay )(

!
tue

n

t at
n

  1)(

1
 nas

 
Re{s} > -a  

nth power 
exponential decay )(

!
tue

n

t at
n

   1)(

1
 nas

 
Re{s} < -a  

Sine cos(w0t) u(t) 
2

0
2 ws

s


 

Re{s} < 0 

Cosine sin(w0t) u(t) 
2

0
2

0

ws

w


 

Re{s} > 0 

Exponential 
decaying cosine 

e-at cos(w0t) u(t) 
2

0
2)( was

as




 
Re{s} > -a 

Exponential 
decaying cosine 

e-at sin(w0t) u(t) 
2

0
2

0

)( was

w


 

Re{s} > -a 

nth order 
differentiation 

n

n

n dt

td
tu

)(
)(


  

ns  All s 

nth order step 
convolution 

u-n(t) =u(t)*u(t)*… 
Convolution of n u(t) ns

1
 

Re{s} > 0 

 



Signals & Systems  Page 185 
 

8.5.  Application of Laplace Transform to LTI Systems 

Laplace transform is used in analysis of LTI system by relating the system input and output as shown 
below: 

 
When H(s) has a ROC which includes the imaginary axis s=jw, then H(s) is the frequency response of the 
LTI system for s=jw.  In general H(s) is referred to as the system function or transfer function.  H(s) can 
be used to determine some key properties of LTI systems.  Remainder of this section relates H(s) to 
system stability and causality. 
 
As it was discussed earlier, a system with impulse response h(t) is causal when h(t) =0 for t < 0.  This 
means a causal system is right sided.  The fact the h(t) is right sided means that system function H(s) of a 
causal system has a ROC on the right half of s-plane.  The converse of this statement is only true if H(s) 
is rational.  This information can be used to determine that a system is causal by checking to see if its 
H(s) ROC is in the right plane. 
 
 Example – Using Transfer Function H(s) to determine system causality 

 Example 1 -  Determine if the system with transfer function 
6

1
)(




s
sH  is causal. 

Solution: 
  ROC for H(s)   Re(s) > -6 
  Since H(s) is rational and ROC is right sided therefore system is causal 
 

 Example 2 -  Determine if the system with transfer function 
)4)(5(

9
)(





ss

sH  is causal. 

Solution: 

  rewrite    
4

1

5

1
)(








ss

sH  

  ROC      -4 < Re{s} < +5 
 
  Since H(s) is rational but  ROC is not right sided therefore the system is NOT causal 
 

Another major LTI system property is stability which can also be determined by examining the systems 
transfer function H(s).  Let’s start by remembering that a LTI system is stable when its impulse response 
is absolutely integrateable: 
 

  




dtth |)(|  

 
As discussed earlier a LTI system is stable if Fourier Transform converges.  We know that Laplace 
Transform is reduced to Fourier Transform when s=jw therefore ”A LTI system is stable if and only if 
transfer function H(S) ROC includes s=jw (Re{s}=0)” 
 
 Example – Using Transfer Function H(s) to determine system stability 

H(s) = L{h(t)} X(s)=L{x(t)} 
Y(s) = L{y(t)}  
       = L{h(t)*x(t)} = H(s)X(s) 
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 Example 1 -  Determine if the system with transfer function 
2

1
)(




s
sH  is stable. 

Solution: 
  ROC for H(s)    Re(s) > 2 
  Since ROC does not include s=jw  or Re{s}=0,  the system is not stable. 
 

 Example 2 -  Determine if the system with transfer function 
)4)(5(

9
)(





ss

sH  is stable. 

Solution: 

  rewrite    
4

1

5

1
)(








ss

sH  

  ROC      -4 < Re{s} < +5 
 
  Since ROC contain s=jw or Re{s}=0, the system is stable. 
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8.6.  Additional Resources 

 
 Oppenheim, A.  Signals & Systems (1997) Prentice Hall 

Chapter 9. 
 
 Nilsson, J.  Electrical Circuits. (2004)  Pearson. 

Chapter 12 and 13. 
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8.7.  Problems 

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 9. Z-Transform 

 
Key Concepts and Overview 
 
 Z-Transform  

 Inverse Z-Transform  

 Region Of Convergence (ROC) 

 Z-Transform Properties 

 Application of Z-Transform in LTI Systems 

 Additional Resources 
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9.1.  Z-Transform, “X(z) = Z{x[n]}” 

Z-transform is an extension of discrete-time Fourier Transform much like Laplace Transform was an 
extension of continuous-time Fourier Transform.  In addition to covering a broader range of signal, Z-
Transforms allows for analysis of Discrete-time systems that are only stable in a specific region.  Later in 
this chapter, Z-transform will be used in analysis of such LTI systems.   Throughout this chapter, we will 
discuss bilateral Z transform.  There is special case version of Z-transform which is called unilateral Z-
transform where n ≤0- is assumed to be zero.  Unilateral Z-transform is typically used for LTI systems with 
zero initial conditions. 
 
Further, we will show that there are many similarities between Fourier transform and Z-transform 
operation.  Therefore we can leverage our knowledge of Fourier transform and take advantage of Z-
transform’s additional benefits and flexibility. 
 
In developing the Z-transform, let’s start with Discrete-time Fourier transform from earlier chapters: 
 

  





n

jwnjw enxeX ][)(  

 
By setting Z = ejw, the above relationship may be rewritten as the bilateral Z-transform where |Z| = |ejw| = 
1: 

  





n

nznxzX ][)(  

 
In the general form of Z-transform, Z is expressed in polar form:  
 

  jwrez   where r is the magnitude and w is the phase angle of Z. 
 

 
We can rewrite the Z-transform equation as:  

  





n

jwnnjw ernxreX }][{)(  

 
It can be rewritten in term of Fourier Transform: 
 

  }][{)( njw rnxFreX   

 

Re{Z} 
w 

|Z|=r 

Unit Circle 
(radius = 1) Z-Plan 1 

Im{Z} 
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Z-transform can be characterized based on value of “r” as shown below: 
 

 Decaying when r>1 
 Growing when r<1 

 For r=1   z-transform is reduced to Fourier transform ]}[{)()( nxFeXzX jw

ez jw 

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9.2.  Inverse Z-Transform, “x[n] = Z-1{X(z)}” 

TBC 
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9.3.  Region Of Convergence (ROC) 

Z-transform Region Of Convergence (ROC) is define by using the unit circuit introduced earlier: 
 

 
For X(z) to converge, Fourier transform of x[n]r-n must converge and ROC on Z-Plan are value of z for 
which X(z) converges.  If ROC contains the circle then Fourier transform of x[n] also converges. 
 

 Example 1. Find ROC for x[n]=anu[n] 
Apply the Z-transform analysis equation 
















 
0

1 )(][][)(
n

n

n

nn

n

n azznuaznxzX  

 

For X(z) to converge  we require 




 
0

1 ||
n

naz  which means |az-1| < 1 or |z|>|a| 

Applying the finite sum we get: 
az

z

az
zX





 11

1
)(  when |z|>|a| 

 
The requirement |z|>|a| defines the Region of Convergence (ROC) for X(Z) as the shaded area in 
the following pole-zero plot when 0<|a|<1: 
 

Imaginary 

Real 
w 

Z=ejw 

Unit Circle 

Z-Plan 

1 
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 If |a|>1 the ROC is shown below and note that now the unit circle is not included n ROC 

which means Fourier transform x[n] does not converge. 
 

 
 
 

 Example 2. Find Region of convergence and z-transform for signal 

][)
2

1
(6][)

3

1
(7)( nununx nn   

Imaginary 

Real 

Z-Plan 

1 
a 

ROC 

Unit 
Circle 

X

Imaginary 

Real 

Z-Plan 

1 a 

ROC 

Unit 
Circle 

X

Note:  
”X”  denotes Poles {denominator of X(z) = 0} 
”O” denotes Zeros {Numerator of X(z) = 0) 
This diagram is called “Pole-Zero Plot” 
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 

 












































 

0 0

11 )
2

1
(6)

3

1
(7)(

][)
2

1
(6][)

3

1
(7)(

][)
2

1
(6][)

3

1
(7][)(

n n

nn

n n

nnnn

n

nnn

n

n

zzzX

znuznuzX

znunuznxzX

 

First term requires |(1/3)z-1|<1  |z|>1/3 
second term requires |(1/2)z-1|<1  |z|>1/2 
 
Therefore X(z) converges when |z|>1/2 and applying infinite sum relationship we get z-transform: 

2/1||

2

1
1

6

3

1
1

7
)(

11










zwhere
zz

zX   

 
combining the fraction we get a rational function: 
 

 2/1||
)

2

1
)(

3

1
(

)
2

3
(

)( 



 zwhere

zz

zz
zX  

Two Zeros: 0 & 3/2 
Two poles: 1/3 & 1/2 
 Pole-zero plot and ROC are shown below: 

 

 
 Example 4. Find Region of convergence and z-transform for sequence 

][)
4

sin()
3

1
()( nunnx n 

  

Imaginary 

Real 

Z-Plan 

1 

ROC 

Unit 
Circle 

X X 
1/3 1/2 3/2 
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
































































0

14

0

14

44

)
3

1
(

2

1
)

3

1
(

2

1
)(

][
2

1
)

3

1
()(

'

][)
4

sin()
3

1
(][)(

n

n
j

n

n
j

n

n
njnj

n

n

nn

n

n

ze
j

ze
j

zX

znuee
j

zX

IdentitysEulerApply

znunznxzX







 

First term requires |(1/3)ej/4z-1|<1  |z|>1/3 since magnitude of ej/4 is 1. 
second term requires |(1/3)e-j/4z-1|<1  |z|>1/3 since magnitude of e-j/4 is 1. 
 
Therefore X(z) converges when |z|>1/3 and applying infinite sum relationship we get z-transform: 

3/1||

3

1
1

7

2

1

3

1
1

7

2

1
)(

1414










zwhere

ze
j

ze
j

zX
jj
   

 
combining the fraction we get a rational function: 
 

 3/1||

)
3

1
)(

3

1
(

23

1

)(
44







zwhere

ezez

Z
zX

Jj
  

Two Zeros: 0  
Two poles: (1/3)ej/4  & (1/3)e-j/4   
 Pole-zero plot and ROC are shown below: 

 

 
 Some notational comment when X(z) is written as ratio of polynomials: 

 X(z) is said to have poles at infinity if degree of z in numerator exceeds the degree of the 
denominator. 

 X(z) is said to have zeroes at infinity if the degree of z in denominator exceeds the degree of 
the numerator. 

 

Imaginary 

Real 

Z-Plan 

1 

ROC 

Unit 
Circle 

X 

X 

1/3 
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9.4.  Z-Transform Properties 

Z-Transform has properties that are similar to the Fourier Transform.  The following table contains the 
most common properties of Z Transform: 
 

 
Property 

Time-Domain 
x[n], x1[n], x2[n] 

Laplace s-Domain 
X(z), X1(z), X2(z) 

ROC 
R, R1, R2 

Linearity ax1[n] + bx2[n] aX1(z) + bX2(z) At least R1 ∩ R2 
Time shifting x[n - k) )(zXz k

 
R 

”except for origin”
Scaling in the z-Domain ][0 nxe njw

 )( 0 zeX njw
 

R 

][0 nxzn
 )(

0z

z
X  

Z0R 

][nxan
 )( 1zaX 

 
Scaled R 
”|a|Z in R” 

Time reversal X[-n] )( 1zX  
R-1 

Time expansion X(k)[n] = x[p] where n=pk 
             0     where n≠pk 
  “p is an integer” 

)( kzX  
R-k 

Convolution x1[n]*x2[n] X1(z)X2(z) At least R1 ∩ R2 
Conjunction x*[n] X*(z*) R 
Difference X[n] – x[n - 1] (1 – z-1)X(z) At least R ∩ (|z|>0)  

Accumulation  




n

i

ix ][  )(
1

1
1 zX

z
 

At least R ∩ (|z|>1) 

Differentiation in z nx[n] 

dz

zdX
z

)(
  

R 

Multiplication x1[n]x2[n] 

dvv
v

z
XvX

j C

1
11 )()(

2

1 
 

 

Initial Value Theorem   x[0] = )(lim zX
z 

 when x[n] is causal “x[n]=0 for n<0” 

Final Value Theorem 
  x[∞] = )()1(lim 1

1
zXz

z




  only if poles of (1 - z-1)X(z) are inside the unit circle 

Note: 
  ∩  “Intersection of sets”  resulting set includes only the common elements 
  U  “Union of sets”  resulting set includes all the elements 
 
To proof any of these properties, apply the Z transform or Z inverse transform equations. 
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The following table contains the Z-Transform of common signals and corresponding Regions of 
Convergence (ROC): 
 

Function Time Domain, x(t) Laplace s-domain, X(s) ROC 
Unit Impulse δ[n] 1 All z 
Ideal Delay δ[n – n0] 0nz Z ≠ 0 

Unit Step u[n] 
11

1
 z

 
|z| > 1 

Unit Step -u[-n-1] 
11

1
 z

 
|z| < 1 

Ramp nu[n] 

21

1

)1( 



 z

z
 

|z| > 1 

Ramp -nu[-n-1] 

21

1

)1( 



 z

z
 

|z| < 1 

nth Power ][nuan  
11

1
 az

 
|z| > |a| 

nth Power ]1[  nuan  
11

1
 az

 
|z| < |a| 

nth Power ][nunan  
21

1

)1( 



 az

az
 

|z| > |a| 

nth Power ]1[  nunan  
21

1

)1( 



 az

az
 

|z| < |a| 

Cosine [cosw0n]u[n] 

21
0

1
0

]cos2[1

][cos1







zzw

zw
 

|z| > 1 

Sine [sinw0n]u[n] 

21
0

1
0

]sin2[1

][sin




 zzw

zw
 

|z| > 1 

nth Power Cosine rn[cosw0n]u[n] 

221
0

1
0

]cos2[1

]cos[




 zrzwr

zwr
 

|z| > r 

nth Power Sine rn[sinw0n]u[n] 

221
0

1
0

]sin2[1

]sin[




 zrzwr

zwr
 

|z| > r 
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9.5.  Application of Z-Transform in LTI Systems 

Z-transformation applies to discrete-time linear time-Invariant system with impulse response h[n], the 
system response y[n] to x[n] as shown below: 

 
 
 

h[n] 
 







n

nznhzH ][)(  
x[n] y[n] = H(z)x[n] 
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9.6.  Additional Resources 

 
 Oppenheim, A.  Signals & Systems (1997) Prentice Hall 

Chapter10 
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9.7.  Problems 

 
Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Appendix A. Additional Resources 

 Additional resources are available at the author’s website http://www.EngrCS.com/ 
 

 Future Enhancements 
 Add study questions, practical problems. 
 Expand Laplace and Z transform chapters. 

 


