Fundamentals of Electrical Circuits - Chapter 11

- 1S. What is the phase sequence of each of the following sets of voltages?
 - a) $v_a = 208 \cos(wt + 27^\circ) V$, $v_b = 208 \cos(wt + 147^\circ) V$, $v_c = 208 \cos(wt 93^\circ) V$.
 - b) $v_a = 4160 \cos(wt 18^\circ) V$, $v_b = 4160 \cos(wt 138^\circ) V$, $v_c = 4160 \cos(wt + 102^\circ) V$.

Solution:

a) $\theta_a - \theta_b = +120^\circ$ and $\theta_a - \theta_c = -120^\circ \rightarrow$ acb (negative) sequence

b) $\theta_a - \theta_b = -120^\circ$ and $\theta_a - \theta_c = +120^\circ \rightarrow$ abc (positive) sequence

1U. What is the phase sequence of each of the following sets of voltages?

a) $v_a = 250 \cos(wt - 58^\circ) V$, $v_b = 250 \cos(wt - 178^\circ) V$, $v_c = 250 \cos(wt + 62^\circ) V$.

b) $v_a = 110 \cos(wt + 17^\circ) V$, $v_b = 110 \cos(wt + 137^\circ) V$, $v_c = 110 \cos(wt - 103^\circ) V$.

Solution:

2S. For each set of voltages, state whether or not the voltages from a balanced three-phase set. If the set is balanced, state whether the phase sequence is positive or negative. If the set is not balanced, explain why. a) $v_a = 180 \cos(377t) V$, $v_b = 180 \cos(377t - 120^\circ) V$, $v_c = 180 \cos(377t - 240^\circ) V$. b) $v_a = 180 \sin(377t) V$, $v_b = 180 \sin(377t + 120^\circ) V$, $v_c = 180 \cos(377t - 120^\circ) V$. c) $v_a = -400 \sin(377t) V$, $v_b = 400 \sin(377t + 210^\circ) V$, $v_c = 400 \cos(377t - 30^\circ) V$. d) $v_a = 200 \cos(wt + 30^\circ) V$, $v_b = 201 \cos(wt + 150^\circ) V$, $v_c = 200 \cos(wt + 270^\circ) V$. e) $v_a = 208 \cos(wt + 42^\circ) V$, $v_b = 208 \cos(wt - 78^\circ) V$, $v_c = 208 \cos(wt - 201^\circ) V$. f) $v_a = 240 \cos(377t) V$, $v_b = 240 \cos(377t - 120^\circ) V$.

$1/1_{a} = 100000(0110)^{1}, 1_{b} = 100000(0110)^{1}$

Solution:

Part	Same Amplitude	Same Freq.	abc or acb	Conclusion
а	Yes	Yes	abc	Balanced, Positive (abc) Sequence
b	Yes	Yes	acb	Unbalanced phase
С	Yes	Yes	None	Unbalanced phase
d	No	Yes	acb	Unbalanced amplitude
е	Yes	Yes	None	Unbalanced phase
f	Yes	No	abc	Unbalanced frequency

2U. For each set of voltages, state whether or not the voltages from a balanced three-phase set. If the set is balanced, state whether the phase sequence is positive or negative. If the set is not balanced, explain why.

a) $v_a = 180 \cos(29\pi t) V$, $v_b = 180 \cos(29\pi t + 120^\circ) V$, $v_c = 180 \cos(29\pi t - 120^\circ) V$.

b) $v_a = 200 \sin(377t) V$, $v_b = (100*2) \sin(377t - 120^\circ) V$, $v_c = 200 \cos(377t + 120^\circ) V$.

c) $v_a = -400 \sin(377t + \pi/2) V$, $v_b = 400 \sin(377t - 150^{\circ}) V$, $v_c = 400 \cos(377t - 30^{\circ}) V$.

d) $v_a = 200 \cos(wt + 30^\circ) V$, $v_b = 201 \cos(wt + 150^\circ) V$, $v_c = 200 \cos(wt + 270^\circ) V$.

Solution:

3S. The time-domain expressions for three line-to-neutral voltages at the terminals of a Y-Connected load are: $v_{AN} = 169.71 \cos(wt + 26^{\circ}) V$

 $v_{BN} = 169.71 \cos(wt - 94^{\circ}) V$

$$v_{CN} = 169.71 \cos(wt + 146^{\circ}) V$$

What are the time-domain expressions for the three line-to-line voltages v_{AB} , v_{BC} and V_{CA} ?

Solution:

$$v_{AN} = 169.71 \ \underline{|26^{\circ}} \rightarrow v_{AB} = \sqrt{3} \ v_{AN} \ \underline{|30^{\circ}} = \sqrt{3} \ 169.71 \ \underline{|56^{\circ}} = 293.95 \ \underline{|56^{\circ}}$$

$$V_{BN} = 169.71 |\underline{-94^{\circ}} \rightarrow v_{BC} = \sqrt{3} v_{BN} |\underline{30^{\circ}} = \sqrt{3} 169.71 |\underline{-64^{\circ}} = 293.95 |\underline{-64^{\circ}}$$
$$V_{CN} = 169.71 |\underline{146^{\circ}} \rightarrow v_{CA} = \sqrt{3} v_{CN} |\underline{30^{\circ}} = \sqrt{3} 169.71 |\underline{176^{\circ}} = 293.95 |\underline{176^{\circ}}$$

3U. The time-domain expressions for three line-to-neutral voltages at the terminals of a Y-Connected load are: $v_{AN} = 125 \cos(wt - 4^{\circ}) V$ $v_{BN} = 125 \cos(wt - 124^{\circ}) V$ $v_{CN} = 125 \cos(wt + 116^{\circ}) V$

What are the time-domain expressions for the three line-to-line voltages v_{AB} , v_{BC} and V_{CA} ?

Solution:

- 4S. The magnitude of the line voltage at the terminals of a balanced Y-connected load is 660V. The load impedance is 30.48 + j22.86 Ω/φ. The load is fed from a line that has an impedance of 0.25 + J2 Ω/φ.
 a) What is the magnitude of the line current?
 - b) What is the magnitude of the line voltage at the source?

Solution:

a)

$$\mathbf{V}_{AN} = \frac{|V_{AB}|}{\sqrt{3}} |\underline{0 - 30^{\circ}} = \frac{660}{\sqrt{3}} |\underline{-30^{\circ}} = 381 |\underline{-30^{\circ}} V$$
$$\mathbf{I}_{aA} = \frac{V_{AN}}{Z_{load}} = \frac{381 |\underline{-30^{\circ}}}{30.48 + j22.86} = 3.992 - j9.20 = 10 |\underline{-66.87^{\circ}} A$$

Therefore |I_{aA}| =10 A

b) Apply KVL to find $|V_{aN}| =$ $V_{ab} = V_{aA} + V_{AB} + V_{Bb} = Z_{line}I_{aA} + V_{AB} + Z_{line}I_{Bb} = Z_{line}I_{aA} + V_{AB} - Z_{line}I_{bB}$ $V_{ab} = (0.25 + j2)(10|-66.87^{\circ}) + 660|0^{\circ} - (0.25 + j2)(10|-186.87^{\circ}) = 684.71|2.10^{\circ}$ Therefore |Vab| = 684.71V

- 4U. The magnitude of the line voltage at the terminals of a balanced Y-connected load is 250V. The load impedance is 150 + j200Ω/φ. The load is fed from a line that has an impedance of 0.1 + J.5 Ω/φ.
 a) What is the magnitude of the line current?
 - b) What is the magnitude of the line voltage at the source?

Solution:

- 5S. The magnitude of the phase voltage of an ideal balanced three phase Y-connected source is 125V. The source is connected to a balanced Y-connected load by a distribution line that has a impedance of 0.1+J0.8 Ω/ϕ . The load impedance is 19.9 + j14.2 Ω/ϕ . The phase sequence of the source is acb. Use the a-phase voltage of the source as the reference. Specify the magnitude and phase angle of the following quantities:
 - a) the three line currents.
 - b) the three line voltages at the source.
 - c) the three phase voltage at the load.
 - d) the three line voltage at the load.

Solution:

a) Find the a-phase line current from the above circuit

KVL →
$$IaA = \frac{125}{(0.1 + j0.8 + 19.9 + j14.2)} = \frac{125}{20 + j15} = 4 - j3 = 5 | -36.87^{\circ}A$$

Negative (acb) Phase Sequence →
 $I_{bB} = 5 | -36.87^{\circ} + 120^{\circ}A = 5 | -36.87^{\circ}A$
 $I_{cC} = 5 | -36.87^{\circ} - 120^{\circ}A = 5 | -156.87^{\circ}A$

b) Line Voltages at the source Vab, Vbc, Vca

$$Van = 125 | 0° V Phase Voltage$$
$$Vab = Van(\sqrt{3} | -30°) = 216.51 | -30° V$$
$$Vbc = 216.51 | -30° + 120° = 216.51 | 90° V$$
$$Vca = 216.51 | -30° - 120° = 216.51 | -150° V$$

c) Phase Voltages at the load

$$\begin{split} V_{AN} &= I_{aA} Z_L = (4 - j3)(19.9 + j14.2) = 122.2 - j2.9 = 122.23 |\underline{-1.36^{\circ}} V \quad Phase \ Voltage \\ V_{BN} &= 122.23 |\underline{-1.36^{\circ}} + 120^{\circ} = 122.23 |\underline{118.64^{\circ}} V \\ V_{CN} &= 122.23 |\underline{-1.36^{\circ}} - 120^{\circ} = 122.23 |\underline{-121.36^{\circ}} V \end{split}$$

d) Line Voltages at the load

Find the line voltage at a first & then using the fact that negative phase sequence to find b&c line

voltages.

$$VAN = 122.23 | -1.36^{\circ} A$$
 Phase Voltage
 $V_{AB} = V_{AN} (\sqrt{3} | -30^{\circ}) = 211.71 | -31.36^{\circ} V$
 $V_{BC} = 211.71 | -31.36^{\circ} + 120^{\circ} = 211.71 | 88.69^{\circ} V$
 $V_{CA} = 211.71 | -31.36^{\circ} - 120^{\circ} = 211.71 | -151.36^{\circ} V$

- 5U. The magnitude of the phase voltage of an ideal balanced three phase Y-connected source is 250 kV. The source is connected to a balanced Y-connected load by a distribution line that has a impedance of 0.5+J2.2 Ω/ϕ . The load impedance is 19.5 + j7.8 Ω/ϕ . The phase sequence of the source is abc. Use the a-phase voltage of the source as the reference. Specify the magnitude and phase angle of the following quantities:
 - a) the three line currents.
 - b) the three line voltages at the source.
 - c) the three phase voltage at the load.
 - d) the three line voltage at the load.

Solution:

- 6S. A balanced Δ -connected load has an impedance of 60 + j45 Ω/ϕ . The load is fed through a line having an impedance of 0.8 + j0.6 Ω/ϕ . The phase voltage at the terminals of the load is 480 V. The phase sequence is positive. Use V_{AB} as the reference.
 - a) Calculate the three phase currents of the load.
 - b) Calculate the three line currents.
 - c) Calculate the three line voltage at the sending end of the line.

Solution:

a) Phase Currents

$$I_{AB} = \frac{480}{60 + j45} = 6.4 \left| \frac{-36.87^{\circ}}{4} \right|$$

abc sequence

$$I_{BC} = 6.4 | -120 - 36.87^{\circ} = 6.4 | -156.87^{\circ} A$$
$$I_{CA} = 6.4 | +120 - 36.87^{\circ} = 6.4 | -83.13^{\circ} A$$

b) Line Currents

$$I_{aA} = \sqrt{3} |-30^{\circ}I_{AB} = 11.9 |-66.87^{\circ}A$$

abc sequence

 $I_{bB} = 11.9 | -120 - 66.87^{\circ} = 11.9 | -186.87^{\circ} A$ $I_{cC} = 11.9 | +120 - 66.87^{\circ} = 11.9 | 53.13^{\circ} A$

c) Line voltage from Sending side

$$V_{ab} = \left[11.9 \mid -66.87^{\circ}\right] \left[0.8 + j0.6\right] + 480 - \left[11.9 \mid -186.87^{\circ}\right] \left[0.8 + j0.6\right] = 499.20 \mid 0^{\circ} V$$

abc sequence

$$V_{bc} == 499.20 | -120^{\circ} V$$
$$V_{ca} == 499.20 | 120^{\circ} V$$

- 6U. A balanced Δ -connected load has an impedance of 100 + j20 Ω/ϕ . The load is fed through a line having an impedance of 0.5 + j2.5 Ω/ϕ . The phase voltage at the terminals of the load is 660 V. The phase sequence is negative. Use V_{AB} as the reference.
 - a) Calculate the three phase currents of the load.
 - b) Calculate the three line currents.
 - c) Calculate the three line voltage at the sending end of the line.

Solution:

7S. A balanced three-phase distribution line has an impedance of 1+j8 Ω/ϕ . This line is used to supply three balanced three-phase loads that are connected in parallel. The Complex power at the three loads are L₁ =120 KVA at 0.96 pf lead, L₂ = 180 kVA at 0.80 pf lag and L₃ = 100.8 kW and 15.6 kVAR (magnetizing).

The magnitude of the line voltage at the terminals of the loads is $2400\sqrt{3} V$.

- a) What is the magnitude of the line voltage at the sending end of the line?
- b) What is the percent efficiency of the distribution line with respect to average power?

Solution:

a)

 $|V_{AB}| = \sqrt{3} |V_{AN}| \rightarrow 2400\sqrt{3} = \sqrt{3} |V_{AN}| \rightarrow |V_{AN}| = 2400$ Assume a is reference so phase is 0

Load 1, PF=0.96 & lead so $\theta < 0 \rightarrow \theta = -\cos^{-1}(0.96) = -16.3^{\circ}$ S_{1/ ϕ} =120,000cos(-16.3°)+ j120,000sin(-16.3°)=115,200 - j33.600 VA

Load 2, PF=0.80 & lag so $\theta > 0 \rightarrow \theta = -\cos^{-1}(0.80) = 36.9^{\circ}$

 $S_{2/\phi} = 180,000\cos(36.9^{\circ}) + j180,000\sin(36.9^{\circ}) = 143,943 + j108,076 \text{ VA}$

Load 3 S_{3/\equiv =100,800} + j15,600 VA

Total Complex Power $S_{T/\phi} = S_{1/\phi} + S_{2/\phi} + S_{3/\phi} = 360,000 + j90,000 \text{ VA}$

 $S_{T/\phi} = (I_{aA}^{*})(V_{AN})$ $I_{aA}^{*} = \frac{360,000 + j90,000}{2400} = 150 + j37.5A$ $I_{aA} = 150 - j37.5A$ $V_{an} = (1+j8)(I_{aA}) + 2400 = 2850 + j1162.5 = 3077.97 \ \underline{|22.19^{\circ}|} V$ $|V_{ab}| = \sqrt{3} |V_{an}| = 5331.2 \ V$

b)

 $S_{g/\phi} = (I_{aA}^{*})(V_{an}) = (150 + j37.5)(2850 + j1162.5) = 383,900 + j281,250 \text{ VA}$ %efficiency = $\frac{Load _\text{Re} al _Power}{Source _\text{Re} al _Power} = \frac{360,000}{383,900} = 94\%$

- 7U. A balanced three-phase distribution line has an impedance of 2+j4 Ω/ϕ . This line is used to supply three balanced three-phase Y-connected loads that are connected in parallel. The Complex power at the three loads are L₁ =200 KVA at 0.5 pf lag, L₂ = 80 kVA at 0.3 pf lead and L₃ = 300 kW and 100 kVAR (magnetizing). The magnitude of the phase voltage at the load terminals is 120 V.
 - a) What is the magnitude of the line voltage at the sending end of the line?
 - b) What is the percent efficiency of the distribution line with respect to average power?

Solution:

8S. The three pieces of computer equipment described below are installed as part of a computation center.

- * DISK: 4.864 kW at 0.79 pf lag
- * ZIP DRIVE: 17.636 kVA at 0.96 pf lag
- * CPU: line current 73.8 A, 13.853 kVAR

Each piece of equipment is balanced three-phase load rated at 208 V line voltage. Calculate

- a) the magnitude of the line current supplying these three devices
- b) the power factor of the combined load.

Solution:

a)

Disk Load PF=0.79 & lag so θ >0 → θ =-cos⁻¹(0.79) = 37.8° S_d =4864+ j4864(tan37.8°)=4864 + j3773 VA

Zip Load, PF=0.96 & lag so $\theta > 0 \rightarrow \theta = \cos^{-1}(0.96) = 16.3^{\circ}$ S_z=17,636cos(16.3°) + j17,636sin(16.3°) = 16931 + j 4938

CPU Load,

Reactive Power = $Q_{c/\phi} = \sqrt{3}V_I I_I \sin(\theta)$

13,853 = $\sqrt{3}(208)(73.8)\sin(\theta)$ → sin θ =0.52 & cos θ = 0.85 & tan θ = 0.52/0.85 S_c=13853(1 / tan θ) + j13,853 = 22,644 + j13,853

 $S_T = S_d + S_z + S_c = 44439 + j22564 VA$

 $S_{T/\phi}$ = (1/3) S_T = 14813 + j7521 VA Magnitude of phase power

$$S_{T/\phi} = V_{AN}I_{aA}^* = (208/\sqrt{3})I_{aA}^* \rightarrow I_{aA}^* = 123 + j63 \rightarrow I_{aA} = 123 - j63 = 138 + 227^{\circ} A \text{ (rms)}$$

b) Power Factor of the combined load $\theta = \tan^{-1}(22564/44439) = 27^{\circ}$ $\theta > 0 \rightarrow$ lagging PF = cos (27) = 0.89 lagging

8U. The three major componenets of an Electric car are listed below with their power profile:

- * Motor: 8 kW at 0.4 pf lag
- * Instrument Panel: 5 VA at 0.8 pf lag
- * Controllers, Wiring and connetions: 20 mA, 0.5 VAR

Each piece of equipment is balanced three-phase load rated at 72 V. Calculate

- a) the magnitude of the line current supplying these three devices
- b) the power factor of the combined load.

Solution: