Signals \& Systems - Chapter 2

1S. Let $x[n]=\delta[n]+2 \delta[n-1]-\delta[n-3]$ and $h[n]=2 \delta[n+1]+2 \delta[n-1]$ Compute and plot each of the following convolutions:
a) $y_{1}[n]=x[n]$ * $h[n]$
b) $y_{2}[\mathrm{n}]=\mathrm{x}[\mathrm{n}+2]^{*} \mathrm{~h}[\mathrm{n}]$
c) $y_{3}[n]=x[n]$ * $h[n+2]$

Solution:

a)

Theory-We have $\mathrm{y}_{1}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]$ * $\mathrm{h}[\mathrm{n}]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]$

$$
\begin{aligned}
& y_{1}[n]=h[-1] x[n+1]+h[1] x[n-1]=2 x[n+1]+2 x[n-1] \\
& y_{1}[n]=2 \delta[n+1]+4 \delta[n]-2 \delta[n-2]+2 \delta[n-1]+4 \delta[n-2]-2 \delta[n-4] \\
& y_{1}[n]=-2 \delta[n-4]+2 \delta[n-2]+2 \delta[n-1]+4 \delta[n]+2 \delta[n+1]
\end{aligned}
$$

b) Note $\mathrm{x}[\mathrm{n}] \rightarrow \mathrm{x}[\mathrm{n}+2]$ which is a shift of +2

Since we have linear time invariant system
$\mathrm{y}_{2}[\mathrm{n}]=\mathrm{x}[\mathrm{n}+2] * \mathrm{~h}[\mathrm{n}]=\sum_{k=-\infty}^{\infty} h[k] x[(n+2)-k] \rightarrow \mathrm{y}_{2}[\mathrm{n}]=\mathrm{y}_{1}[\mathrm{n}+2]$ Therefore
$\mathrm{y}_{2}[\mathrm{n}]=-2 \delta[\mathrm{n}-2]+2 \delta[\mathrm{n}]+2 \delta[\mathrm{n}+1]+4 \delta[\mathrm{n}+2]+2 \delta[\mathrm{n}+3]$
c) Note $\mathrm{h}[\mathrm{n}] \rightarrow \mathrm{h}[\mathrm{n}+2]$ which is a shift of +2

Since we have linear time invariant system
$\mathrm{y}_{3}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]{ }^{*} \mathrm{~h}[\mathrm{n}+2]=\sum_{k=-\infty}^{\infty} h[k+2] x[n-k]=\sum_{k=-\infty}^{\infty} h[k] x[n+2-k] \rightarrow \mathrm{y}_{3}[\mathrm{n}]=\mathrm{y}_{1}[\mathrm{n}+2]$ Therefore
$\mathrm{y}_{3}[\mathrm{n}]=-2 \delta[\mathrm{n}-2]+2 \delta[\mathrm{n}]+2 \delta[\mathrm{n}+1]+4 \delta[\mathrm{n}+2]+2 \delta[\mathrm{n}+3]$
$\mathrm{y}_{3}[\mathrm{n}]=-2 \delta[\mathrm{n}-2]+2 \delta[\mathrm{n}]+2 \delta[\mathrm{n}+1]+4 \delta[\mathrm{n}+2]+2 \delta[\mathrm{n}+3]$

1U. Let $x[n]=\delta[-n]+2 \delta[n+1]-\delta[n-4]$ and $h[n]=\delta[n+2]+3 \delta[n+1]$
Compute and plot each of the following convolutions:
a) $y_{1}[n]=x[n]$ * $h[n]$
b) $y_{2}[n]=x[n-2] * h[n]$
c) $y_{3}[n]=x[n] * h[n-2]$

Solution:

2S. Consider an input $x[n]$ and a unit impulse response $h[n]$ given by

$$
\begin{aligned}
& x[n]=\left(\frac{1}{2}\right)^{n-2} u[n-2] \\
& h[n]=u[n+2]
\end{aligned}
$$

Determine and plot the output $\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]^{*} \mathrm{~h}[\mathrm{n}]$.

Solution:

a)

$$
\begin{aligned}
& \text { Theory-We have } \mathrm{y}_{1}[\mathrm{n}]=\mathrm{x}[\mathrm{n}] * \mathrm{~h}[\mathrm{n}]=\sum_{k=-\infty}^{\infty} x[k] h[n-k] \\
& y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{k=-\infty}^{\infty}\left(\frac{1}{2}\right)^{k-2} u[k-2] u[n+2-k]
\end{aligned}
$$

taking a look at plot of the two step function we see that
$u[k-2]=1$ when $k-2 \geq 0$ or $k \geq 2$
0 otherwise
$u[n+2-k]=1$ when $n+2-k \geq 0$ or $k \leq n+2$
0 otherwise
$\mathrm{u}[\mathrm{k}-2]$

$u[n+2-k]$

There are two conditions:

1) when $\mathrm{n}+2<2 \rightarrow \mathrm{y}[\mathrm{n}]=0$ for $\mathrm{n}<0$
2) when $\mathrm{n}+2 \geq 2 \rightarrow y[n]=\sum_{k=2}^{n+2}\left(\frac{1}{2}\right)^{k-2}=\sum_{k=0}^{n}\left(\frac{1}{2}\right)^{k}$ for $\mathrm{n} \geq 0$

Apply finite sum formula $\rightarrow \sum_{k=0}^{n} a^{k}=\frac{1-a^{n+1}}{1-a}$ for $n \geq 0 \& 0<|a|<1$
$y[n]=\frac{1-(1 / 2)^{n+1}}{1-1 / 2} u[n]=2\left[1-(1 / 2)^{n+1}\right] u[n]$
2U. Consider an input $\mathrm{x}[\mathrm{n}]$ and a unit impulse response $\mathrm{h}[\mathrm{n}]$ given by

$$
\begin{aligned}
& x[n]=\left(\frac{1}{4}\right)^{n-3} u[n+2] \\
& h[n]=2 u[n-2]
\end{aligned}
$$

Determine and plot the output $\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]^{*} \mathrm{~h}[\mathrm{n}]$.

Solution:

3S. Compute and plot $\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]$ * $\mathrm{h}[\mathrm{n}]$, where

$$
\begin{aligned}
x[n]=1 & \text { for } \quad 3 \leq n \leq 8 \\
0 & \text { otherwise } \\
h[n]=1 & \text { for } 4 \leq n \leq 15 \\
0 & \text { otherwise }
\end{aligned}
$$

Solution:

a)

$y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]$
Let's take the graphic path to find out the intervals of interest --- first need to plot $\mathrm{h}[\mathrm{n}-\mathrm{k}]$

Look for segment where the signal have the same amount of overlap

for $3 \leq n-4 \leq 8$ or $7 \leq n \leq 12$	$y[n]=n-6$	Partial front-end overlap
for $8 \leq n-4 \& n-15 \leq 3$ or $12 \leq n \leq 18$	$y[n]=6$	Full overlap
for $3 \leq n-15 \leq 8$ or $18 \leq n \leq 23$	$y[n]=24-n$	Partial back-end overlap
otherwise	$y[n]=0$	or no overlap.

3 U . Compute and plot $\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]$ * $\mathrm{h}[\mathrm{n}]$, where

$$
\begin{aligned}
x[n]=1 & \text { for } 2 \leq n \leq 5 \\
0 & \text { otherwise } \\
h[n]=1 & \text { for }-3 \leq n \leq 8 \\
0 & \text { otherwise }
\end{aligned}
$$

Solution:

4S. Compute and plot the convolution $y[n]=x[n] * h[n]$, where

$$
x[n]=\left(\frac{1}{3}\right)^{-n} u[-n-1] \quad \text { and } \quad h[n]=u[n-1]
$$

Solution:

$y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{k=-\infty}^{\infty}\left(\frac{1}{3}\right)^{-k} u[-k-1] u[n-k-1]$
$u[-k-1]=\begin{aligned} & 1 \\ & 0 \text { for }-k-1 \geq 0 \rightarrow k \leq-1 \\ & 0 \text { otherwise }\end{aligned}$
Condition 1 - when $\mathrm{k} \leq-1$ the summation is not 0 \& the equation for $\mathrm{y}[\mathrm{n}]$ can be writer as:

$$
y[n]=\sum_{k=-\infty}^{-1}\left(\frac{1}{3}\right)^{-k} u[n-k-1]
$$

$u[n-k-1]=\begin{aligned} & 1 \text { for } n-k-1 \geq 0 \rightarrow k \leq n-1 \\ & 0 \text { otherwise }\end{aligned}$
Condition 2 - when $\mathrm{k} \leq-\mathrm{n}-1$ the summation is not 0 \& the equation for $\mathrm{y}[\mathrm{n}]$ can be writer as:
$y[n]=\sum_{k=-\infty}^{n-1}\left(\frac{1}{3}\right)^{-k}$
Considering Condition 1 and 2, we have two intervals for output:
For $\mathrm{n} \geq 0$ the above equation reduces $\rightarrow y[n]=\sum_{k=-\infty}^{-1}\left(\frac{1}{3}\right)^{-k}$
For $\mathrm{n}<0$ the above equation reduces $\rightarrow y[n]=\sum_{k=-\infty}^{n-1}\left(\frac{1}{3}\right)^{-k}$
These equations can be further simplified by applying the Infinite Geometric Sum Series.

4 U . Compute and plot the convolution $\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]$ * $\mathrm{h}[\mathrm{n}]$, where

$$
x[n]=\left(\frac{1}{8}\right)^{-n} u[n+1] \quad \text { and } \quad h[n]=u[n-5]
$$

Solution:

5S. Compute the convolution $\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]$ * $\mathrm{h}[\mathrm{n}]$ of the following pairs of signals:
$x[n]=\alpha^{n} u[n]$
a) $h[n]=\beta^{n} u[n]$
b) $x[n]=h[n]=\alpha^{n} u[n]$
c) $x[n]=\left(-\frac{1}{2}\right)^{n} u[n-4]$
when $\alpha \neq \beta$

$$
h[n]=4^{n} u[2-n]
$$

d) $x[n]$ and $h[n]$ are as in following figure

Hint: first draw $\mathrm{x}(\mathrm{t})$ and $\mathrm{h}(\mathrm{t})$. reflect $\mathrm{h}(\mathrm{t})$ about $\mathrm{x}=0$ and then walk the signal to find the limits.

Solution:

a)
$y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]$
$y[n]=\sum_{k=0}^{n} a^{k} \beta^{n-k} \quad$ for $n \geq 0$
$y[n]=\beta^{n} \sum_{k=0}^{\infty}(a / \beta)^{k} \quad$ for $n \geq 0$
or apply inifinit series $\sum_{k=0}^{n} a^{k}=\frac{1-a^{n+1}}{1-a}$
$y[n]=\left[\frac{\beta^{n+1}-\alpha^{n+1}}{\beta-\alpha}\right] u[n] \quad$ for $\alpha \neq \beta$
b)

Note, this part is the same as "part a" except for the fact that $a=\beta$

$$
y[n]=\alpha^{n}\left[\sum_{k=0}^{n}(1)^{k}\right] u[n]=(n+1) a^{n} u[n]
$$

c)

$$
\begin{aligned}
& y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k] \\
& y[n]=\sum_{k=4}^{\infty}(-1 / 2)^{k}(4)^{n-k}=(4)^{n} \sum_{k=4}^{\infty}(-1 / 8)^{k}=(4)^{n}\left[\sum_{k=0}^{\infty}(-1 / 8)^{k}-\sum_{k=0}^{3}(-1 / 8)^{k}\right] \quad \text { for } n \leq 6 \\
& y[n]=\sum_{k=n}^{\infty}(-1 / 2)^{k}(4)^{n-k}=(4)^{n} \sum_{k=n}^{\infty}(-1 / 8)^{k}=(4)^{n}\left[\sum_{k=0}^{\infty}(-1 / 8)^{k}-\sum_{k=0}^{n-1}(-1 / 8)^{k}\right] \quad \text { for } n>6
\end{aligned}
$$

To Further Simplify apply inifinit series $\sum_{k=0}^{n} a^{k}=\frac{1-a^{n+1}}{1-a}$ since $a=-1 / 8 \Rightarrow \sum_{k=0}^{\infty} a^{k}=\frac{1}{1-a}$
d)

$y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]$
$y[n]=x[0] h[n-0]+x[1] h[n-1]+x[2] h[n-2]+x[3] h[n-3]+x[4] h[n-4]$
$y[n]=h[n]+h[n-1]+h[n-2]+h[n-3]+h[n-4]$

5U. Compute the convolution $\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}]$ * $\mathrm{h}[\mathrm{n}]$ of the following pairs of signals:
a) $\quad x[n]=\left(\frac{1}{3}\right)^{n} u[n+2]$

$$
h[n]=8^{n} u[3+n]
$$

b)

6 S . For each of the following pairs of waveforms, use the convolution integral to find response $\mathrm{y}(\mathrm{t})$ of the LTI system with impulse response $\mathbf{h}(\mathrm{t})$ and $\mathrm{x}(\mathrm{t})$. Sketch your results.
a) $\begin{array}{rl}x(t) & =e^{-\alpha t} u(t) \\ h(t) & =e^{-\beta t} u(t)\end{array}$ (Do this both when $\alpha \neq \beta$ and $\left.\alpha=\beta.\right)$
b) $x(t)=u(t)-2 u(t-2)+u(t-5)$ and $h(t)=e^{2 t} u(1-t)$
c) $x(t)$ and $h(t)$ shown below:

d) $x(t)$ and $h(t)$ shown below:

e) $x(t)$ and $h(t)$ shown below:

Hint: first draw $\mathrm{x}(\mathrm{t})$ and $\mathrm{h}(\mathrm{t})$. reflect $\mathrm{h}(\mathrm{t})$ about $\mathrm{x}=0$ and then walk the signal to find the limits.

Solutions:

a) The desired Convolution is:
$y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau$
$y(t)=0($ no overlap $)$ for $t \geq 0$
$y(t)=\int_{0}^{t} e^{-\alpha \tau} e^{-\beta(t-\tau)} d \tau \quad$ for $t \geq 0$
Therefore
$y(t)=e^{-\beta_{t}}\left[\int_{0}^{t} e^{(\beta-\alpha) \tau} d \tau\right] u(t)$
for $\quad \alpha=\beta \Rightarrow y(t)=e^{-\beta t}\left[\int_{0}^{t} d \tau\right] u\left(t 0=t e^{-\beta t} u(t)\right.$
for $\quad \alpha \neq \beta \Rightarrow y(t)=\frac{e^{-\beta t}\left[e^{(\beta-\alpha) t}-1\right]}{\beta-\alpha}$
b) The desired Convolution is:

First draw $\mathrm{x}(\mathrm{t})$ and $\mathrm{h}(-\mathrm{t})$ to find the number of unique overlap sections.
$y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau$
Considering the intervals :
$t-1<0 \rightarrow t<1 \rightarrow y(t)=0$
$1 \leq t<3 \rightarrow y(t)=\int_{0}^{t-1} e^{2(t-\tau)} d \tau$
$3 \leq t \leq 6 \rightarrow y(t)=\int_{0}^{2} e^{2(t-\tau)} d \tau-\int_{2}^{t-1} e^{2(t-\tau)} d \tau$
$t>6 \rightarrow y(t)=0 \quad$ for $6<t$
Therefore
$t<1 \rightarrow y(t)=0$
$1 \leq t<3 \rightarrow y(t)=e^{2 t}\left[-\left.\frac{1}{2} e^{-2 t}\right|_{0} ^{t-1}=-\frac{1}{2} e^{2 t}\left[e^{-2(t-1)}-1\right)\right.$
for $3 \leq t \leq 6 \quad y(t)=e^{2 t}\left[-\left.\frac{1}{2} e^{-2 \tau}\right|_{0} ^{2}+\left.\frac{1}{2} e^{-2 \tau}\right|_{2} ^{t-1}=\frac{1}{2} e^{2 t}\left[-\left(e^{-2}-1\right)+\left(e^{-2(t-1)}-e^{-2}\right)\right.\right.$
$t>6 \rightarrow y(t)=0$
c) The desired Convolution is:

First draw $\mathrm{x}(\mathrm{t})$ and $\mathrm{h}(-\mathrm{t})$ to find the number of unique overlap sections.
$y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau=\int_{0}^{2} \sin (\pi t) h(t-\tau) d \tau$
Considering the overlap types :
$y(t)=0 \quad$ for $t \leq 1$
$y(t)=(2 / \pi)[1-\cos \{\pi(t-1)\}] \quad$ for $1<t<3$
$y(t)=(2 / \pi)[1-\cos \{\pi(t-3)\}-1] \quad$ for $3<t<5$
$y(t)=0 \quad$ for $5<t$
d) The desired Convolution is:

so we can use the system linearity to write:
$y(t)=h(t)^{*} x(t)=h_{1}(t)^{*} x(t)-(1 / 3) x(t-2)$
we have
$h_{1}(t) * x(t)=\int_{t-1}^{t} \frac{4}{3}(a \tau+b) d \tau=\frac{4}{3}\left[\left(\frac{1}{2} a t^{2}-\frac{1}{2} a(t-1)^{2}+b t-b(t-1)\right]\right.$

Therefore

$$
y(t)=\frac{4}{3}\left[\left(\frac{1}{2} a t^{2}-\frac{1}{2} a(t-1)^{2}+b t-b(t-1)\right]-\frac{1}{3}\left[\left(\frac{1}{3} a(t-2)+b\right]\right.\right.
$$

e) The desired Convolution is:
for LTI system when the input is periodic, it implies that output $y(t)$ is also periodic so determine one period. But remember to include effect of other periods on calculation of single period output.

So we will take the period $-1 / 2<t<3 / 2$
$\mathrm{x}(\mathrm{t})=1$ for $-1 / 2<\mathrm{t}<1 / 2$
0 for $1 / 2<t<3 / 2$
$h(t)=t+1$ for $0<t<1$
$=0 \quad$ otherwise
First draw $\mathrm{x}(\mathrm{t})$ and $\mathrm{h}(-\mathrm{t})$ to find the number of unique overlap sections.

$$
\begin{aligned}
& y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \\
& y(t)=\int_{t-1}^{-1 / 2}(t-\tau-1) d \tau-\int_{-1 / 2}^{t}(t-\tau-1) d \tau=-t^{2}+t+1 / 4 \quad \text { for }-1 / 2<t<1 / 2 \\
& y(t)=-\int_{t-1}^{1 / 2}(t-\tau-1) d \tau+\int_{1 / 2}^{t}(t-\tau-1) d \tau=t^{2}-3 t+7 / 4
\end{aligned} \quad \text { for } 1 / 2<t<3 / 2, ~ l l
$$

Note: Output period is also 2.
6 U . For each of the following pairs of waveforms, use the convolution integral to find response $\mathrm{y}(\mathrm{t})$ of the LTI system with impulse response $h(t)$ and $x(t)$. Sketch your results.
a) $x(t)=3 u(-t)-5 u(t+2)+3 u(-t+3)$ and $h(t)=e^{-2 t} u(-2+t)$
b) $x(t)$ and $h(t)$ shown below:

Solutions:
7S. Compute the convolution $\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}] * \mathrm{~h}[\mathrm{n}]$ of the following pair of signals:

$$
\begin{aligned}
& x[n]=a^{n} u[n-4] \\
& h[n]=b^{n} u[n-1] \quad \text { where } \mathbf{0}<\mathbf{a}<\mathbf{b}
\end{aligned}
$$

Solution:

$\mathrm{h}[\mathrm{n}-\mathrm{k}]$

$$
\begin{aligned}
& x[n]=a^{n} u[n-4] \\
& h[n]=b^{n} u[n-1] \\
& y[n]=x[n]^{*} h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k] \\
& y[n]=0 \quad \text { for } \quad n-1<4 \Rightarrow n<5 \\
& y[n]=\sum_{k=4}^{n-1} a^{k} \beta^{n-k} \quad \text { for } n \geq 5 \\
& y[n]=\beta^{n} \sum_{k=0}^{n-5}(a / \beta)^{k} \quad \text { for } n \geq 0
\end{aligned}
$$

7U. Compute the convolution $y[n]=x[n] * h[n]$ of the following pair of signals:

$$
\begin{aligned}
& x[n]=\left(\frac{1}{3}\right)^{n} u[n-2] \\
& h[n]=\left(\frac{1}{2}\right)^{n} u[n+3]
\end{aligned}
$$

Solution:

8S. The following are the impulse response of discrete-time LTI systems. Determine whether each system is causal and/or stable. Justify your answers.
a) $h[n]=(1 / 5)^{n} u[n]$
b) $h[n]=(0.8)^{n} u[n+2]$
c) $h[n]=(1 / 2)^{n} u[-n]$
d) $h[n]=(5)^{n} u[3-n]$
e) $h[n]=(-1 / 2)^{n} u[n]+(1.01)^{n} u[n-1]$
f) $h[n]=(-1 / 2)^{n} u[n]+(1.01)^{n} u[1-n]$
g) $h[n]=n(1 / 3)^{n} u[n-1]$

Solution:
Notes \rightarrow "System is causal if $\mathrm{h}[\mathrm{n}]=0$ for $\mathrm{n}<0$--- System is stable if $\sum_{n=-\infty}^{\infty} \mid h[n]<\infty$ "
a) $h[n]=(1 / 5)^{n} u[n]$
$h[n]=0$ for $n<0$ therefore system is causal
$\sum_{n=0}^{\infty}(1 / 5)^{n}=\frac{1}{1-(1 / 5)}=5 / 4<\infty$ therefore the System is stable
b) $h[n]=(0.8)^{n} u[n+2]$
$\mathrm{h}[\mathrm{n}] \neq 0$ for $\mathrm{n}<0$ therefore system is non-causal
$\sum_{n=-2}^{\infty}(0.8)^{\mathrm{n}}=\sum_{n=0}^{\infty}(0.8)^{\mathrm{n}-2}=\frac{(0.8)^{-2}}{1-(0.8)}<\infty$ therefore the System is stable
c) $h[n]=(1 / 2)^{n} u[-n]$
$\mathrm{h}[\mathrm{n}] \neq 0$ for $\mathrm{n}<0$ therefore system is non-causal
$\sum_{n=-\infty}^{0}(1 / 2)^{n}=\infty$ therefore the System is not stable
d) $h[n]=(5)^{n} u[3-n]$
$\mathrm{h}[\mathrm{n}] \neq 0$ for $\mathrm{n}<0$ therefore system is non-causal
$\sum_{n=-\infty}^{3}(5)^{\mathrm{n}}=\sum_{n=0}^{\infty}(1 / 5)^{\mathrm{n}}-\sum_{n=-3}^{0}(1 / 5)^{\mathrm{n}}=\frac{1}{1-(1 / 5)}-(1 / 5)^{-3}-(1 / 5)^{-2}-(1 / 5)^{-1}-(1 / 5)^{0}=625 / 4<\infty$
therefore the System is stable
e) $h[n]=(-1 / 2)^{n} u[n]+(1.01)^{n} u[n-1]$
$h[n]=0$ for $n<0$ therefore system is causal
$\sum_{n=0}^{\infty}\left|(-1 / 2)^{\mathrm{n}}\right|+\sum_{n=1}^{\infty}(1.01)^{\mathrm{n}}=\frac{1}{1-(1 / 2)}+\infty=\infty$ therefore the System is not stable
f) $h[n]=(-1 / 2)^{n} u[n]+(1.01)^{n} u[1-n]$
$\mathrm{h}[\mathrm{n}] \neq 0$ for $\mathrm{n}<0$ therefore system is non-causal
$\sum_{n=0}^{\infty}\left|(-1 / 2)^{\mathrm{n}}\right|+\sum_{n=-\infty}^{1}(1.01)^{\mathrm{n}}=\frac{1}{1-(1 / 2)}+\sum_{n=0}^{\infty}(1.01)^{-\mathrm{n}}-1.01=2 / 3+\frac{1}{1-(1 / 1.01)}-1.01<\infty$
therefore the System is stable
g) $n(1 / 3)^{n} u[n-1]$
$h[n]=0$ for $n<0$ therefore system is causal
$\sum_{n=1}^{\infty} \mathrm{n}(1 / 3)^{\mathrm{n}}=\frac{1}{1-(1 / 3)}=3 / 4=0.75<\infty$ therefore the System is stable
8U. The following are the impulse response of discrete-time LTI systems. Determine whether each system is causal and/or stable. Justify your answers.
a) $h[n]=(1 / 5)^{n} u[-n]$
b) $\mathrm{h}[\mathrm{n}]=(0.8)^{\mathrm{n}} \mathrm{u}[\mathrm{n}-2]$
c) $h[n]=(1 / 2)^{n} u[n]$
d) $h[n]=(5)^{n} u[3+n]$
e) $h[n]=n(1 / 3)^{n} u[n+1]$

Solution:

9S. The following are the impulse responses of continuous-time LTI systems. Determine whether each system is causal and/or stable. Justify your answers.
a) $h(t)=e^{-4 t} u(t-2)$
b) $h(t)=e^{-6 t} u(3-t)$
c) $h(t)=e^{-2 t} u(t+50)$
d) $h(t)=e^{2 t} u(-1-t)$
e) $h(t)=e^{-6|t|}$
f) $h(t)=t e^{-t} u(t)$
g) $h(t)=\left(2 e^{-t}-e^{(t-1000 / 100}\right) u(t)$

Notes \rightarrow "System is causal if $\mathrm{h}(\mathrm{t})=0$ for $\mathrm{t}<0$--- System is stable if $\int_{-\infty}^{-\infty}|h(t)| d t$ "

Solution:

a) $h(t)=e^{-4 t} u(t-2)$
$h(t)=0$ for $t<0$ therefore System is causal
$\int_{2}^{\infty}\left|e^{-4 t}\right| d t=-1 / 4\left(e^{-\infty}-e^{-8}\right)=1 / 4\left(e^{-8}\right)<\infty$ therefore System is stable
b) $h(t)=e^{-6 t} u(3-t)$
$\mathrm{h}(\mathrm{t}) \neq 0$ for $\mathrm{t}<0$ therefore System is not causal
$\int_{-\infty}^{3}\left|e^{-6 t}\right| d t=1 / 6\left(e^{-18}-e^{\infty}\right)=\infty$ therefore System is unstable
c) $h(t)=e^{-2 t} u(t+50)$
$h(t) \neq 0$ for $t<0$ therefore System is not causal
$\int_{-50}^{\infty}\left|e^{-2 t}\right| d t=-1 / 2\left(e^{-\infty}-e^{100}\right)=1 / 2 e^{100}<\infty$ therefore System is stable
d) $h(t)=e^{2 t} u(-1-t)$
$h(t) \neq 0$ for $t<0$ therefore System is not causal
$\int_{-\infty}^{-1}\left|e^{2 t}\right| d t=1 / 2\left(e^{-2}-e^{-\infty}\right)=e^{-2} / 2<\infty$ therefore System is stable
e) $h(t)=e^{-6|t|}$
$\mathrm{h}(\mathrm{t}) \neq 0$ for $\mathrm{t}<0$ therefore System is not causal
$2 \int_{0}^{\infty}\left|e^{-6 t \mid t}\right| d t=-1 / 3\left(e^{-\infty}-e^{0}\right)=1 / 3<\infty$ therefore System is stable
f) $h(t)=t e^{-t} u(t)$
$h(t)=0$ for $t<0$ therefore System is causal
$\int_{0}^{\infty}\left|t e^{-t}\right| d t=1<\infty$ therefore System is stable (Use integral by part to solve)
g) $h(t)=\left(2 e^{-t}-e^{(t-1000 / 100}\right) u(t)$
$h(t)=0$ for $t<0$ therefore System is causal
$\int_{0}^{\infty}\left|\left(2 \mathrm{e}^{-\mathrm{t}}-\mathrm{e}^{(\mathrm{t}-1000) / 100}\right)\right| d t=\infty$ therefore System is unstable
9U. The following are the impulse responses of continuous-time LTI systems. Determine whether each system is causal and/or stable. Justify your answers.
a) $h(t)=e^{-3 t} u(t+4)$
b) $h(t)=e^{-5 t} u(13-t)$
c) $h(t)=e^{-2 t} u(-t+10)$
d) $h(t)=e^{2 t} u(-3-t)$
e) $h(t)=e^{-10|t|}$

Solution:

10S. $h[n]=(-1 / 2)^{n} u[n]+(1.01)^{n} u[n-1]$ is the impulse of response of a system. Determine if the system is Causal and/or Stable

Solution:
$\mathrm{h}[\mathrm{n}]=(-1 / 2)^{\mathrm{n}} \mathrm{u}[\mathrm{n}]+(1.01)^{\mathrm{n}} \mathrm{u}[\mathrm{n}-1]$
Notes \rightarrow "System is causal if $\mathrm{h}[\mathrm{n}]=0$ for $\mathrm{n}<0$--- System is stable if $\sum_{n=\infty}^{\infty}|h[n]|<\infty$ "
$\mathrm{h}[\mathrm{n}]=0$ for $\mathrm{n}<0$ therefore system is causal
$\sum_{n=0}^{\infty}\left|(-1 / 2)^{\mathrm{n}}\right|+\sum_{n=1}^{\infty}(1.01)^{\mathrm{n}}=\frac{1}{1-(1 / 2)}+\infty=\infty$ therefore the System is not stable

10U. $h[n]=(-1 / 8)^{n} u[n+1]+(1.21)^{n} u[n]$ is the impulse of response of a system. Determine if the system is Causal and/or Stable

Solution:

