Fundamentals of Electrical Circuits - Chapter 4

1S. For the following circuit find:
a) Number of Branches
b) Number of Branches with unknown current
c) Number of Essential Branches
d) Number of Essential Branches with unknown current
e) Number of Nodes
f) Number of Essential Nodes
g) Number of Meshes

Solution:

a) Number of Branches $=11$
b) Number of Branches with unknown current $=9$
c) Number of Essential Branches $=9$
d) Number of Essential Branches with unknown current $=7$
e) Number of Nodes $=6$
f) Number of Essential Nodes $=4$
g) Number of Meshes $=6$

1U. For the following circuit:
a) How many independent equations can be derived using Kirchhoff's Current Law (KCL)?
b) How many independent equations can be derived using Kirchhoff's Voltage Law (KVL)?
c) What two meshes should be avoided in applying Kirchhoff's Voltage Law (KVL)?

Solution:

2S. Use the node-voltage method to find Vo in the circuit shown below.

Solution:

$\frac{V_{0}-(-25)}{125}+\frac{V_{0}}{25}+40 * 10^{-3}=0$
$6 V_{0}=-30$
$V_{0}=-5$

2 U . Use the node-Voltage method to find V_{1} and V_{2} in the following circuit.

Solution:

2Sb. Use the node-Voltage method to find V1 and V2 in the following circuit.

Solution:

Three Nodes so we need to write two Node-Voltage equations:
Node $\mathrm{V}_{1} \rightarrow-6+\mathrm{V}_{1} / 40+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) / 8=0$
Node $\mathrm{V}_{2} \rightarrow 1+\mathrm{V}_{2} / 120+\mathrm{V}_{2} / 80+\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) / 8=0$
Solve two unknowns, two equations
$6 \mathrm{~V}_{1}-5 \mathrm{~V}_{2}=240$
$-30 \mathrm{~V}_{1}+35 \mathrm{~V}_{2}=-240$
$\mathrm{V}_{1}=120 \mathrm{~V}$ and $\mathrm{V}_{2}=96 \mathrm{~V}$

2Sc. a) Use the node-voltage method to find the branch currents $\left(i_{a}-i_{e}\right)$ in the circuit shown below.
b) Find the total power developed in the circuit.

Solution:

a) Three essential nodes so we can write 2 Node-Voltage Equations:
$\frac{V_{1}-44}{4}+\frac{V_{1}}{6}+\frac{V_{1}-V_{2}}{1}=0$
$\frac{V_{2}-(-2)}{2}+\frac{V_{2}}{3}+\frac{V_{2}-V_{1}}{1}=0$
$17 V_{1}-12 V_{2}=132$
$-6 V_{1}+11 V_{2}=-6$
$V_{1}=12$ and $V_{2}=6$
\therefore
$i_{a}=8 A ; \quad i_{b}=2 A ; \quad i_{c}=6 A ; \quad i_{d}=2 A ; \quad i_{e}=4 A ;$
$i_{a}-i_{e}=8-4=4 A$
b) $\quad P_{\text {total develped }}=$?
$P_{\text {total develped }}=-4^{*}(8)^{2}-6^{*}(2)^{2}-1^{*}(6)^{2}-3^{*}(2)^{2}-2^{*}(4)^{2}=-360 \mathrm{~W}$

3S. Use the node-voltage method to calculate the power delivered by the dependent voltage source in the following circuit.

Solution:

There is only one node and one reference node \rightarrow one node-voltage equation

$$
\frac{V_{1}-160}{10}+\frac{V_{1}}{100}+\frac{V_{1}-150 i_{\sigma}}{50}=0 \quad \text { and } \quad i_{\sigma}=-\frac{V_{1}}{100}
$$

Re place i_{σ} in first equation $\Rightarrow \frac{V_{1}-160}{10}+\frac{V_{1}}{100}+\frac{V_{1}+1.5 V_{1}}{50}=0 \Rightarrow V_{1}=100 \mathrm{~V}$
Dependent Voltage $=V_{d}=150 i_{\sigma}=-\frac{150 V_{1}}{100}=-150 \mathrm{~V}$
50Ω Current $=I_{50 \Omega}=\frac{V_{1}-V_{d}}{50}=\frac{100-(-150)}{50}=5$
$P_{\text {Dependent Source }}=V_{d} * I_{30 \Omega}=(-150) *(5)=-750 \mathrm{~W}$ delivered

3U. Use the node-voltage method to calculate the power delivered by the dependent voltage source in the following circuit.

Solution:

4S. Use the node-voltage method to find V 1 and the power delivered by the 25 V voltage source in the following circuit,

Solution: $\quad P_{25 v}=?$

Use SuperNode technique $\left(\mathrm{V}_{1} \& \mathrm{~V}_{2}\right)$:
KCL for Super Node (all current out of suppernode) $\rightarrow 2+\mathrm{V}_{1} / 50+\mathrm{V}_{2} / 150+\mathrm{V}_{2} / 75=0$
We also have the relationship between nodes in supper node $\rightarrow V_{1}-V_{2}=25$
$\mathrm{V}_{1}=-37.5 \mathrm{~V} ; \mathrm{V}_{2}=-62.5 \mathrm{~V}$;
$\mathrm{I}_{1}=\mathrm{V}_{1} / 50=-37.5 / 50=-0.75 \mathrm{~A}$
KCL at node $\mathrm{V}_{1} \rightarrow 2-0.75+\mathrm{I}=0 \rightarrow \mathrm{I}=-1.25 \mathrm{~A}$
$P_{25 \mathrm{~V}}=\mathrm{V}_{1}{ }^{*} \mathrm{I}=(25)^{*}(-1.25)=-31.25 \mathrm{~W}$ delivered.

4 U . Use the node-voltage method to find Vx and the power consumed by the 55Ω resistor in the following circuit:

Solution:

4Sb. Use the node-voltage method to find V_{1} in the following circuit,

Solution:

Use SuperNode technique $\left(\mathrm{V}_{1} \& \mathrm{~V}_{2}\right)$:
KCL for Super Node (all current out of SuperNode) $\rightarrow 8+\mathrm{V}_{1} / 40+\mathrm{V}_{2} / 80+\mathrm{V}_{2} / 75=0 \rightarrow$
$(1 / 40) \mathrm{V}_{1}+(1 / 80+1 / 75) \mathrm{V}_{2}=-8$
We also have the relationship between nodes in supper node $\rightarrow V_{1}-V_{2}=12$
$\underline{\mathrm{V}}_{1}=-151.3 \mathrm{~V} ;$

5S. a) Use the mesh-current method to find the total power developed in the following circuit.
b) Check your answer by showing that the total power developed equals the total power dissipated.

Solution:

a) Applu Mesh-Current to find total power developed

Loop \#1 KVL $\rightarrow 6 \mathrm{I}_{1}+3\left(\mathrm{I}_{1}-\mathrm{I}_{3}\right)+\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)=0$
Loop \#2 KVL $\rightarrow-230+\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)+2\left(\mathrm{I}_{2}-\mathrm{I}_{3}\right)+115+4 \mathrm{I}_{2}=0$
Loop \#3 KVL $\rightarrow 460+5 \mathrm{I}_{3}-115+2\left(\mathrm{I}_{3}-\mathrm{I}_{2}\right)+3\left(\mathrm{I}_{3}-I_{1}\right)=0$
$\mathrm{I}_{1}=-10.6 \mathrm{~A} ; \quad \mathrm{I}_{2}=4.4 \mathrm{~A} ; \quad \mathrm{I}_{3}=-36.8 \mathrm{~A} ;$
$P_{230 \mathrm{~V}}=230 * I_{2}=230 *(4.4)=-1,012 \mathrm{~W}$ Developed
$P_{115 \mathrm{~V}}=115^{*}\left(I_{2}-I_{3}\right)=115^{*}(4.4-(-36.8))=4,738 \mathrm{~W}$ Consumed
$P_{460 \mathrm{~V}}=460 * I_{2}=460 *(-36.8)=-16,928 \mathrm{~W}$ Developed

$$
P_{\text {Total developed }}=P_{230 \mathrm{~V}}+P_{460 \mathrm{~V}}=-1,012-16,928=17,940 \mathrm{~W}
$$

b) $\mathrm{P}_{\text {Total developed }}=\mathrm{P}_{\text {Total consumed }}$?
$P_{\text {Total consumed }}=6\left(I_{1}\right)^{2}+3\left(I_{1}-I_{3}\right)^{2}+\left(I_{1}-I_{2}\right)^{2}+2\left(I_{2}-I_{3}\right)^{2}+4\left(I_{2}\right)^{2}+5\left(I_{3}\right)^{2}+P_{115 \mathrm{~V}}$

$$
=6(-10.6)^{2}+3(-10.6-(-36.8))^{2}+(-10.6-4.4)^{2}+2(4.4-(-36.8))^{2}+4(4.4)^{2}+5(-
$$

$36.8)^{2}+P_{115 v}$
$\mathrm{P}_{\text {Total consumed }}=\mathrm{P}_{\text {Total developed }}=17940 \rightarrow$ Answer checked.

5U. a) Use the mesh-current method to find the total power developed in the following circuit.
b) Check your answer by showing that the magnitude of total power developed equals the total power dissipated.

Solution:

5Sb. Use the mesh-current method to find the total power consumed in the circuit shown below.

Solution:

Super-Mesh KVL $\rightarrow-10+8 I_{1}+4 I_{2}-20+12 I_{2}+4 I_{1}=0 \rightarrow 12 I_{1}+16 I_{2}=30$
Relationship of two mesh within super-mesh $\rightarrow I_{1}-I_{2}=3$
$\mathrm{I}_{1}=2.8 \mathrm{~mA} ; \quad \mathrm{I}_{2}=-0.2 \mathrm{~mA} ;$
Resistors and the 20v Source are consuming power

$$
\begin{aligned}
\mathrm{P}_{\text {Total Dissipated }} & =\Sigma\left(I^{2} \mathrm{R}\right)+\mathrm{P}_{20 \mathrm{v} \text { Source }} \\
& =\left.8000^{*}\right|_{1}{ }^{2}+40000^{*} I_{2}{ }^{2}+12000^{*} I_{2}{ }^{2}+\left.4000^{*}\right|_{1}{ }^{2}=12000^{*}(0.0028)^{2}+16000^{*}(0.0002)^{2}+20^{*}(0.0002) \\
& =0.095+0.004 \mathrm{~W}
\end{aligned}
$$

6S. a) Use the mesh-current method to solve for I_{Δ} in the following circuit.
b) Find the power delivered by the independent current source.
c) Find the power delivered by the dependent voltage source.

Solution:

a) find I_{Δ}

We have $I_{1}=0.005 \mathrm{~A}$ \& $I_{\Delta}=I_{1}-I_{2}$
Write KVL for Mesh \#2 $\rightarrow 5.4\left(I_{2}-I_{1}\right)+I_{2}+150\left(I_{1}-I_{2}\right)+2.7 I_{2}=0$
Insert I_{1} value to above equation $\rightarrow 5.4\left(\mathrm{I}_{2}-.005\right)+\mathrm{I}_{2}+150\left(\mathrm{I}_{2}-.005\right)+2.7=0$
$\rightarrow \mathrm{I}_{2}=0.003 \mathrm{~A} \rightarrow \mathrm{I}_{\Delta}=\mathrm{I}_{1}-\mathrm{I}_{2}=0.002 \mathrm{~A}$
b) $P_{0.005 \mathrm{~A} \text { source }}=I_{1} * V_{0.005 \mathrm{~A} \text { source }}=-(0.005) *(10 * 5+5.4 * 2)=-0.304 \mathrm{~W}$
c) $P_{0.1501 \Delta \text { dependent source }}=I_{2} * V_{0.005 A}$ source $=(.003) *(150 * 0.002)=0.9 \mathrm{~mW}$ consumed

6 U . a) Use the mesh-current method tofind I_{x} in the following circuit.

b) Find the power delivered by the independent current source.
c) Find the power delivered by the dependent voltage source.

Solution:

7S. Use the mesh-current method to find the total power dissipated in the circuit shown below.

Solution:

a)

Super-Mesh KVL $\rightarrow-20+4 I_{1}+9 I_{2}-90+6 I_{2}+I_{1}=0 \rightarrow 5 I_{1}+15 I_{2}=110$
Relationship of two mesh within super-mesh $\rightarrow I_{1}-I_{2}=6$
$\mathrm{I}_{1}=10 \mathrm{~A} ; \quad \mathrm{I}_{2}=4 \mathrm{~A} ;$
$P_{\text {Total Dissipated }}=\Sigma\left(I^{2} R\right)=4 * I_{1}^{2}+9 * I_{2}^{2}+6 * I_{2}^{2}+I_{1}^{2}{ }^{2} 4^{*} 10^{2}+9 * 4^{2}+6 * 4^{2}+1 * 10^{2}=740 \mathrm{~W}$
7 U . Use the mesh-current method to find the total power dissipated in the circuit shown below.

Solution:

8S. Assume you have been asked to find the power dissipated in the 10Ω resistor in the following circuit.
a) Which method of circuit analysis would you recommend? Explain why.
b) Use your recommendation method of analysis to find the power dissipated in the 10Ω resistor.
c) Would you change your recommendation if the problem had been to find the power developed by the 4 A current source? Explain.
d) Find the power delivered by the 4 A current source.

Solution:

a) Which method?

* 4 Essential nodes 3 node-voltage equations
* 6 Essential branches $(6-(4-1))=3$ current-mesh equations

Mesh-Current since one of the Mesh currents is known so there are only two mesh-current equations.
b) $\mathrm{P}_{10 \Omega}=$?

KVL for Mesh\#1 $\rightarrow \mathrm{I}_{1}=4 \mathrm{~A}$
KVL for Mesh\#2 $\rightarrow 8\left(I_{2}-I_{1}\right)+2 I_{2}+10\left(I_{2}-I_{3}\right)=0$
KVL for Mesh\#3 $\rightarrow\left(\mathrm{I}_{3}-\mathrm{I}_{1}\right)+10\left(\mathrm{I}_{3}-\mathrm{I}_{2}\right)+4 \mathrm{I}_{3}=0$
Inset I_{1} value into equations \#2 \& \#3
$20 I_{2}-10 I_{3}=32$
$-10 I_{2}+15 I_{3}=4$
$I_{2}=2.6 ; \quad I_{3}=2 \mathrm{~A}$
$\mathrm{P}_{10 \Omega}=\mathrm{R}^{*} \mathrm{I}^{2}=(10)^{*}(2.6-2)^{2}=3.6 \mathrm{~W}$
c) No, since it is straight forward to calculate the voltage drop across the current source from mesh currents.
d) $P_{4 A \text { souces }}=?$
$P_{4 A \text { souces }}=I^{*} V=-4^{*}\left(8^{*}\left(I_{1}-I_{2}\right)+1^{*}\left(I_{1}-I_{3}\right)\right)=-4^{*}\left(8^{*}(4-2.6)+1^{*}(4-2)\right)$
$P_{4 \mathrm{~A} \text { souces }}=52.8 \mathrm{~W}$ delivered

8 U . Assume you have been asked to find the power dissipated in the 20Ω resistor in the following circuit.
a) Which method of circuit analysis would you recommend? Explain why.
b) Use your recommendation method of analysis to find the power dissipated in the 20Ω resistor.
c) Would you change your recommendation if the problem had been to find the power developed by the 5 A current source? Explain.
d) Find the power delivered by the 5 A current source.

Solution:

8Sb. a) Would you use the node-voltage or mesh-current method to find the power absorbed by the 20 V source in the following circuit? Explain your choice.
b) Use the method your selected in (a) to find the power.

Solution:

a)) Which method?

* 5 Essential nodes 4 node-voltage equations
* 8 Essential branches $(8-(5-1))=4$ mesh-current equations although number of equations are the same, Node-voltage is a better choice. This is driven by the fact that with the two super nodes and easier constraint equation formulation.
b) $P_{20 V \text { sources }}=$?

Super Node \#1 KCL $\rightarrow-0.2+.003 \mathrm{~V}_{\Delta}+\mathrm{V}_{1} / 100+\mathrm{V}_{2} / 250=0$
Relationship $\rightarrow \mathrm{V}_{2}-\mathrm{V}_{1}=20$
Super Node \#2 KCL $\rightarrow+0.2-.003 \mathrm{~V}_{\Delta}+\mathrm{V}_{4} / 200+\mathrm{V}_{3} / 500=0$
Relationship $\rightarrow \mathrm{V}_{3}-\mathrm{V}_{4}=0.4 \mathrm{~V}_{\mathrm{a}}$
Constraint equations in term of node voltages

$$
\begin{aligned}
& V_{a}=V_{2} \\
& V_{\Delta}=V_{3}
\end{aligned}
$$

Simplified equation:
$0.01 \mathrm{~V}_{1}+0.004 \mathrm{~V}_{2}+0.003 \mathrm{~V}_{3}=0.2$
$-V_{1}+V_{2}=20$
$-0.001 \mathrm{~V}_{3}+0.005 \mathrm{~V}_{4}=-0.2$
$+0.4 V_{2}-V_{3}+V_{4}=0$
$\mathrm{V}_{1}=15.48 \mathrm{~V} ; \quad \mathrm{V}_{2}=35.482 \mathrm{~V} ; \quad \mathrm{V}_{3}=-32.23 \mathrm{~V} ; \quad \mathrm{V}_{4}=-46.45 \mathrm{~V}$;
Note: I can be found by apply KCL at node V_{1}
$P_{20 \mathrm{~V} \text { Source }}=-(20)^{*} I=-20\left(\mathrm{~V}_{1} / 100+0.003 \mathrm{~V}_{3}\right)=-20\left(15.48 / 100+0.003^{*}(-32.28)\right)=-1.16 \mathrm{~W}$
9S. a) Use a series of source transformations to find i_{o} in the following circuit
b) Verify your solution by using the mesh-current method to find i_{o}.

Solution:

a) Use the following transformation rule:

First Set of transformations $(2 \mathrm{~A}, 6 \Omega \rightarrow 12 \mathrm{~V} ; 1 \mathrm{~A}, 5 \Omega \rightarrow 5 \mathrm{~V})$

Second Set of transformations
$(12+5 \mathrm{~V}, 12+5 \Omega \rightarrow 1 \mathrm{~A} ; \quad 34 \mathrm{~V}, 17 \Omega \rightarrow 2 \mathrm{~A} ;)$

Simplify by adding current source and Req for $17|\mid 17=8.5 \Omega$

$$
i_{o}=-1^{*}(8.5 /(1.5+8.5))=-0.85 \mathrm{~A}
$$

b) Find i_{0} using mesh-current technique.

KVL for Mesh \#1 $\rightarrow \mathrm{I}_{1}=2 \mathrm{~A}$
KVL for Mesh \#2 $\rightarrow 6\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)+6 \mathrm{I}_{2}+5\left(\mathrm{I}_{2}-\mathrm{I}_{4}\right)+17\left(\mathrm{I}_{2}-\mathrm{I}_{3}\right)-34=0$
KVL for Mesh \#3 $\rightarrow+34+17\left(\mathrm{I}_{3}-\mathrm{I}_{2}\right)+1.5 \mathrm{I}_{3}=0$
KVL for Mesh \#4 $\rightarrow \mathrm{I}_{4}=1 \mathrm{~A}$
$34 I_{2}-17 I_{3}-5 I_{4}=46$
$-17 I_{2}+18.5 I_{3}=-34$
$I_{3}=10=-0.85 A$

9U. a) Use a series of source transformations to find V_{x} in the following circuit
b) Verify your solution by using the Node-Voltage method to find V_{x}.

Solution:

10 S . Find the Norton equivalent with respect to the terminals a, b in the following circuit.

Solution:
Step 1 -- Find Isc (a-b shorted)

$V_{1}=-30 \mathrm{~V}$
$\mathrm{V}_{2}=0 \mathrm{~V}$
$\mathrm{I} 1=\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) / 15 \mathrm{~K}=2 \mathrm{~mA}$
KCL at $\mathrm{V}_{2} \rightarrow \mathrm{Isc}+0+3+\mathrm{I}_{1}=0 \rightarrow$ Isc $=-5 \mathrm{~mA}$

Step $2-$ Find Req $=$ Rth by deactiving sources
(Current Source \rightarrow Open I=0; Voltage Source \rightarrow short V=0)

Rth $=((10| | 0)+15)| | 5=3.75 \mathrm{k} \Omega$
Step3 - Draw Norton Equivalent

10U. Find the Norton equivalent with respect to the terminals a, b in the following circuit.

Solution:

10S. Find and draw the Norton equivalent of the following circuit at terminals a and b.

Solution:

Deactivate sources to find Rth $=$ Rab

Rth $=$ Rab $=(4+(5| | 20)=8 \Omega$
Find Isc = lab


```
Mesh \#1 \(\rightarrow 4 \mathrm{I}_{1}+5\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right)=0 \rightarrow\)
Mesh \#2 \(\rightarrow+20+5\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)+20\left(\mathrm{I}_{2}-\mathrm{I}_{3}\right)=0\)
Mesh \#3 \(\rightarrow \mathrm{I}_{3}=-2\)
```

Find Isc $=\mathrm{lab}=\mathrm{I}_{3}-\mathrm{I}_{1}=-0.5$
Norton Equivalent:

11S. The Wheatstone bridge in the circuit shown below, is balanced when R3 equals 500Ω. If the galvanometer had a resistance of 50Ω, how much current will the galvanometer detects when the bridge is unbalanced by setting R3 to 501Ω.
Hint: Find the Thevenin equivalent with respect to the galvanometer terminals when $R 3=501 \Omega$. Note that once we have found this Thevenin equivalent, it is easy to find the amount of unbalanced current in the galvanometer branch for different galvanometer movements.

Solution:

Given: Balanced $\mathrm{I}=0$ when $\mathrm{R}_{3}=500 \Omega \rightarrow \mathrm{~V}_{\mathrm{CD}}=0 ; \mathrm{Rg}=50 \Omega$
Find: I if $R=501 \Omega$
Step 1 - Find Thevenin Equivalent with respect to C and D
A. Open $C D$ and find $V_{\text {open } C D}=V$ th

Use the voltage divider to find V_{C} and V_{D}

$$
\begin{gathered}
V_{C}=5^{*} R_{3} /\left(R_{3}+100\right) \\
V_{D}=5^{*} 5000 /(5000+1000)=25 / 6 \\
V_{\text {th }}=V_{C D}=V_{C}-V_{D}=5^{*} R_{3} /\left(R_{3}+100\right)-25 / 6
\end{gathered}
$$

B. Deactivate source ($V=0$ short $)$ and find $R_{e q}=R_{t h}$

$$
\mathrm{R}_{\mathrm{CD} \text { eq }}=\mathrm{R}_{\mathrm{th}}=\left(100 \| \mathrm{R}_{3}\right)+(1000 \| 5000)=100 \mathrm{R}_{3} /\left(100+\mathrm{R}_{3}\right)+5000 / 6
$$

Step 2 - Use Thevenin Equivalent to find current through Galvanometer when $\mathrm{R}_{3}=501$

$I=V_{\text {th }} /\left(R_{\text {th }}+50\right)=\left(5^{*} R_{3} /\left(R_{3}+100\right)-25 / 6\right) /\left(\left(5000 / 6+100 R_{3} /\left(100+R_{3}\right)+50\right)\right.$ when $R 3=501$
$\mathrm{I}=1.43 \mathrm{uA}$
11U. Draw and determine the value of components in the Thevenin Equivalent for the following circuit at terminals a and b .

Solution:

11Sb. Draw and determine the value of components in the Thevenin Equivalent for the following circuit with respect to ab terminals. Use Superposition to find Vth.

Solution:

Since sources are all independent sources then deactivate all sources and find $\mathrm{R}_{\text {th }}$

Now find Open circuit voltage (Vth):

Apply SuperPosition \rightarrow

Only 5V source is active:

$(\mathrm{Va}-(-5)) / 20+(\mathrm{Va}-\mathrm{Vb}) / 30+\mathrm{Va} / 5=0 \quad 17 \mathrm{Va}-2 \mathrm{Vb}=-15$
$(\mathrm{Vb}-\mathrm{Va}) / 30+\mathrm{Vb} / 11=0 \quad-11 \mathrm{Va}+41 \mathrm{Vb}=0$
$\mathrm{Va}=-0.9, \mathrm{Vb}=-0.2 \rightarrow \mathrm{Vab}_{1}=-0.7 \mathrm{~V}$ for 5 v Supply
Only 5 mA source is active

$(\mathrm{Va}-\mathrm{Vb}) / 15+5+\mathrm{Va} / 10=0 \quad \rightarrow 5 \mathrm{Va}-2 \mathrm{Vb}=-150$
$(\mathrm{Vb}-\mathrm{Va}) / 15+\mathrm{Vb} / 20=0 \quad \rightarrow-4 \mathrm{Va}+7 \mathrm{Vb}=0$
Solve $\rightarrow \mathrm{Va}=-38.9 \& \mathrm{Vb}=-22.2 \rightarrow \mathrm{Vab}_{2}=(-38.9)-(-22.2)=-16.7 \mathrm{~V}$

Only 10 mA source is active

$(\mathrm{Va}-\mathrm{Vb}) / 15+\mathrm{Va} / 10=0 \quad \rightarrow 5 \mathrm{Va}-2 \mathrm{Vb}=0$
$(\mathrm{Vb}-\mathrm{Va}) / 15+10+\mathrm{Vb} / 20=0 \rightarrow-4 \mathrm{Va}+7 \mathrm{Vb}=-600$
Solve $\rightarrow \mathrm{Va}=-44.4$ \& $\mathrm{Vb}=-111.1 \rightarrow \mathrm{Vab}_{3}=(-44.4)-(-111.1)=+66.7 \mathrm{v}$
Therefore $\mathrm{Vth}=\mathrm{Vab} 1+\mathrm{Vab} 2+\mathrm{Vab} 3=-0.7-16.7+66.7=49.3 \mathrm{v}$ and $\mathrm{R}_{\mathrm{th}}=10 \mathrm{k} \Omega$

11Sc.

For the above circuit, find the Thevenin equivalent with respect to terminals of Ro.

Solution:

a) Thevenin equivalent

Find Voc (Open Circuit $i_{\varphi=0}$)

From the circuit:
V1=280 V
$\mathrm{i}_{\varphi=0}$
KCL at $\mathrm{V} 2 \rightarrow(\mathrm{~V} 2-280) / 25+\mathrm{V} 2 / 400=0 \rightarrow \mathrm{~V} 2=264 \mathrm{~V}$
Voc $=\mathrm{V}$ th $=\mathrm{V} 1-5^{*}(\mathrm{~V} 1-\mathrm{V} 2) / 25=280-5^{*}(280-264) / 25=277 \mathrm{~V}$
Find Isc

Mesh Current Analysis equations:
$i_{1}=-50 i_{\Phi}=-50\left(i_{3}-i_{4}\right)=50 i_{4}-50 i_{3}$ $+280+100 i_{2}+10\left(i_{2}-i_{1}\right)=0$
$-280+5\left(i_{3}-i_{1}\right)=0$
$20\left(i_{4}-i_{1}\right)+400 i_{4}=0$
Simplify to 4 equations and 4 unknowns:
$\mathrm{i}_{1}+50 \mathrm{i}_{3}-50 \mathrm{i}_{4}=0$
$-10 \mathrm{i}_{1}+110 \mathrm{i}_{2}=-280$
$-5 i_{1}+5 i_{3}=280$
$-20 \mathrm{i}_{1}+420 \mathrm{i}_{4}=0$
Solve the equations:
$\mathrm{i}_{1}=-57.6 \mathrm{~A} ; \mathrm{i}_{2}=-7.8 \mathrm{~A} ; \mathrm{i}_{3}=-1.6 ; \mathrm{i}_{4}=-2.7 ; \rightarrow \mathrm{i}_{\mathrm{sc}}=\mathrm{i}_{3}-\mathrm{i}_{4}=-1.6-(-2.7)=1.1 \mathrm{~A}$

Rth $=$ Voc $/$ Isc $=277 / 1.1=252 \Omega$

11Sd. Using Node-Voltage Method for the following circuit:
a) Find the Thevenin equivalent with respect to terminals of Ro.
b) Find the Ro value that results in maximum power delivery to Ro.

Solution

a) Thevenin equivalent

First find Voc

KCL at $\mathrm{V} 1=280 \mathrm{~V}$
KCL at $\mathrm{V} 2 \rightarrow(\mathrm{~V} 2-280) / 25+\mathrm{V} 2 / 400+(\mathrm{V} 2-280) / 10+\mathrm{V} 2 / 100+0.5125 \mathrm{~V}_{\Delta}=0 \rightarrow \mathrm{~V} 2=257 \mathrm{~V}$
$\left.\mathrm{V}_{\Delta}=(\mathrm{V} 1-\mathrm{V} 2) / 25\right)^{*} 5=(280-\mathrm{V} 2) / 5=(280-257) / 5=23 / 5=4.6 \mathrm{~V}$
$\mathrm{V}_{\Delta}=(280-\mathrm{V} 2) / 5=(280-257) / 5=23 / 5=4.6 \mathrm{~V}$
$\mathrm{Voc}=\mathrm{Vth}=\mathrm{V} 1-\mathrm{V}_{\Delta}=275.4$
First find Isc

KCL at $\mathrm{V} 2=280 \mathrm{~V} \rightarrow \mathrm{~V} 2=\mathrm{V}_{\Delta}=280 \mathrm{~V}$
$\mathrm{i}_{\varphi}=(\mathrm{V} 2) / 5+(\mathrm{V} 3) / 20$
Supper Node Equation V1 - V3 $=50 \mathrm{i}_{\varphi}=(\mathrm{V} 2) / 5+(\mathrm{V} 3) / 20=10 \mathrm{~V} 2+2.5 \mathrm{~V} 3 \rightarrow \mathrm{~V} 1=2800+3.5 \mathrm{~V} 3$
KCL at Supper Node $\rightarrow \mathrm{V} 3 / 400+\mathrm{V} 3 / 20+0.5125 \mathrm{~V}_{\Delta}+\mathrm{V} 1 / 100+(\mathrm{V} 1-\mathrm{V} 2) / 10=0$
Substitute known values \rightarrow
$\mathrm{V} 3 / 400+\mathrm{V} 3 / 20+0.5125 * 280+(2800+3.5 \mathrm{~V} 3) / 100+(2800+3.5 \mathrm{~V} 3-280) / 10=0$
Find $\mathrm{V} 3=-945.14 \rightarrow \mathrm{~V} 1=-508 \rightarrow \mathrm{Isc}=\mathrm{I}_{\varphi}=(\mathrm{V} 1-\mathrm{V} 3) / 30=8.7 \mathrm{~A}$

V th $=\mathrm{Voc}=266 \mathrm{~V}$

12S. The variable resistor $\left(R_{0}\right)$ in the following circuit is adjusted until the power dissipated in the resistor is 50 W. Find the values of R_{0} that satisfy this condition.

Solution:

1) Find Thevenin equivlanet - $V o c=V$ th

KCL at $\mathrm{V} 1 \rightarrow(\mathrm{~V} 1-200) / 25+\mathrm{V} 1 / 100+(\mathrm{V} 1-\mathrm{V} 2) / 10=0$
KCL at $\mathrm{V} 2 \rightarrow 2+(\mathrm{V} 2-\mathrm{V} 1) / 10=0$
\rightarrow
$15 \mathrm{~V} 1-10 \mathrm{~V} 2=800$
V1 - V2 = 20
\rightarrow Vth $=\mathrm{Voc}=\mathrm{V} 2=100 \mathrm{~V}$
2) Deactivate Sources to find Rth

Rth $=(25| | 100)+10=30 \Omega$

$\mathrm{P}_{\mathrm{Ro}}=50 \mathrm{~W} \rightarrow 50=\mathrm{I}^{2} \mathrm{Ro} \rightarrow \mathrm{Ro}=50 / \mathrm{I}^{2}$
$K V L \rightarrow-100+30 I+I$ Ro $=0 \quad \rightarrow-100+30 I+50 / I=0 \quad \rightarrow 30 I^{2}-100 I+50=0$
$I=\frac{100 \pm \sqrt{10,000-6,000}}{60}=\frac{100 \pm 200}{60}=5 A \quad$ or $\quad-1.67 A$
$R o=50 / I^{2}=2 \Omega$ or 18Ω

12U. The variable resistor (R_{0}) in the following circuit is adjusted until the power dissipated in the resistor is 25 W . Find the values of R_{o} that satisfy this condition.

Solution:

13S. Use the principle of superposition to find the voltage v in the following circuit.

Solution:

1) Activate only $2 A$ source

$$
V_{2 A}=2 \times 2=4 V
$$

2) Activate only 5A source

$V_{5 A}=-5 \times 2=-10 V$
3) Activate only 20 V source

$$
V_{20 \mathrm{v}}=-0
$$

Total response, $\mathrm{V}=\mathrm{V}_{2 \mathrm{~A}}+\mathrm{V}_{5 \mathrm{~A}}+\mathrm{V}_{20 \mathrm{v}}=4-10+0=-6 \mathrm{~V}$
13U. Use the principle of superposition to find the voltage V in the following circuit.

Solution:

13Sb. What is the value of current through 40Ω resistor that is directly attributable to the 10 V voltage source.

Solution:

> De-activate all the sources except the 10 v

> Simplify and find the current resulting from the 10 v supply.
10Ω

Current through the 40Ω is zero since all the current goes through the short.

13Sc Use the Super-Position principle to find $V x$ in the following circuit.

Solution:

Deactivate all independent sources.
Activate 2A source and redraw:

Use KCL to find $V x$.
$\mathrm{KCL} @ \mathrm{~V} 1 \rightarrow \mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}=0$

$$
\rightarrow-2+\mathrm{V} 1 / 5+(\mathrm{V} 1-\mathrm{V} 2) / 10=0
$$

$\mathrm{KCL} @ \mathrm{~V} 2 \rightarrow \mathrm{I}_{4}+\mathrm{I}_{5}+\mathrm{I}_{6}=0$
$\rightarrow(\mathrm{V} 2-\mathrm{V} 1) / 10+(-2 \mathrm{Vy})+(\mathrm{V} 2-\mathrm{V} 3) / 25=0$
$\mathrm{KCL} @ \mathrm{~V} 3 \rightarrow \mathrm{I}_{7}+\mathrm{I}_{8}+\mathrm{I}_{9}=0$

$$
\rightarrow(\mathrm{V} 3-\mathrm{V} 2) / 25+\mathrm{V} 3 / 5+\mathrm{V} 3 / 100=0
$$

Dependent equation: $\mathrm{V} y=\mathrm{V} 1 / 5$
Simplify and solve.
$(3 / 10)^{*} \mathrm{~V} 1-(1 / 10)^{*} \mathrm{~V} 2=2$
$(3.5 / 25)^{*} \mathrm{~V} 2-(1 / 2) \mathrm{V} 1-(1 / 25)^{*} \mathrm{~V} 3=0$
$(1 / 4)^{*} \mathrm{~V} 3-(1 / 25)^{*} \mathrm{~V} 2=0$
$\mathrm{V} 3=\mathrm{V} \mathrm{x}_{1}=\mathbf{- 2 0 . 1} \mathrm{V}$

Activate 5 V source and redraw:

Use KCL to find $V x$.
$\mathrm{KCL} @ \mathrm{~V} 1 \rightarrow \mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}=0$

$$
\rightarrow(\mathrm{V} 1-5) /(10+5)+\left(-2^{*} \mathrm{~V} y\right)+(\mathrm{V} 1-\mathrm{V} 2) / 25=0
$$

$\mathrm{KCL} @ \mathrm{~V} 2 \rightarrow \mathrm{I}_{4}+\mathrm{I}_{5}+\mathrm{I}_{6}=0$

$$
\rightarrow(\mathrm{V} 2-\mathrm{V} 1) / 25+\mathrm{V} 2 / 5+\mathrm{V} 2 / 100=0
$$

Dependent equation: $\mathrm{Vy}=(\mathrm{V} 1-5) / 3$
Simplify and solve.
$(-48 / 75)^{*} \mathrm{~V} 1-(\mathrm{V} 2 / 25)+3=0$
$(\mathrm{V} 2 / 4)-(\mathrm{V} 1 / 25)=0$
$\mathrm{V} 2=\mathrm{Vx}_{2}=\mathbf{0 . 7 4 3 V}$

13Sc. Use the principle of superposition to find voltage $\mathrm{V}_{2 \mathrm{a}}$ in the following circuit:

Solution:

Deactivate all except 2 mA
Note: Voltage source deactivates when $V=0 \rightarrow$ short; Current source deactivates when $I=0 \rightarrow$ Open

$$
\mathrm{Req}=0 \mathrm{~K} \Omega \rightarrow \mathrm{~V} 2 \mathrm{a}=0 \mathrm{~V}
$$

Deactivate all except 5 V

$$
\mathrm{V} 2 \mathrm{a}=+5 \mathrm{~V}
$$

Deactivate all except 3 mA

$\mathrm{Req}=0 \mathrm{~K} \Omega \rightarrow \mathrm{~V} 2 \mathrm{a}=0 \mathrm{~V}$
Super positioned input (total Response) $=0+5+0=5 \mathrm{~V}$.

14S. In the following circuit, find R_{L} value such that R_{L} consumes maximum power.

Solution:

1) Find Rth by Deactivating source ($v=0$ or open)

$$
\mathrm{R}_{\mathrm{eq}}=(((10 \| 20)+40) \|(20+30))+5000=5024.15 \Omega
$$

2) Maximum power Requires $R_{L}=R_{t h}=5024.15 \Omega$

14U. In the following circuit, find R_{L} value such that R_{L} consumes maximum power..

Hint: Find $R_{\text {th }}$ with respect to R_{L} terminals First.

Solution:

14Sb. Find value of a resistor between terminals a and b such that it would consume maximum power:

Solution:

Find R_{th} with respect to terminals a and b by deactivating the independent voltage source

$R_{\text {th }}=(500 \| 1500)+(2000 \| 4000)=1708 \Omega$
For Maximum power, Rab must be equal to Rth or 1708Ω

