Fundamentals of Electrical Circuits - Chapter 7

1S. In the following circuit, the switch is opened at t=0, after the switch being closed for a long time.

- a) Find $i_1(0^-)$ and $i_2(0^-)$.
- b) Find $i_1(0^+)$ and $i_2(0^+)$.
- c) Find $i_1(t)$ for $t \ge 0$.
- d) Find $i_2(t)$ for $t \ge 0$.
- e) Explain why $i_2(0) \neq i_2(0)$.

Solution:

a) Find $i_1(0-)$ and $i_2(0-)$.

At t=0-, the switch has been closed for a long time. Therefore the inductor appears as a short...

Apply KVL
$$\rightarrow$$
-40 + 500i +2000(i - i₁) =0 \rightarrow 2500i - 2000i₁ =40
6000i₁ + 2000(i₁ - i) = 0 \rightarrow -2000i + 8000i₁ =0
Solve and we know i = i₁ + i₂
i(0) = 0.020 A

$$i_1(0^-) = 0.005 \text{ A}$$

 $i_2(0^-) = 0.015 \text{ A}$

b) Find $i_1(0+)$ and $i_2(0+)$. Immediately after switch is Opened at $t=0^+$, the inductor supplies $i_1(0^+)=i_1(0^-)=0.005$ A current.

$$i_2(0^+) = -i_1(0^+) = -0.005 A$$

c) Find $i_1(t)$ for $t \ge 0$.

Apply the Natural Response relationships $o i(t) = i(0)e^{-(R/L)t}$ for $t \ge 0$

$$i_1(t) = i_1(0^+)e^{-(R/L)t} = 0.005e^{-(8000/0.4)t}$$
 for $t \ge 0$

$$i_1(t) = 0.005e^{-20000t}A$$
 for $t \ge 0$

d) Find $i_2(t)$ for $t \ge 0+$.

$$i_2(t) = -i_1(t) = -0.005e^{-20000t}$$
 for $t \ge 0^+$

The only difference with part c is that t cannot be equal to 0.

e) Explain why $i_2(0-) \neq i_2(0+)$.

The current in resistor changes instantly. While the switching operation forces $i_2(0^-)$ to be 0.015 A and $i_2(0^+)$ to be -0.005 A

1U. In the following circuit, the switch is opened at t=0, after the switch being closed for a long time.

- a) Find $i_1(0^-)$ and $i_2(0^-)$.
- b) Find $i_1(0^+)$ and $i_2(0^+)$.
- c) Find $i_1(t)$ for $t \ge 0$.
- d) Find $i_2(t)$ for $t \ge 0$.
- e) Explain why $i_2(0^-) \neq i_2(0^+)$.

Solution:

2S. The switch shown in the following figure has been open a long time before closing at t=0.

- a) Find $i_0(0^-)$.
- b) Find $i_L(0^-)$.
- c) Find $i_o(0^+)$.
- d) Find $i_L(0^+)$.
- e) Find $i_o(\infty)$.
- f) Find $i_L(\infty)$.
- g) Write the expression for $i_L(t)$ for $t \ge 0$.
- h) Find $V_L(0^-)$.
- i) Find $V_L(0^+)$.
- j) Find $V_L(\infty)$.
- k) Write the expression for $V_L(t)$ for $t \ge 0^+$.
- I) Write the expression for $i_o(t)$ for $t \ge 0^+$.

Solution:

a) Find $i_0(0^-)$.

at $t=0^{-}$ \rightarrow circuit before the switch is closed and the inductor appear as a short.

 $i_o(0^-)=0$ since the switch is open.

b) Find $i_L(0^-)$.

c) Find $i_o(0^+)$.

at $t=0^{-}+\rightarrow$ circuit after the switch is closed and the inductor appear as a current source.

KVL @ i1
$$\rightarrow$$
-12 + 10 i₁ + 120 (i₁ - i₂)=0 \rightarrow 130i₁ -120i₂ = 12 \rightarrow 520i₂/3 -120i₂ = 12 \rightarrow i₂ = 0.225 A KVL @ i2 \rightarrow 120(i2 - i1) + 40 i2 = 0 \rightarrow -120i₁ + 160i₂ =0 \rightarrow i₁ = 4i₂/3 KVL @ i3 \rightarrow i3 = 0.16

Io =
$$i_0(0^+) = i_2 - i_3 = 0.065 A$$

- d) Find $i_L(0^+)$. $i_L(0^+) = i_L(0^-) = 0.16 \text{ A}$
- e) Find $i_o(\infty)$.
 Inductor will have current of 0 (open) after long period of switch being closed

Same as part d \rightarrow $i_0(\infty)$.= $i_2 = 0.225$ A

- f) Find $i_L(\infty)$. $i_L(\infty) = 0$;
- g) Write the expression for $i_L(t)$ for $t \ge 0$.

Apply the Natural Response relationships $\rightarrow i(t) = i(0)e^{-(R/L)t}$ for $t \ge 0$

$$i_L(t) = 0.16e^{-(20/.1)t}$$
 for $t \ge 0$

$$i_L(t) = 0.16e^{-200t}$$

- h) Find $V_L(0^-)$. $V_L(0^-) = 0$
- i) Find $V_L(0^+)$. refer to circuit in part c and write KVL around the most right loop \Rightarrow 20 *(0.16) + $V_L(0^+)$.= 0 \Rightarrow $V_L(0^+)$.= -3.2 V
- j) Find $V_L(\infty)$. $V_L(\infty) = 0$
- k) Write the expression for $V_L(t)$.for $t \ge 0^+$.

$$v_L(t) = L \frac{di_L}{dt} = (0.1) \frac{di_L}{dt} = 0.1 * 0.16 * (-200)e^{-(20/.1)t}$$
 for $t \ge 0$
$$v_L(t) = -3.2e^{-200t}$$

I) Write the expression for $i_o(t)$ for $t \ge 0^+$.

$$i_0(t) = i_2(t) - i_L(t) = 0.225 - 0.16e^{-200t}A$$

2U. The switch shown in the following figure has been open a long time before closing at t=0.

- a) Find $i_0(0^-)$.
- b) Find $i_L(0^-)$.
- c) Find $i_0(0^+)$.
- d) Find $i_L(0^+)$.
- e) Find $i_o(\infty)$.
- f) Find $i_L(\infty)$.
- g) Write the expression for $i_L(t)$ for $t \ge 0$.
- h) Find $V_1(0^-)$.
- i) Find $V_L(0^+)$.
- j) Find $V_1(\infty)$.
- k) Write the expression for $V_L(t)$ for $t \ge 0^+$.
- I) Write the expression for $i_0(t)$ for $t \ge 0^+$.

Solution:

3S. The switch in the following circuit has been in position for a long time. At t=0, the switch is thrown to position b.

Calculate:

- a) I, v_1 and v_2 for $t \ge 0^+$.
- b) energy stored in the capacitors at t = 0.
- c) energy trapped in the circuit and the total energy dissipated in the 25 k Ω resistor if the switch remains in position b indefinitely.

Solution:

a) i, v_1 and v_2 for $t \ge 0^+$.

After a long time with switch in position a results in capacitor appear as opening

$$\rightarrow$$
 $v_1(0^-)=v_1(0^+)=40 \text{ V}; v_0(0^-)=0 \text{ V};$

When switch is put to position b, voltage is applied to 4uF which would appear open at t=0⁺

- $\rightarrow V_1(0^+)=40 \text{ V}$
- \rightarrow i(0⁺) = 0
- $\rightarrow v_2(0^+) = 40 \text{ V}$

After Switch is changes from a to b

$$C_{eq} = 1/(1/1 + 1/4) = 0.8 \text{ uF}$$

Apply the Natural Response relationships $v(t) = v(0)e^{-t/RC}$ for $t \ge 0$

$$i = C \frac{dv}{dt} = -C \frac{v(0)}{RC} e^{-t/RC} = -\frac{v(0)}{R} e^{-t/RC} \qquad for \quad t \ge 0$$

$$i(t) = -\frac{40}{25000} e^{-t/(25*10^3*0.8*10^{-6})} = -1.6e^{-50t} mA \qquad for \quad t \ge 0$$

$$v_{1} = \frac{1}{C} \int_{0}^{t} i(\tau)d\tau + v(0^{-}) = \frac{1}{1*10^{-6}} \int_{0}^{t} 1.6*10^{-3} e^{-50\tau} d\tau + 40 = -32e^{-50t} + 72 V \quad for \quad t \ge 0$$

$$v_{2} = \frac{1}{C} \int_{0}^{t} i(\tau)d\tau + v(0^{-}) = \frac{1}{4*10^{-6}} \int_{0}^{t} -1.6*10^{-3} e^{-50\tau} d\tau + 0 = 8e^{-50t} - 8 V \quad for \quad t \ge 0$$

- b) Energy stored in the capacitor at t = 0. The only capacitor with energy is 1 uF capacitor $w(0) = 1/2Cv(0)^2 = 0.5*10^{-6}*(40)^2 = 800 \text{ uJ}$
- c) Energy trapped in the circuit and the total energy dissipated in the 25 k Ω resistor if the switch remains in position b indefinitely. $W_{trapped}(\infty) = 1/2C_1 v_1^2 + 1/2C_2 v_2^2 = 0.5*10^{-6}*(72)^2 + 0.5*4*10^{-6}*(8)^2 = 2624 \text{ uJ}$

The energy that R will dissipate is equal to the amount of energy that was in the equivalent C at t=0+ since after a long-time the stored energy in the combined capacitor will be zero: $w_{Ceq}(0) = 1/2Cv(0)^2 = 0.5*0.8*10^{-6}*(40)^2 = 640 \text{ uJ}$

3U. The switch in the following circuit has been in position for a long time. At t=0, the switch is thrown to position b.

Calculate

- a) I, v_1 and v_2 for $t \ge 0^+$.
- b) energy stored in the capacitor at t = 0.
- c) energy trapped in the circuit and the total energy dissipated in the 5 k Ω resistor if the switch remains in position b indefinitely.

Solution:

- 4S. The switch in the following circuit has been in position a for a long time. At t=0, the switch moves instantaneously to position b.
 - a) Find the numerical expression for $i_o(t)$ where $t \ge 0$.
 - b) Find the numerical expression for $v_o(t)$ where $t \ge 0^+$.

Solution:

a) Find the numerical expression for $i_o(t)$ where $t \ge 0$.

When the switch has been in position a for a long-time → Inductor will appear as a short

Simplified circuit \rightarrow V(o⁻)= 50*4 = 200v Original circuit \rightarrow i₀(o⁻) = 200 / 10 = 20 A

After the switch is change to position b , circuit is redrawn and find the Thevenin equivalent with respect to Inductor terminals:

To Find Rth disable Voltage source (short)

Rth = $(120 || 40)+10 = 40 \Omega$

To Find Vth or Voc disable Voltage source (short)

$$\mathsf{KVL} \rightarrow \mathsf{-800} + 120 \ \mathsf{i_1} + 40 \ \mathsf{i_1} = \mathsf{0} \ \rightarrow \ 160 \ \mathsf{i_1} = 800 \ \rightarrow \ \mathsf{i_1} = \mathsf{5} \ \mathsf{A} \ \rightarrow \mathsf{Voc} = 40 \ ^* \ \mathsf{5} = 200 \ \mathsf{V}$$

Place the Thevenin Equivalent back into the circuit:

Apply the step response relationships $i(t) = \frac{Vs}{R} + \left(I_0 - \frac{V_s}{R}\right)e^{-(R/L)t}$ for $t \ge 0$

$$\Rightarrow i_0(t) = \frac{200}{40} + \left(20 - \frac{200}{40}\right) e^{-(40/.004)t} = 5 + 15e^{-1000t}A \quad \text{for} \quad t \ge 0$$

b) Find the numerical expression for $v_o(t)$ where $t \ge 0^+$.

$$v_0(t) = 10i_0 + L\frac{di}{dt} = 10(5 + 15e^{-1000t}) + 0.04(-1000)(15e^{-1000t}) = 50 - 450e^{-1000t} \quad for \quad t \ge 0$$

- 4U. The switch in the following circuit has been in position a for a long time. At t=0, the switch moves instantaneously to position b.
 - a) Find the numerical expression for $i_o(t)$ where $t \ge 0$.
 - b) Find the numerical expression for $v_o(t)$ where $t \ge 0^+$.

Solution:

5S. The following circuit has been in operation for a long time. At t=0, the voltage source reverses polarity and the current source drops from 3 mA to 2 mA. Find $v_L(t)$ for $t \ge 0$.

Solution:

After circuit has been in current state for a long-time (t=0⁻), Capacitor will appear as an open

Use source transformation to simplify the circuit: 12v & series 10 k Ω \rightarrow 1.2 mA and parallel 10 k Ω

 $R = (10 || 40 || 24) = 6 k\Omega$

1.8 mA & parallel 6 k Ω \rightarrow 10.8 V and series 6 k Ω

$$v_{L(0)} = 1.8 \text{ mA} * 6 \text{ K}\Omega = -10.8 \text{ V}$$

at t=0 (t > 0):circuit changes to

Use similar source transformation technique as used earlier will simplify the circuit into Norton equivalent.

12v & series 10 k Ω \rightarrow 1.2 mA and parallel 10 k Ω

 $R = (10 || 40 || 24) = 6 k\Omega$

3.2 mA & parallel 6 k Ω \rightarrow 19.2 V and series 6 k Ω Another source transformation reduces the circuit to:

Another transformation get us back to the standard form: 19.2v & series 10 k Ω \rightarrow 1.92 mA and parallel 10 k Ω

Apply the step response for RC circuit $v(t) = I_s R + \left(V_0 - I_s R\right) e^{-t/RC}$ for $t \ge 0$ $v_L(t) = -(0.00192)*(10,000) - \left(-10.8 - (-0.00192*10,000)\right) e^{-t/0.0005}$ for $t \ge 0$ $v_L(t) = -19.2 + \left(+10.8 - 19.2\right) e^{-2000t}$ for $t \ge 0$ $v_L(t) = -19.2 - 8.4 e^{-2000t}$ for $t \ge 0$

5U. The following circuit has been in operation for a long time. At t=0, the voltage source reverses polarity and the current source drops from 5 mA to 3 mA. Find $v_L(t)$ for $t \ge 0$.

Solution:

6S. The switch in the following circuit has been closed a long time before opening at t = 0.

For $t \ge 0+$, find:

d)
$$i_2(t)$$
.

e)
$$i_1(0^+)$$
.

Solution:

a) $v_0(t)$

After a long time at t=0⁻, capacitor appears as open...

Short across the source then no power is deliver to the rest of the circuit \rightarrow

$$V_0(0^-) = 0 V$$

$$i_0(0^-) = i_1(0^-) = i_2(0^-) = 0 A$$

After t=0 (t>0), circuit is redrawn as:

At $t=0^+$, Capacitor appears as a short \rightarrow Vo(0⁺)=0 V. KCL \rightarrow -5 + v/15 + v/60 + v/8 = 0 \rightarrow 25v = 5*120 \rightarrow v(0⁺) = 24 V \rightarrow i₀(0⁺) = 3 mA

Find the Norton Equivalent at terminal AB → Disable current source (open) to find Rth:

Rth = (15 || 60) + 8 = 20 k Ω Find Isc:

KCL \rightarrow -5 + v/15 + v/60 + v/8 = 0 \rightarrow 25v = 5*120 \rightarrow v(0 $^{+}$) = 24 V \rightarrow i_{sc}= 3 mA

Apply the step response for RC circuit $\rightarrow v(t) = I_s R + (V_0 - I_s R)e^{-t/RC}$ for $t \ge 0$

$$v_0(t) = 0.003 * 20,000 + (0 - 0.003 * 20,000)e^{-t/(20,000*0.5*10^{-6})}$$
 for $t \ge 0$

$$v_0(t) = 60 - 60e^{-100t}V$$
 for $t \ge 0$

b) $i_0(t)$

$$i_0(t) = C \frac{dv}{dt} = 0.5 * 10^{-6} * (-60) * (-100)e^{-100t} = 3e^{-100t} mA \quad for \quad t \ge 0$$

c) i₁(t)

$$v(t) = 8,000 * i_0(t) + v_0(t) = 8 * 3e^{-100t} + 60 - 60e^{-100t} = 60 - 36e^{-100t}$$
 for $t \ge 0$

$$i_1(t) = \frac{v(t)}{60.000} = 1 + 0.6e^{-100t} mA$$
 for $t \ge 0$

d)
$$i_2(t)$$

$$i_2(t) = \frac{v(t)}{15.000} = 4 + 2.4e^{-100t} mA$$
 for $t \ge 0$

 $v(0^+) = 24 \text{ V}$ from earlier part.

$$i_1(0^+) = v(0^+)/60,000 = 0.4 \text{ mA}$$

6U. The switch in the following circuit has been closed a long time before opening at t = 0.

For $t \ge 0+$, find:

a)
$$v_0(t)$$
.

d)
$$i_2(t)$$
.

e)
$$i_1(0^+)$$
.

Solution:

7S. At t=0 the switch is closed in the following circuit after the switch being open for a long time.

Calculate:

- a) the initial value of i
- b) the final value of i
- c) the time constant for $t \ge 0$
- d) the numerical expression for i(t) when $t \ge 0$.

Solution:

a) the initial value of i

At t=0, the inductor appears as a short since the circuit has been stabilized for a long time. The circuit can be redrawn as:

KCL Node A →
$$(V_A - 240)/15 + V_A/75 + (V_A - V_B)/2.5 = 0$$
 → KCL Node B → $(V_B - V_A)/2.5 + V_B/10 + (V_B - V_C)/6 = 0$ → KCL Node C → $(V_C - V_B)/6 + 30 + V_C/4 = 0$ → Solve → $V_A = 37.5$ V; $V_B = 5$ V; $V_C = -70$ V

lode B
$$\rightarrow$$
 $(V_B - V_A)/2.5 + V_B/10 + (V_B - V_C)/6 = 0 $\rightarrow$$

Solve
$$\rightarrow V_A = 37.5 \text{V} \cdot V_B = 5 \text{V} \cdot V_C = 70 \text{V}$$

$$i(0^{-}) = (V_B - V_A)/2.5 = (5 - 37.5)/2.5 = -13 \text{ mA}$$
 Initial value of i

$$36V_A - 30V_B = 1200$$

-12V_A + 20V_B - 5V_C = 0

$$-2V_B + 5V_C = -360$$

b) Final value of i

At t=∞, the inductor appears as a short and the circuit can be redrawn as:

Or can be redrawn as:

KCL
$$\rightarrow$$
 V_A / 6 + 30 + V_A/4 = 0 \rightarrow V_A = -72 i(∞) = -72 / 6 = -12 mA

c) Time constant for $t \ge 0$

After t=0, the circuit may be redrawn as:

Find the Thevenin equivalent...

Calculate R_{th} by disable the sources (short for voltage source and open for current source):

Rth = $(10 || (6+4)) = 5 k\Omega$

Choose B as the reference (v=0) and write the supper mesh current equation:

$$10i_1 + 6i_1 + 4i_2 = 0$$

$$i_1 - i_2 = 30 \text{ mA}$$

Solve \rightarrow i₁=6 mA

$$Vth = Voc = V_{BA} = -(10,000)(0.006) = -60 V$$

Place the Thevenin Equivalent back into the circuit:

Time Constant = L/R = 0.4/5000/0.4 = 80 uSec

d) The numerical expression for i(t) when $t \ge 0$.

Apply Step response for RL Circuit
$$\rightarrow i(t) = \frac{Vs}{R} + \left(I_0 - \frac{V_s}{R}\right)e^{-(R/L)t}$$
 for $t \ge 0$

$$i(t) = -\frac{60}{5000} + \left(-0.013 - \frac{-60}{5000}\right)e^{-12,500t} = -.012 - .001e^{-12,500t} A \quad \text{for} \quad t \ge 0$$

7U. At t=0 the switch is closed in the following circuit after the switch being open for a long time.

Calculate:

- a) the initial value of i
- b) the final value of i
- c) the time constant for $t \ge 0$

d) the numerical expression for i(t) when $t \ge 0$.

Solution:

8S. In the following circuit, switch has been in the "a" position for a long time. At t=0, the switch is moved to position "b":

For the above circuit:

- a) Find the values of $i(0^+)$, $v_1(0^+)$ and $V_2(0^+)$.
- b) Calculate i(t) for t>0

Solution:

a)
$$i(0^+) = 0$$

 $v_1(0^+) = v_2(0^+) = 20 \text{ V}$

b) Redraw Circuit with the new switch position

$$Ceq = 1/(1/2 + 1/6) = 1.5 uF$$

Natural Response
$$\Rightarrow v(t) = v(0)e^{-t/RC} = 20e^{-66.67t}$$
 for $t \ge 0$
$$i(t) = C\frac{dv}{dt} = (1.5*10^{-6})(1333.4)e^{-66.67t}$$
 for $t \ge 0$

8U. In the following circuit, switch has been in the "a" position for a long time. At t=0, the switch is moved to position "b":

For the above circuit:

- a) Find the values of $i(0^+)$, $v_1(0^+)$ and $V_2(0^+)$. b) Calculate i(t) for t>0

Solution: