Fundamentals of Electrical Circuits - Chapter 6

1S. The current in the 2.5 mH Inductor in the following figure is known to be 0 A for $\mathrm{t}<0$. The inductor voltage for $t \geq 0$ is given by the expression:

Sketch $v_{L}(t)$ and $i_{L}(t)$ for $0 \leq t \leq \infty$

Solution:

$$
\begin{aligned}
& i_{L}(t)=\frac{1}{L} \int_{t_{0}}^{t} V d t+i\left(t_{0}\right) \\
& 0 \leq t \leq 2 \\
& i_{L}(t)=\frac{1}{2.5 * 10^{-3}} \int_{0}^{t} 3 * 10^{-3} e^{-4 \tau} d \tau+i_{L}(0) \\
& i_{L}(t)=\frac{3}{2.5} \int_{0}^{t} e^{-4 \tau} d \tau+0=\left.\frac{3}{2.5} * \frac{1}{-4} e^{-4 \tau}\right|_{0} ^{t} \\
& i_{L}(t)=-.3 e^{-4 t}+.3 \quad\{e q 1\}
\end{aligned}
$$

$2 \leq t \leq \infty$
$i_{L}(t)=\frac{1}{2.5 * 10^{-3}} \int_{2}^{t}-3 * 10^{-3} e^{-4(\tau-2)} d \tau+i_{L}\left(2^{-}\right)$
$i_{L}(t)=\frac{-3}{2.5} \int_{2}^{t} e^{-4(\tau-2)} d \tau+i_{L}\left(2^{-}\right)$
$i_{L}(t)=\left.\frac{-3}{2.5} * \frac{1}{-4} e^{-4(\tau-2)}\right|_{2} ^{t}+i_{L}\left(2^{-}\right) \quad\{$ eq 2$\}$
since initial current cannot change instantly then we can use $i_{L}\left(2^{-}\right)$from equation $\{e q 1\}$:
$i_{L}\left(2^{-}\right)=-.3 e^{-4(2)}+.3$
Plug value in $i_{L}\left(2^{-}\right)$in $\{e q 2\}$
$i_{L}(t)=.3 e^{-4(t-2)}-.3-.3 e^{-8}+.3$
$i_{L}(t)=.3 e^{-4(t-2)}-.3 e^{-8}$

1U. The current in the 2.5 mH Inductor in the following figure is known to be 0 A for $\mathrm{t}<0$. The inductor voltage for $t \geq 0$ is given by the expression:

$$
\mathrm{v}_{\mathrm{L}}(\mathrm{t})= \begin{cases}3 \mathrm{e}^{-9 \mathrm{t}} \mathrm{mV} & 0 \leq \mathrm{t} \leq 6 \mathrm{~s} \\ -3 \mathrm{e}^{-8(t-2)} \mathrm{mV} & 6 \mathrm{~s} \leq \mathrm{t} \leq \infty\end{cases}
$$

Sketch $\mathrm{v}_{\mathrm{L}}(\mathrm{t})$ and $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$ for $0 \leq \mathrm{t} \leq \infty$

Solution:

2S. A 20 uF capacitor is subjected to a voltage pulse having a duration of one seconds. The pulse is described by the following equations:

$$
v_{C}(t)= \begin{cases}30 \mathrm{t}^{2} \mathrm{~V} & 0 \leq \mathrm{t} \leq 0.5 \mathrm{~s} \\ 30(\mathrm{t}-1)^{2} \mathrm{~V} & 0.5 \mathrm{~s} \leq \mathrm{t} \leq 1.0 \mathrm{~s} \\ 0 & \text { elsewhere }\end{cases}
$$

Sketch the current pulse that exists in the capacitor during the 0 to 1 second interval.

Solution:

2 U . A 10 uF capacitor is subjected to a voltage pulse having a duration of two seconds. The pulse is described by the following equations:

$$
v_{C}(\mathrm{t})= \begin{cases}10 \mathrm{t}^{2} \mathrm{~V} & 0 \leq \mathrm{t} \leq 1.5 \mathrm{~s} \\ 20(\mathrm{t}-2)^{2} \mathrm{~V} & 1.5 \mathrm{~s} \leq \mathrm{t} \leq 2.0 \mathrm{~s} \\ 0 & \text { elsewhere }\end{cases}
$$

Sketch the current pulse that exists in the capacitor from $\mathrm{t}=0$ to 2 seconds.

Solution:

3S. The rectangular-shaped current pulse shown in the following figure is applied to a 5 uF capacitor. The initial voltage on the capacitor is 12 V drop in the reference direction of the current. Assume the passive sign convention. Derive the expression for the capacitor voltage for the time intervals in (a)-(e).
a) $0 \leq t \leq 5$ us
b) 5 us $\leq t \leq 20$ us
c) 20 us $\leq t \leq 25$ us
d) 25 us $\leq \mathrm{t} \leq 35$ us
e) 35 us $\leq t \leq \infty$
f) Sketch $\mathrm{v}(\mathrm{t})$ over the interval a) $-50 \mathrm{us} \leq \mathrm{t} \leq 300$ us.

Solution:

$\mathrm{c}=5 \mu \mathrm{~F}$
$\mathrm{V}(0)=12 \mathrm{~V}$
$V=\frac{1}{c} \int_{t_{0}}^{t} i(t) d t+V(0)$
a) $0 \leq \mathrm{t} \leq 5 \mu \mathrm{Sec}$
$V(t)=200,000 \int_{0}^{t} 4 d t+12 V=200,000(4 \mathrm{t})+12 \mathrm{~V}=8 * 10^{5} \mathrm{t}+12 \mathrm{~V}$
@ $\mathrm{t}=5^{*} 10^{-6} \quad \mathrm{v}(\mathrm{t})=16 \mathrm{~V}$
b) $5 \mu \mathrm{Sec} \leq \mathrm{t} \leq 20 \mu \mathrm{Sec}$
$V(t)=2 * 10^{5} \int_{5^{*} 10^{-6}}^{t}-2 d t+V\left(5 * 10^{-6}\right)=-4^{*} 10^{5}\left[t-5^{*} 10^{-6}\right]+16=-4^{*} 10^{5} \mathrm{t}+18$
$@ \mathrm{t}=20^{*} 10^{-6} \quad \mathrm{v}(\mathrm{t})=10 \mathrm{~V}$
c) $20 \mu \mathrm{Sec} \leq \mathrm{t} \leq 25 \mu \mathrm{Sec}$
$V(t)=2 * 10^{5} \int_{20^{*} 10^{-6}}^{t} 6 d t+V\left(20 * 10^{-6}\right)=12^{*} 10^{5}\left(\mathrm{t}-2^{*} 10^{-5}\right)+10=12^{*} 10^{5} \mathrm{t}-14$
@ $\mathrm{t}=25^{*} 10^{-6}, \mathrm{~V}\left(25^{*} 10^{-6}\right)=16 \mathrm{~V}$
d) $25 \mu \mathrm{Sec} \leq \mathrm{t} \leq 35 \mu \mathrm{Sec}$
$V(t)=2 * 10^{5} \int_{25^{*} * 0^{-6}}^{t} 4 d t+V\left(25 * 10^{-6}\right)=8^{*} 10^{5}\left(\mathrm{t}-25^{*} 10^{-6}\right)+16=8^{*} 10^{5} \mathrm{t}-4$
$@ t=35^{*} 10^{-6}, V\left(35^{*} 10^{-6}\right)=24 \mathrm{~V}$
e) $35 \mu \mathrm{Sec} \leq \mathrm{t} \leq \infty$
$V(t)=2 * 10^{5} \int_{35 * 10^{-6}}^{t} 0 d t+V\left(35 * 10^{-6}\right)=24 V$
f)

3 U . The current signal is shown in the following figure is applied to a 5 uF capacitor. The initial voltage on the capacitor is 12 V drop in the reference direction of the current. Assume the passive sign convention. Derive the expression for the capacitor voltage for the time intervals in (a)-(e).
a) $0 \leq t \leq 5$ us
b) 5 us $\leq t \leq 20$ us
c) 20 us $\leq t \leq 25$ us
d) 25 us $\leq t \leq 35$ us
e) 35 us $\leq t \leq \infty$
f) Sketch $v(t)$ over the interval a) -50 us $\leq t \leq 300$ us.

Solution:

4S. For the following circuit, find the equivalent Inductor (fully define $\mathrm{L}_{\text {eq }}$) with respect to terminals a and b :

Solution

I = -5 + $3=-2$ A"Initial Condition"
$\mathrm{L}_{\mathrm{eq}}=(5+15) \|(20| | 30+5)=9.19 \mathrm{mH}$
4 U . For the following circuit, find the equivalent Inductor (fully define L_{eq}) with respect to terminals a and b :

Solution:

5S. In the following circuit, Write $i(t)$ equation for $t \geq 0$ sec.

Solution:

$\left.\mathrm{L}_{\text {eq }}=((138+62) \| 200)+20\right) \|(120)=60 \mathrm{mH}$
$\mathrm{i}_{\mathrm{eq}}(2)=350-150=200 \mathrm{~mA}$

$$
\begin{aligned}
& i(t)=\frac{1}{L} \int_{t_{0}}^{t} v(\tau) d \tau+i\left(t_{0}\right)=\frac{1}{0.06} \int_{0}^{t} 10 \operatorname{Cos}(120 \pi \tau) d \tau+i(0)=+\frac{10}{0.06 \times 120 \pi} \sin \left(\left.120 \pi \tau\right|_{0} ^{t}+0.2\right. \\
& i(t)=0.44 \sin (120 \pi t)+0.2 \quad A
\end{aligned}
$$

5 U . In the following circuit, Write $\mathrm{i}(\mathrm{t})$ equation for $\mathrm{t} \geq 0 \mathrm{sec}$.

Solution:

6 S . The two parallel inductors in the following figure are connected across the terminals of a black box at $\mathrm{t}=0$. The resulting voltage v for $t \geq 0$ is known to be $12 e^{-t} V$. It is also known that $i_{1}(0)=2 \mathrm{~A}$ and $\mathrm{i}_{2}(0)=4 \mathrm{~A}$.
a) Replace the original inductors with an equivalent inductor and find $i(t)$ for $t \geq 0$.
b) Find $i_{1}(t)$ for $t \geq 0$.
c) Find $i_{2}(t)$ for $t \geq 0$.
d) How much energy is delivered to the black box in the time interval $0 \leq \mathrm{t} \leq \infty$?
e) How much energy was initially stored in the parallel inductors?
f) How much energy is trapped in the ideal inductors?
g) Do your solutions for i_{1} and i_{2} agree with the answer obtained in (f)?

Solution:

$V(t)=12 e^{-t} V$ for $t \geq 0$
$\mathrm{i}_{1}(0)=2 \mathrm{~A}$
$\mathrm{i}_{2}(0)=4 \mathrm{~A}$
a) $L e q=(3| | 6)=1 /[(1 / 3)+(1 / 6)]=2 \mathrm{H}$
$\mathrm{i}(0)=\mathrm{i}_{1}(0)+\mathrm{i}_{2}(0)=2+4=6$ [NOTE: this is entering the negative terminal of Inductors]

$$
i(t)=\frac{-1}{L} \int_{0}^{t} V d t+i(0)=\frac{-1}{2} \int_{0}^{t} 12 e^{-t} d t+6=\left.6 e^{-t}\right|_{0} ^{t}+6=6 e^{-t} \quad A
$$

b) **Refer to passive sign convention. Here $i 1(\mathrm{t})$ is entering Negative Voltage Point

$$
i_{1}(t)=-\frac{1}{L_{1}} \int_{0}^{t} V d t+i_{1}(0)=-\frac{1}{3} \int_{0}^{t} 12 e^{-t}+2
$$

$=(+4)\left[\left.e^{-t}\right|_{0} ^{t}+2=4 e^{-t}-2 A\right.$
c) $i_{2}(t)=-\frac{1}{L_{2}} \int_{0}^{t} V d t+i_{2}(0)=-\frac{1}{6} \int_{0}^{t} 12 e^{-t}+4=+2\left[\left.e^{-t}\right|_{0} ^{t}+4=2 \mathrm{e}^{-t}+2 \mathrm{~A}\right.$
d) How much Energy is delivered to Black Box?
$W=(1 / 2) L_{e q} i^{2}=(1 / 2)(2)\left(6 \mathrm{e}^{-t}\right)^{2}=36 \mathrm{e}^{-2 t}$ Joules for $\mathrm{t} \geq 0$
$\mathrm{t}=0 \rightarrow \mathrm{~W}_{0}=36$ Joules
$t=\infty \rightarrow W_{\infty}=0$ Joules $\rightarrow W_{\text {Black Box }(0 \leq t \leq \infty)}=36$ joules
e) Initial Energy ($\mathrm{t}=0$)
$\mathrm{L}_{1} \rightarrow \mathrm{~W}_{0}=(1 / 2) \mathrm{L}_{1} \mathrm{i}_{1}{ }^{2}=(1 / 2)(3)\left(4 \mathrm{e}^{-\mathrm{t}}-2\right)^{2}=(1 / 2)(3)(4-2)^{2}$
$\mathrm{W}_{0 \mathrm{~L} 1}=6$ Joules
$\mathrm{L}_{2} \rightarrow \mathrm{~W}_{0}=(1 / 2) \mathrm{L}_{2} \mathrm{i}_{2}^{2}=(1 / 2)(6)\left(2 e^{-t}+2\right)^{2}=1 / 2(6)(2+2)^{2}$
$W_{0 L 2}=48$ Joules
$\mathrm{W}_{\text {Ototal stored energy }}=\mathrm{W}_{0 \mathrm{~L} 1}+\mathrm{W}_{\mathrm{OL2} 2}=6+48=54$ Joules
f) Trapped energy in Inductors? $(t=\infty)$
$\mathrm{L}_{1} \rightarrow \mathrm{~W}_{\mathrm{L} 1}=(1 / 2) \mathrm{L}_{1} \mathrm{i}_{1}{ }^{2}=(1 / 2)(3)\left(4 \mathrm{e}^{-\mathrm{t}}-2\right)^{2}=(1 / 2)(3)\left(4 \mathrm{e}^{-\infty}-2\right)^{2}=6$ Joules
$\mathrm{L}_{2} \rightarrow \mathrm{~W}_{\mathrm{L} 2}=(1 / 2) \mathrm{L}_{2} \mathrm{i}_{2}{ }^{2}=(1 / 2)(6)\left(2 \mathrm{e}^{-\mathrm{t}}+2\right)^{2}=(1 / 2)(6)\left(4 \mathrm{e}^{-\infty}-2\right)^{2}=12$ Joules
$\mathrm{W}_{\text {total trapped }}=6+12=18$ Joules
g) Energy delivered to Black Box = Inductor Initial Energy - Inductor Trapped Energy
$36=54-18$
$36=36$
Yes, they are equal!
6U. The two parallel inductors in the following figure are connected across the terminals of a black box at $\mathrm{t}=0$. The resulting voltage v for $t \geq 0$ is known to be $8 e^{-2 t} \mathrm{~V}$. It is also known that $i_{1}(0)=5 \mathrm{~A}$ and $\mathrm{i}_{2}(0)=8 \mathrm{~A}$.
a) Replace the original inductors with an equivalent inductor and find $i(t)$ for $t \geq 0$.
b) Find $\mathrm{i}_{1}(\mathrm{t})$ for $\mathrm{t} \geq 0$.
c) Find $i_{2}(t)$ for $t \geq 0$.
d) How much energy is delivered to the black box in the time interval $0 \leq t \leq \infty$?
e) How much energy was initially stored in the parallel inductors?
f) How much energy is trapped in the ideal inductors?
g) Do your solutions for i_{1} and i_{2} agree with the answer obtained in (f)?

Solution:

7S. Calculate the equivalent capacitance with respect to terminals a and b of the following circuit:

Solution:
Series: 30 \& 70 uF $\rightarrow 1 /(1 / 30+1 / 70)=21 \mathrm{uF}$ with Initial cond. $2+8=10 \mathrm{~V}$
Parallel: 21, 20, . 009 uf $\rightarrow 21+20+0.009=41$ uF with Initial cond. 10 V
Series: 50,41 uf $\rightarrow 1 /(1 / 50+1 / 41)=22.5$ uF
Parallel: $22.5,25 \mathrm{uF} \rightarrow 25+22.5=47.5 \mathrm{uF}$ with Initial cond. 5 V
Series: $5,47.5,10,10 u F \rightarrow 1 /(1 / 5+1 / 47.5+1 / 10+1 / 10)=2.38 u F$ with initial Cond. $+7+5-9+3=6 \mathrm{~V}$

7U. Calculate the equivalent capacitance with respect to terminals a and b of the following circuit:

Solution:

8S. In the following circuit, find the equation for voltage across the current source, $v(t)$ for $t \geq 2 \mathrm{sec}$.

Solution:

0.6 mF in Parlallel with $600 \mathrm{uF} \rightarrow \mathrm{Ceq} 1=1.20 \mathrm{mF}$ with $\mathrm{V}=5 \mathrm{~V}$ 0.9 mF in Series with $0.1 \mathrm{mF} \rightarrow \mathrm{Ceq} 2=0.09 \mathrm{mF}$ with $\mathrm{V}=5 \mathrm{~V}$ 0.09 mF in Parallel with $0.21 \mathrm{mF} \rightarrow$ Ceq3 $=0.30 \mathrm{mF}$ with $\mathrm{V}=5 \mathrm{~V}$

$0.30 \mathrm{mF}, 0.30 \mathrm{mF}$ and 1.20 mF are in series \rightarrow Ceq4 $=0.13 \mathrm{mF}$ with $\mathrm{V}=10-5+5=10 \mathrm{~V}$

$$
\begin{aligned}
& v(t)=\frac{1}{C} \int_{t_{0}}^{t} i(\tau) d \tau+v\left(t_{0}\right)=\frac{1}{0.133 * 10^{-3}} \int_{2}^{t} 50 * 10^{-3} * \sin (1400 \pi \tau) d \tau+v(2) \\
& v(t)=-\left.\frac{50 * 10^{-3}}{.133 * 10^{-3} * 1400 \pi} \cos (1400 \pi t)\right|_{2} ^{t}+10 \\
& v(t)=-0.085 \cos (1400 \pi t)-10.085 \mathrm{~V}
\end{aligned}
$$

8U. In the following circuit, find the equation for voltage across the current source, $v(t)$ for $t \geq 5 \mathrm{sec}$.

Solution:

8 Sb . The two series-connected capacitors are connected to the terminals of a black box at $\mathrm{t}=0$ as shown below.
The resulting current $i(t)$ for $t \geq 0$ is known to be $20 e^{-t} u A$.
a) Replace the original capacitors with an equivalent capacitor and find $v_{0}(t)$ for $t \geq 0$.
b) Find $v_{1}(\mathrm{t})$ for $\mathrm{t} \geq 0$.
c) Find $v_{2}(t)$ for $t \geq 0$.
d) How much energy is delivered to the black box in the time interval $0 \leq t \leq \infty$?
e) How much energy was initially stored in the series capacitors?
f) How much energy is trapped in the ideal capacitors?
g) Do the solutions for v_{1} and v_{2} agree with the answer obtained in (f)?

Solution:

a) $i(t)=20 e^{-t} u A \quad t \geq 0$
find $\mathrm{C}_{\text {eq }}$ and $\mathrm{V}_{0}(\mathrm{t})$
$\left(1 / \mathrm{C}_{\text {eq }}\right)=\left(1 / \mathrm{C}_{1}\right)+\left(1 / \mathrm{C}_{2}\right) \rightarrow \mathrm{C}_{\text {eq }}=2 \mathrm{uF}$
Note again that the current is flowing from negative terminal to positive which means need to have "-" between I and V relation

$$
\begin{aligned}
& V_{0}=\frac{-1}{C e q} \int_{0}^{t} i d t+V_{0}(0) \\
& V_{0}=\frac{-10^{6}}{2} \int_{0}^{t} 20 e^{-t} * 10^{-6} d t+10 \\
& V_{0}=\left.10 e^{-t}\right|_{0} ^{t}+10=10 e^{-t}
\end{aligned}
$$

b)

$$
V_{1}(t)=-\frac{1}{3 * 10^{-6}} \int_{0}^{t} 20 e^{-t} * 10^{-6} d t+4=-\frac{20}{3}\left[-e^{-t}\right]_{0}^{t}+4=6.67 e^{-t}-2.67 \mathrm{~V}
$$

c)

$$
V_{2}(t)=-\frac{1}{6 * 10^{-6}} \int_{0}^{t} 20 e^{-t} * 10^{-6} d t+6=-\frac{20}{6}\left[-e^{-t}\right]+6=3.33 e^{-t}+2.67 V
$$

d) We know from step a that

$$
\begin{aligned}
& V_{0}=\frac{-1}{C e q} \int_{0}^{t} i d t+V_{0}(0) \\
& V_{0}=\frac{-10^{6}}{2} \int_{0}^{t} 20 e^{-t} * 10^{-6} d t+10 \\
& V_{0}=\left.10 e^{-t}\right|_{0} ^{t}+10=10 e^{-t} \\
& W=(1 / 2) \int_{0}^{\infty} 10 e^{-t} * 20 e^{-t} * 10^{-6}=10^{-6}(100) \int_{0}^{\infty} e^{-2 t}=100 * 10^{-6} \\
& \mathrm{~W}=100 \mu \mathrm{Joules}
\end{aligned}
$$

e) $@ t=0$
$\mathrm{W}_{1 \square}=(1 / 2) \mathrm{cv}_{1}(\mathrm{t})^{2}=(1 / 2)\left(3^{*} 10^{-6}\right)(4)^{2}=24 \mu$ Joules
$\mathrm{W}_{2}=\left(\frac{1}{2}\right) \mathrm{Cv}_{2}(\mathrm{t})^{2}={ }^{2}=(1 / 2)\left(6^{*} 10^{-6}\right)(6)^{2}=108 \mu$ Joules
24μ Joules $+108 \mu$ Joules $=132 \mu$ Joules
f) $@ t=\infty$
$\mathrm{W}_{1}=(1 / 2) \mathrm{CV}_{1}(\mathrm{t}=\infty)^{2}=(1 / 2)\left(3^{*} 10^{-6}\right)(-2.67)^{2}=10.69 \mu$ Joules
$\mathrm{W}_{2}=(1 / 2) \mathrm{CV}_{1}(\mathrm{t}=\infty)^{2}=(1 / 2)\left(6^{*} 10^{-6}\right)(2.67)^{2}=21.38 \mu \mathrm{Joules}$
10.69μ Joules $+21.31 \mu$ Joules $=32.0 \mu$ Joules
g) 100μ Joules $+32 \mu$ Joules $=132 \mu$ Joules (Verified)

8Sc. Some lamps are made to turn on or off when the base is touched. These use a one-terminal variation of the capacitive switch design. Calculate the change in voltage $\mathrm{v}(\mathrm{t})$ when a person touches the lamp.
Assume that all capacitors are initially discharged and a person can be modeled with a series of 10 pF and

100 pF capacitors.

Solution:

Note that capacitors divide voltage as shown below:

$$
\begin{aligned}
& V_{s}(t)=\frac{1}{C_{1}} \int i(t) d t+\frac{1}{C_{2}} \int i(t) d t \\
& V_{s}(t)=\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right) \int i(t) d t \\
& \int i(t) d t=\frac{C_{1} C_{2}}{C_{1}+C_{2}} V_{s}(t) \\
& V(t)=\frac{1}{C_{2}} \int i(t) d t=\frac{C_{1}}{C_{1}+C_{2}} V_{s}(t)
\end{aligned}
$$

Using the above analysis result fot the circuit when no person touching, only 10 pF goes to ground. Therefore

$$
v(t)=(10 / 20) v_{s}(t)=0.5 v_{s}(t)
$$

With figure touching, then the capacitors representing person must be considers. There we have to calculate the equivalent capacitor to ground:

Ceq $=\frac{1}{\frac{1}{100}+\frac{1}{10}}+10=19.091 p F$
$v(t)=\frac{10}{19.091+10} v_{s}(t)=0.344 v_{s}(t)$
Therefore
$\Delta v(t)=0.156 v_{s}(t)$

9S. For the following circuit find the current through C_{2} for $\mathrm{t} \geq 2 \mathrm{~s}$, and the total energy delivered to C_{2}.

Solution:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C} 3}(2)=12 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{C} 2}(2)=0 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{C} 1}(2)=0 \mathrm{~V} \\
& \mathrm{t} \geq 2 \mathrm{~s} \\
& \mathrm{Ceq}=(18+14) \| 32=16 \mathrm{uF} \\
& \mathrm{i}(\mathrm{t})=\mathrm{Cdv} / \mathrm{dt}=16\left(-20,000 \mathrm{e}^{-4,000 \mathrm{t}}\right)=-0.32 \mathrm{e}^{-4,000 \mathrm{t}} \mathrm{~A} \\
& v_{c 2}=\frac{1}{C_{2}} \int_{2}^{t} i d t=\frac{1}{32 \times 10^{-6}} \int_{2}^{t}\left\{-0.32 e^{-4000 t}\right\} d t+v_{c 2}(2)=2.5\left\{e^{-4000 t}-e^{-8000}\right\}+0 \\
& v_{c 2}=2.5 e^{-4000 t}-2.5 e^{-8000} V \\
& E_{c 2, t \rightarrow \infty}=\frac{1}{2} C V^{2}=\frac{32 x 10^{-6}}{2}\left[2.5 e^{-4000 t}-2.5 e^{-8000}\right]^{2} \text { Jouls }
\end{aligned}
$$

9 U . For the following circuit find the current through C_{1} for $\mathrm{t} \geq 5 \mathrm{~s}$, and the total energy delivered to C_{3}.

Solution:

10S. Write an differential equation in term of $v_{\mathrm{x}}(\mathrm{t})$ for the following circuit:

Solution:

Use KCL at Node $\mathrm{v}_{\mathrm{x}}(\mathrm{t}) \rightarrow \frac{v_{x}-25 t^{2}}{10}+\frac{v_{x}}{40}+10^{-5} \frac{d v_{x}}{d t}+\frac{v_{x}}{120}+\frac{1}{0.1} \int_{t_{0}}^{t} v_{x}(\tau) d \tau+i_{L}\left(t_{0}\right)=0$
Take a derivate of both side $\rightarrow 0.1 \frac{d v_{x}}{d t}-5 t+0.025 \frac{d v_{x}}{d t}+10^{-5} \frac{d^{2} v_{x}}{d t^{2}}+\frac{1}{120} \frac{d v_{x}}{d t}+\frac{v_{x}}{0.1}=0$

$$
\frac{d^{2} v_{x}}{d t^{2}}+13,333.33 \frac{d v_{x}}{d t}+10^{6} v_{x}-5 x 10^{5} t=0
$$

10U. Write an differential equation in term of $i_{x}(t)$ for the following circuit:

Solution:

10Sb. Use KVL to write a differential equation in terms of i_{1} for the following circuit:

Solution

$4000 i_{1}+5 e^{-4000 t}+15 * 10^{-3} \frac{d i_{1}}{d t}+\frac{10^{6}}{18} \int i_{1} d t=0$
derivative:

$$
15 * 10^{-3} \frac{d^{2} i_{1}}{d t^{2}}+4000 \frac{d i_{1}}{d t}+\frac{10^{6}}{18} i_{1}=20,000 e^{-4000 t}
$$

