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Chapter 1.  Introduction 

 
Key Concepts and Overview 
 
� Overview of Electrical Engineering 

� Problem Solving  

� Systems of Units 

� Charge, Current & Voltage 

� Circuit Model 

� Power and Energy 

� Additional Resources 
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1.1. Overview of Electrical Engineering 

 
This course builds each new concept on material covered earlier in the course.  Therefore, it is important 
to master each concept before moving on to the next section.  Additionally, the materials presented here 
are the foundations that all future electrical engineering education is built on. 
 
Engineers are creative problem solvers who use their knowledge of mathematics and science to solve 
problems that add value to society.  Specifically, electrical engineering is a profession concerned with 
systems that produce, transmit, control and measure electrical signals. Samplings of electrical 
engineering fields are presented below: 
 

� Automation & Robotics 
� Bio/Medical 
� Communication 
� Computer 
� Control 
� Manufacturing  
� Power Generation and Distribution 
� Semiconductor 
� … 

 
The material covered here is typically taught in second and third year of electrical and computer 
engineering degree programs.  Follow on courses expand on the topics covered here with emphasis on 
one of the specialized areas in more depth. Below are a sampling of specialization areas in electrical and 
computer engineering: 
 

� Communication 
� Computers 
� Electro Magnetic and fields 
� Electronics and Digital Circuits 
� Networking  
� Power and Energy Systems 
� Robotics 
� Semiconductors and Devices 
� Sensors 
� Control Systems 
� Bio/Medical 
� Photonics 
� Machine Learning 
� Gaming 
� Motion Systems 
� Micro Electro Mechanical (MEM) systems 
� Nano Technology 
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1.2. Problem Solving 

An engineer’s major responsibility is to solve problems through the creative application of science and 
mathematics knowledge.  Therefore, as engineers, it is important to develop strong problem-solving skills.  
 
It is recommended that the following steps be used in solving assigned problems and labs relating to this 
material: 
 

1. Identify the information provided and list them under the title “Given” 
2. Identify the information to be derived and list them under the heading “Find” 
3. Use circuit diagrams and visual models to clarify the problem 
4. Develop possible models and methods to solve the problem 
5. Pick the optimum model or method to solve the problem 
6. Solve the problem 
7. Test the validity of your solution 

 
Even though the above problem-solving steps are listed sequentially, the process of problem solving 
is an iterative process.  This fact reinforces the need to use a systematic approach that is repeatable 
and easily understandable in each subsequent iteration.  
 

� End of Chapter Problems 
At the end of each chapter there are a number of problems designed to deepen our understanding of 
the material covered.  It is very important that students solve all the end of chapter problems. 
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1.3. Systems of Units  

The International System of Units (SI) is the formal name for the metric system. It is the most widely used 
system of units by professionals engaged in engineering, commerce and science.  
 
Measurements may be categorized as either Measured or Derived: 
 

� SI Measured (or Base) Units 
Measured units are also called SI Base units.  The seven measured units are defined by actual 
measurement of a specific physical object or phenomenon.  
 
1) Length, Meter (m) 
2) Mass, Kilogram (kg) 
3) Time, Seconds (s) 
4) Electric Current, Amp (A) 
5) Thermodynamic Temperature, Kelvin (K) 
6) Amount of substance, Mole (mol) 
7) Luminous intensity, Candle (cd) 

 
� SI Derived Units 

These units are derived from the Base units which explain why they are called the SI derived 
units: 
 
1) Frequency, Hertz (H) = cycle/s 
2) Force, Newton (N) = kg * m/s

2
 

3) Energy, Joule (J) = N*m 
4) Power, watt (W) = J/s 
5) Electric Charge, Coulomb (C)= A*s 
6) Electric Potential or Voltage, Volt (V) = J/C 
7) Electric Resistance, Ohm (Ω) = V/A 
8) Electric Conductance, Siemens (S) = A/V 
9) Electric Capacitance, Farad (F) = C/V 
10) Magnetic flux, Weber (Wb) = V*s 
11) Inductance, Henry (H) = Wb/A 

 
Electrical measurements may result in very small or very large numbers. In order to simplify the 
communication of data in such a wide range, powers of 10 are used to avoid long lists of zeros.  When 
powers of 10 are in multiples of three, it is referred as Engineering Notation (for example 4x10

6
).  

Furthermore, specific powers of ten have been named for improved communication.  Below are some of 
the most common named powers of 10 used in engineering: 
 

Prefix Symbol Powers of 10 

Atto a 10
 -18

 
Femto f 10

 -15
 

Pico p 10
 -12

 
Nano n 10

 -9
 

Micro µ 10
 -6

 

Milli m 10
 -3

 
Kilo K 10

 3
 

Mega M 10
 6
 

Giga G 10
 9
 

Tera T 10
 12

 
Peta P 10

 15
 

Exa E 10
 18
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Using the prefixes defined within the above table the value 3,000,000 Ω may be restated as 3 MΩ and 
0.004 F may be restated as 4 mF.  
 
� Example of Unit Conversions 

If a signal travels in a cable at 80% of the speed of light, what length of cable in inches does it travel 
in 1 nSec.  
Hint: Speed of light  = 3x10

8
 m/s 

 
� Solution 

 
1) Given: 

Signal Speed : 80% of Speed of light 
Travel time: 1 nSec. 
Speed of light: 3x10

8
 m/s 

2) Find: 
lc: Length of Cable 

3) Method 
Use the SI units and cancellation technique 

4) Answer 
lc = 3x10

8
m/s * 80/100 * 1Sec/10

9
 nSec * 100 cm/m * 1 in/2.54 cm = 9.45 inches 
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1.4. Charge, Current and Voltage 

 
� Electric Charge 

A charge may be either electric, color or magnetic charge. We will be focusing on electric charge 
here. Electric charge is the basic property of some subatomic particles. Electrons by convention have 
a charge of -1 and, similarly, protons have the opposite Charge of +1. In general, electric charge is 
bipolar.  Meaning that electrical effects are described as having positive and negative charges. 
 
The SI unit for electric charge is the Coulomb, which represents approximately 6.24 × 10

18
 

elementary charges.  Elementary Charge is the charge on a single electron or proton.  In other word 
electric charge exists in discrete quantities (elementary charges) which are integral multiples of the 
electric charge, 1.6022x10

-19 
C.   

 
 
� Electric Current and Voltage 

Electrical effects are attributed to both the separation of charge (Voltage) and charges in motion 
(Current).  
 
� Current 

Amount of current is measured in Amperes, which at its simplest is the change of charge q over 

time and can be expressed as
dt

dq
i = where: 

i = current in Amperes 
q =charge in Coulombs 
t = time in Seconds 
 

� Voltage 
Amount of potenital is measured in Volts, and potential represents the amount of energy required 

to move electric charge from point a to b.  Therefore, potential is expressed as
dq

de
v =  where: 

v = potential in Volts 
e = energy in Joules 
q = charge in Coulombs 
 

Voltage, V, is the difference in potentials between two points in the circuits.  
 
 
� Example – Charge & Current 

For the following the circuit, calculate the total charge in micro-coulombs entering the upper terminal.  
 

  
� Solution: 

i 

+
v 
- 

i=0    t<0; 
i=20e

-5000t 
A  t≥0 
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uCq

Coulombsedteidtq
dt

dq
i

tt

4000

)10(
5000

20
(

5000

20
200 |

0

5000

0

5000

=

−
−

=
−

=+==⇒=
∞+−

+∞
−

+∞

∞−

∫∫  

 
� Example - Charge & Current 

For the specified charge entering the upper terminal of the circuit below, find the maximum value of 
the current entering the terminal  if a=0.03679 s

-1
. 

 

  
� Solution: 

Aeeatei

sahaveweatwheni

eatatee
dt

di

dt

di
isi

teeaaatea
dt

dq
i

aaat

atatat

atatat

10)03679.0/1()/1(

03679.0&/1

0)1(0minmax/

))(/1/()0/1(0

1)/1(

max

1

max

2

====

⇒==

=−=−=⇒=⇒

=−+−+−==

−−−

−

−−−

−−−

 

 
 

� Example - Charge & Current 
Given the energy equation “e = 200e

-100t
q”, find the equation for voltage, v.  

 
� Solution: 

Sidebar - Useful Derivatives 

)(')()()('
))()((

)cos(
))(sin(

)sin(
))(cos(

)(

tgtftgtf
dt

tgtfd

ata
dt

atd

ata
dt

atd

ae
dt

ed at
at

+=

=

−=

=

 

i 

+
v 
- 

q= 1/a
2
 – (t/a +1/a

2
)e

-at
  C 
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1.5. Circuit Model 

 
An Electrical Circuit is a mathematical model that approximates the behavior of an actual electrical 
system.  Ideal Circuit Theory is a special case of electromagnetic field theory. The three assumptions that 
allow the use of the Ideal Circuit Theory are: 
 

� Electrical effects propagate instantly through the whole system 
The systems that are small enough relative to signal wavelength for this assumption to be valid 
are called lumped systems. If the wavelength of the signal is more than 10 times the physical 
dimension of the system then we have a lumped system. As a reminder, the formula for 
calculating wavelength is shown below: 
 
  Wavelength λ = (speed of light, 3x10

8 
m/s)  /  (signal frequency, f Hertz) 

 
Student Exercise:  If signal frequency is 20 MHz, what is the maximum size for a circuit that can 
be classified as a lumped circuit? 
 
 
 
 
 
 
 
 
 
 
 

� Net charge of every component in the system is zero 
This assumption states that none of the components collect net charges or lose net charges. In 
other word, the charge that enters a component, must leave the component. 
 

� No magnetic couplings 
No magnetic coupling means that charges can only flow through physically connected 
components by a conducting material (typically wires). It follows that, with this assumption, 
charges cannot leave the circuit through air. 
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� Circuit analysis uses idealized basic circuit elements and ideal circuit model (a mathematical model) 
in this text. Earlier the characteristic ideal circuit model was defined and the following three attributes 
characterize an idealized basic circuit element: 
 
� It has only two terminals (terminals are the points of connection to other elements). 
� It can be fully described in terms of the relationship between current and voltage. 
� It cannot be subdivided into other elements. 

  
Electrical engineering typically uses the passive convention which assumes the current enters at the 
positive voltage terminal.  Two layouts of basic elements are shown below using passive convention: 

 
You may use a negative sign to reverse the voltage polarity or reverse current direction. For example 
the above model may be redrawn as: 
 

 
 
� Ideal Basic Elements 

The rest of this text uses the following four basic ideal elements to model electrical systems.  As we 
progress through the material, one-by-one the simplifying assumptions will be removed to better 
approximate the actual electrical characteristic of a system. 
 
The four elements are listed below: 
 
� Power source 
� Resistor 
� Capacitor 
� Inductor 
 
Each of these elements will be defined in latter chapters. 

 

Basic 
Element 

- + -v 
i 

- 
-v 
+ 

OR 
Basic 

Element 

i 

Basic 
Element 

+ - v 
i 

+
v 
- 

OR 
Basic 

Element 

i 



Fundamentals of Electrical Circuits, V3.6 Page 15 

1.6. Power and Energy 

Power and energy are related in that power is the change of energy over time as shown below: 
 

P = 
dt

de
 where: 

P = the power in watts 
e = the energy in joules 
t = the time is seconds 
 

Power can also be described in terms of current, i, and voltage, v, as shown below: 
 

  iv
dt

dq

dq

de

dq

dq

dt

de

dt

de
P *** ====  

  Note: q represent the charge and (de / dq) is equal to voltage. 
 
  P=V*I  is the most common equation used for deriving power. 
 
� Passive Sign Convention 

As mentioned earlier, passive sign convention is the most common circuit analysis convention.  It 
assumes that current following into the positive terminal results in positive power, otherwise the 
power is negative. 

 
The above diagram shows that a negative sign is the same as changing current direction or swapping 
the polarity of voltage. 
 
The following statements are valid for Passive Sign Convention: 
 

1) Positive power (P>0) indicates that the element is consuming power. 
2) Negative power (P<0) indicates that the element is generating power.  

 
 

� Example – Power and passive convention 
For the following four elements where 20V voltage drops from terminal 2 to terminal 1 and a current 
of 4 A enters terminal 2, specify the value of V, I  and power for each of the circuits. Additionally, state 
whether the element is absorbing or delivering power:  

i 

+
v 
- 

Equivalent 

-i 

+
v 
- 

Equivalent 

-i 

- 
-v 
+ 
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� Solution: 

 
 

i 

+
v 
- 

1 

2 

a  

i 
1 

2 

b 
+
v 
- 

i 

-
v 
+ 

1 

2 

c 

i 

-
v 
+ 

1 

2 

d 

V = -20 V 
I = -4A 
P = vi = 80 W (P is positive so it is absorbing power) 
 

V = -20 V 
I = 4A 
P = v(-i) = -80 W (P is positive so it is delivering power) 
 

V = 20 V 
I = -4A 
P = (-v)i = -80 W (P is positive so it is delivering power) 
 

V = 20 V 
I = 4A 
P = vi = 80 W (P is positive so it is absorbing power) 
 

i 

+
v 
- 

1 

2 

a  

i 
1 

2 

b 
+
v 
- 

i 

-
v 
+ 

1 

2 

c 

i 

-
v 
+ 

1 

2 

d 
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� Example – Energy Calculation 
For the following circuit calculate the total energy in Joules delivered to the circuit.  

 
� Solution 

JoulesedtePdtw
dt

dw
P

eeeP

tP

ivP

tt

ttt

2020000,200

000,200)10000(*)20(

00

*

|
0

000,10

0

000,10

000,1050005000

=−===⇒+=

==

<=

=

∞
−

∞+
−

∞+

∞−

−−−

∫∫

 

 
� Example – Multi-element circuit 

A high-voltage direct-current (dc) transmission line between North and South is operating at 800 kV 
and carrying 1800 A as depicted in the diagram.  Calculate the power in MegaWatts (MW) at the 
North end of the line and state the direction of power flow. 
 

 
� Solution: 

 
1) Option 1 – using South as a reference 

Using passive sign convention (current to positive terminal) we have 
i= +1.8 KA & v=+800 KV where P=v*i=1.8 * 800 = 1440 MW  
(sign is positive so the power is being delivered to South which means it is being generated 
by North) 
 

2) Option 2 – using North as a reference  
using passive sign convention (current to positive terminal) we have 
i= -1.8 KA & v=+800 KV where P=v*i=-1.8 * 800 = -1440 MW  
(sign is negative so the power is being generated by North and is being consumed by South) 
 

  

I=1.8 KA 

+ 
v=800kv 

- 

North 
South 

i 

+
v 
- 

i=0    t<0; 
i=20e

-5000t 
A  t≥0 

 
v=0    t<0; 
v=10e

-5000t 
KV  t≥0 
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� Example – Power Unit Variation 
How long will a $1 of power operate a 13 W light bulb?   
Assuming: Power cost at $0.08 per Kilo-Watt-Hour (KWH). 
 
� Solution: 

hours
W

bulb

KW

WKWH
5.961

13

1
*

1

1000
*

08.0$

1
*1$ =   
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1.7. Summary 
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1.8. Additional Resources 

 
� Nilsson, J.  Electrical Circuits. (2004)  Pearson. 

Chapter 1. 
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1.9. Problems 

 
Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 2.  Basic laws 

 
Key Concepts and Overview 
 
� Ideal Voltage and Current Sources  

� Ohm’s Law 

� Circuit Analysis 

� Kirchhoff’’s Laws  

� Additional Resources 
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2.1. Ideal Voltage & Current Sources 

Power source is a general term for voltage or current source. The power source is important to the 
analysis of electrical circuits since it provides the electrical excitation or energy required to operate the 
circuits. The ideal power source also adheres to the three ideal circuit characteristics which are restated 
below in terms of current, voltage and power: 
 

1) Current measured on various parts of connecting lines (no branches) is the same. For example, 
I1, I2 and I3 have the same value in the following Circuit. 

 
2) Voltages across two terminals of an element are the same regardless which side of the terminal 

the measurement is made. For example, V1 and V2 have the same value in the following circuit. 
 

 
3) Sum of all the powers consumed and generated by elements in a  circuit equals zero, or  stated 

another way “Generated power = Consumed power”. For example in the following circuit, the 
equation {P1 + P2 + P3 + P4 + P5 =0} is true. 

 
 
Power sources can be categorized based on the following characteristics: 
 

I1 I2 

P1 

P2 

P3 

P4 

P5 

+ 
 
V2 

 

- 

+ 
 
V1 

 

- 

I1 I2 

I3 
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� Current or Voltage Source 
A power source is called a current source if the current output is constant, and a voltage source if 
the voltage output is constant. 
 

� Dependent or Independent Source 
If the source output function does not depends on the rest of circuit, it is called an independent or 
uncontrolled source (represented by a circular symbol).  When the source output depends on a 
parameter in another part of the circuit, it is called a dependent or controlled source (represented 
by a diamond symbol). 

 
Using the above two characteristics (dependent/Independent and current/voltage), the power sources 
may be classified as one of the following four types: 
 

1) Dependent Current Source 
Ideal Dependent Current Source, Is = u*I1  or Is = u*V1,  where I1 and V1 are parameters in other 
parts of the circuit and u is a constant.  

 
2) Dependent Voltage Source 

Ideal Dependent Voltage Source, Vs = u*V1  or Vs = u*I1, where I1 and V1 are parameters in other 
parts of the circuit and u is a constant. 

 
3) Independent Current Source 

Ideal Independent Current Source,  Is = 5 A  or Is = f(t), but does not depend on the rest of the 
circuit. 

 
4) Independent Voltage Source 

Ideal Independent Voltage Source, vs = 3 V  or vs = f(t), but does not depend on the rest of the 
circuit. 

 
� Example- Power Source Types 

For the circuit shown here: 

+     -- 

Vs 

Is 

Vs 

+           -- 

Is 
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a) What value of vg is required in order for the interconnection to be valid? 
b) For the value of vg from part a, find the power associated with the 8A independent source. 
 
 
� Solution: 

a) Since this is an ideal Circuit then Vg=Ib/4  (using ideal circuit Characteristic #2) 
We have Ib = -8A (opposite direction)  � Vg = -2 
 

b) P8A Source  =  V*I  
Passive sign convention (current flows to + terminal) � I =8A 
P8A Source  =  Vg*I = (-2) * (8)= -16 W   “generating power since P<0” 
 

� Examples - For the Circuit Shown 

  
a) What value of p is required in order for the interconnection to be valid? 
b) For the value of p calculated in last part, find the power associated with the 25V source. 
 
� Solution 

a) ideal Circuit � pVx = -15A (using ideal circuit Characteristic #1) 
We have Vx = -25V  � p = 0.6 
 

b) P25volt Source = Vx * Ix 
Passive sign convention (current flows to + terminal) and we have Ix =-15A 
P25volt Source  =  Vx * Ix = (-25) * (-15)= 375  “Consumed power since P>0” 
 

- 
+ 

+ 
 

Vx 

 

- 

pVx 

15 A 

25V 

Ix 

+ 
- 

+ 
- 

Vg 8A Ib/4 

Ib 

+ 
 

Vg 
 
- 
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2.2. Ohm’s Law 

Ohm’s Law is one of the most fundamental laws of Electrical Circuits.  Ohm’s Law applies to both active 
and passive devices.  An active device is one that is capable of generating power for example a current 
or voltage source.  On the other hand, a passive device does not generate power, but it may use or store 
power.  Examples of passive devices include resistors (R), Capacitors (C) and Inductors (L), which will be 
characterized later. 
 
For now, let’s focus on resistors and the definition of Ohm’s law. 
 
� Electrical Resistor 

Resistor refers to materials that impede (resist) the flow of current or electric charges.  Resistance is 

a measure of resistivity and is expressed in units of Ohms with symbol Ω. 
 
The flow of charges (current) through the resistor converts electrical energy to thermal energy (heat).  
Based on the application, the generated heat may be considered desirable or undesirable: 
 
� Undesirable applications include electrical transmission lines and digital devices. 
� Desirable applications include heathers, toasters and ovens. 

 
� Resistance in a basic ideal element is defined in terms of  current and voltage.  This relationship was 

discovered by George Simon Ohm. 
 
� Ohms Law many be stated as V = I*R, R=V/I or I = V/R, where: 

• R is in Ohms, Ω (Resistance of the element) 
• V is Volts, V  (Voltage drop across the element) 
• I is in Amps, A (Current through the element)  
 
Below is a resistor representation using passive sign convention (recommended for circuit 
analysis).  Note that current always flows from the + to – terminal through the resistor (passive 
component): 

 
 

� Conductance is the inverse of resistance (G= 1/R) and is expressed in units of Siemens(S).  In older 

texts, units may be referred to as mhos with inverted Ω symbol.  Conductance is a measure of the 
ease by which charges follow through the material (lack of resistance). 
 

� Power Formulas 
Three ways to relate power with current, voltage and resistance: 
 
� P = V * I  
� Use equation I=V/R � P = V

2 
/ R 

� Use equation V=IR  � P = I
2 
* R 

 

R 

+ - V 

I 
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� Example- for the following circuit Diagram 

 
Find the value of R and the power absorbed by the resistor If Vg = 1 KV and Ig = 5 mA,. 
 

� Solution 
• R= Vg/Ig = 1000/0.005 = 200 KΩ 

Pr  = Ig
2
 * R = (.005)

2
*(200,000)= 5 W 

 
� Example – For the following circuit, when Ig = 0.5 A and G = 50 mS (Siemens): 

 
Find Vg and the power delivered by the current source. 
 
� Solution 

• Vg = Ig/G = 0.5/0.05 = 10 V 
PG  = Ig

2
 / G = (.5)

2
 / (0.05)=  5 W 

 

G Ig 

+ 
 

Vg 
 
- 

+ 
- 

Vg R 

Ig 
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2.3. Circuit Modeling and Analysis 

So far, the basic components of a circuit (power source and resistor), the Ideal Circuit Model and Ohms 
Law have been introduced.   With the knowledge gained so far, we are able to model electrical systems 
as circuit models and analyze their electrical properties.  Below are two examples of electrical circuits: 
 
� Flash Light as an ideal circuit 

A flash light is a an electrical circuit with the following components:  
 

• A light bulb can be modeled as a resistor that converts electrical energy to thermal energy 
that causes radiation in the visible range. 

• Batteries as the power source (non-ideal since the voltage and current drops over the life) 
• On/Off Switch 

 
Find the value of current and power assuming an ideal circuit: 
 

I = V/R = (1.5+1.5+1.5)/5 = 0.9 A 
P = I

2
 * R = (0.9)

2
 * (5) = 4.05 W 

 
  

+ 
- 

+ 
- 

+ 
- 

Three AAA 
Batteries 

1.5v 

1.5v 

1.5v 

5 Ω Light Bulb 

I 

+ 
 
V 
 
- 
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� A typical person as an ideal electrical circuit 

Humans can be modeled as an electrical circuit in order to understand the impact of electricity. Here 
is an example of a human modeled in terms of resistance: 
 

 
This model can be used to understand the level ofcurrent, voltage and power applied during an 
electrical shock in case of an accident or as part of a medical treatment. 

  

Rl =200 Ω 

Rt=50 Ω 

Ra=400 Ω 
Ra=400 Ω 

Rl =200 Ω 

Although burns due to high voltage are a 
problem, they rarely cause death. 
 
Current effect on the human nervous system 
could be severe.  For example if the nerves 
being affected are those that control the 
heart. 
 
Here are current levels and the human 
reactions: 
 
Current  Physiological Response  
3-5 mA  Barely Perceptible 
35-50 mA Extreme Pain  
50 – 70 mA Muscle Paralysis 
> 500 mA Heart Stoppage 



Fundamentals of Electrical Circuits, V3.6 Page 30 

2.4. Kirchhoff’s Laws  

Solving a circuit problem means finding current, voltage, power and resistance.  Kirchhoff’s laws are 
important to our ability to solve circuit problems.  Two variations of Kirchhoff’s law are discussed in this 
section: 
 

� Kirchhoff’s Current Law 
� Kirchhoff’s Voltage Law 

 
� Kirchhoff’s Current Law (KCL) Definitions 

• An essential node is a point on the circuit where more than 2 circuit elements connect. 
• The algebraic sum of all the currents at any node in a circuit equals zero.  Stated another 

way, any charge flowing into the node must exit (no storage capacity at the node). 
• It is recommended to assume current flowing out of the node as the positive direction.  

Although, you may assume current flowing in as positive, as long as you are consistent! 
• In any circuit with n node, we set one node as reference (Vref=0v) and write KCL equations 

for remaining (n-1) nodes. 
• It is important to note that not all equations generated by Kirchhoff’s laws are independent. 

 
� Example - Kirchhoff’s Current Law (KCL) 

Apply Krichhoff’s Current law to find the value of I2. 
 

  
• Solution 

(1) Identify the essential nodes and set one as reference (V1, Vref) 
 

(2) For the essential node show currents leaving the node (I1, I 2, I 3) 
 

(3) Write the KCL equation for essential node(s) other than reference node 
     I1 + I2 + I 3 = 0.  
 

(4) Use Ohm’s law and known values to rewrite the equations in terms of node voltage 
(reducing number of variables): 
(a) I1 is given as -2A 
(b) I2 = V1/60 A 
(c) I3 = V1/20 A 

 
-2 + V1/20 + V1/60  = 0 �   V1 = 30 V 
 
I2 = 30/60 = 1/2 A 
 

  

2 A 20 Ω 60 Ω 

V1 

Vref = 0 

I1 I2 

I3 
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� Example - Kirchhoff’s Current Law (KCL) 
Find the voltage across 1K resistor using KCL. 
 

  
• Solution: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

2 A 1K 40K 

8K 4K 

20K 

2K 
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� Example - Kirchhoff’s Current Law (KCL) 
Find the current across R1 using KCL.  
 
 

 
 
• Solution (Ans: 50 mA): 

 
  

V=100 v

R1

1k

R2

50

R3

20

R4

10

R5

40
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� Kirchhoff’s Voltage Law (KVL) Definitions 

• A closed path or loop is a path in a circuit through selected basic circuits elements that 
returnd to thr original node without passing through any intermediate node more than once. 

• The algebraic sum of all the voltages around any closed path in a circuit equals zero. If the + 
terminal is encountered first, the voltage is positive; otherwise, the voltage is negative.  

• Pick either clockwise or counter-clockwise as the positive direction.  It is important to be 
consistent throughout the circuit! 

• Note that not all the equations generated by Kirchhoff’s laws are not independent.  Only 
equations for loops that do not include other loops (also called mesh) are independent. 
 

� Example - Kirchhoff’s Voltage Law (KVL) 
Apply Krichhoff’s Current law to find I, V1, V2, V3 and the Power Delivered to 24V Source. 
 

 
• Solution 

(1) Identify meshes (loops that do not include other loops) – there is only one mesh. 
(2) Assign a direction to the current - Clockwise 
(3) Using passive sign convention assign voltage if one is not given.  It is important to 

remember that: 
(a) Voltage drop across a resister (passive device) is in the same direction as the 

current. 
(b) Voltage drop across a power source (active device) is in the opposite direction as the 

current.  
(4) Go around the loop and sum up the voltage which is expected to be equal to zero based 

on Kirchhoff’s Voltage Law: 
 
-Vg + V2 + V3 + V1 = 0 
 

(5) Use Ohms Law to substitute V with R*I equivalent.  This will reduce the variables from 
many Voltages to one current: 
 
-24 + 3I + 7I + 2I = 0   � I = 2 A 
 
Note:  Voltage drop across resistors (+ to -) is always in the direction of arrow regardless 
of what is being asked for.  And if you enter the negative terminal then need to add a 
negative sign to the voltage value. 
 
Therefore: 
  V1 = 2I = 4  
  V2 = 3I  = 6 

+ 
- 

Vg = 24 V 7Ω 

+ 
 

V3 

 
- 

3Ω 

2Ω 

I 

-    v1     + 

+   3I - 
+   
7I 
-
 

-   2I  + 

+     v2     - 
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      V3 = 7I = 14  
 

(6) The only active component is the 24V supply that can deliver power so: 
 
Power = V*I = -(2) * 24V = -48 W  (Power Delivered) 
Note: It is multiplied by negative since current is entering into the – side of voltage source  
 

� Example - Kirchhoff’s Voltage Law (KVL)  
Find Ia in the following circuit by applying KVL: 

 
 
 
• Solution(Ans. 112 mA): 

 
 
 
 
 
 
 
 
 

� Example - Kirchhoff’s Voltage Law (KVL with Dependent source) 
When a circuit includes a dependent source there is a need for an additional equation. This is the 
relationship of the dependent source with the circuit parameter it depends on . 
 

20 V 10Ω 100Ω 

50Ω 

30Ω 

+ 
- 

40Ω 

ia 
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• Find Ip using Krichhoff’s Voltage Law (KVL) for the following circuit. 
 

  
(1) Identify all the meshes 
(2) Identify all the element voltages 
(3) Add voltages around each loop (be consistent and pick the same direction for all loops)  

Note: need to have as many equations as unknowns. 
(4) Insert all the known values in the equations and solve for the unknowns 

 
Solution: 
  Loop 1 �  30(I1 – I2) +

 
 10(I1 – I3) +

 
 70 = 0 

  Loop 2  � I2 =  5A 
  Loop 3 �  I3 = 2 Ip 

  Equation for the Dependent Source � Ip = I2 – I1 

 
Solving the above 4 simultaneous equation with 4 variables, we get    Ip = 2 A   
 

 
� Example - Kirchhoff’s Voltage Law (KVL) 

Find Ip using Kirchhoff’s Current Law for the following circuit: 

 
(1) Find all the essential nodes – three nodes labeled V1, V2 & V3. 

Note we can call one a reference and set its value to zero.  Let’s set V3 as the reference 

 

2Ip 

Ip 

30 Ω 

10 Ω 

+ 
- 

70 V 

V3 

V1 
V2 

5 A 

I1 I2 

I3 

I4 

 

2Ip 

Ip 

30 Ω 

10 Ω 

+ 
- 

70 V + 
 

V1 
 
- 

+  V2   - 

I1 

I3 

I2 

5 A 
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and set its value to 0 (V3 =0).  As we discussed earlier this assumption will not affect the 
results but makes the analysis a lot easier. 

(2) Sum the current at each node and set the algebraic sum to zero 
As discussed earlier, assume outgoing current is positive.  Further we will apply I =V/R to 
write current in terms of voltage. For example: I2 = (v1 – v2)/10. 

(3) Remember that as many independent equations are needed as there are unknowns. 
(4) Solve for the unknowns 

 
Solution: 
 
From the circuit  � I1 = -5A  (Ideal Circuit – Characteristic #1) 
  V2 = 70 V 
  Ip = V1/30 
 
Apply KCL to Node V1 �I1 + I2 + I 3 + I4 = 0   �  -5 + (V1 - 70)/10 + 2Ip + (V1)/30 = 0 
Rewrite the above equation with Ip Substitution � -5 + (V1 - 70)/10 + 2*(V1)/30 + (V1)/30 = 0 
 
Note we have only one equations and one unknown  � V1 = 60 
 
� Ip = V1/30 = 60/30 = 2 
 

� Example - Kirchhoff’s Voltage Law (KVL with sources in branches) 
Apply KVL to find the value of current in the 2V voltage source in the following circuit:  

 
• Solution: 

 
 
 
 
 
 
 
 
 
 
 
 

2K 

+ 
- 

5V 

+      - 

3K 

5 mA 

+ 
- 

10V 

7K 

5K 6K 

2V 8K 4K 

1K 
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� Example - Kirchhoff’s Voltage Law (KVL with sources in branches) 
Apply KCL to find the voltage across 5 mA sources in the following circuit:  

 
• Solution: 

 
 
 
 
 
 
 
 
 
 
 
 
 

  

2K 

+ 
- 

5V 

+      - 

3K 

5 mA 

+ 
- 

10V 

7K 

5K 6K 

2V 8K 4K 

1K 
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� Example - Kirchhoff’s Voltage Law (KVL with dependent & independent sources) 
For the following circuit:  

 
(a) Apply KVL to find the voltage across 80K resistor. 
(b) Apply KCL to find the voltage across 80K resistor. 
(c) Compare the two approaches. 

 
• Solution: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

40K 

+      - 

1K 

- 
+ 

3V 

8K 

10K 

2V 80K 20K 

4K 

20ix 

0.5 A 

5Ix 
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2.5. Summary 

 
� TBC 
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2.6. Additional Resources 

 
� Nilsson, J.  Electrical Circuits. (2004)  Pearson. 

Chapter 2 & 3. 
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2.7. Problems 

 
Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 3.  Analysis of Resistive Circuits 

 
Key Concepts and Overview 
 
� Series Resistors Configuration  

� Parallel Resistors Configuration  

� Voltage and Current Divider  

� Measurement Instruments 

� Delta and Wye Configurations 

� Additional Resources 
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3.1. Series Resistors Configuration 

When two resistors connect at a single node and have the same current, they are said to be in series.  
Combining series resistors simplifies circuit analysis as long as the voltage in individual resistors is not of 
interest: 
 
We will start with simple case of two resistors in series and expand to the general case of n resistors in 
series. 
 

� Two resistors in series  

 
1) Apply Kirchhoff’s voltage law to the original circuit 

-Vs + Is * R1 + I s * R2 = 0  
Vs = Is * (R1 + R2) 
 
Application of Ohms Law to the equivalent circuit 
Vs = Is *  Req. 
 

2) From above work, we have the following two equations: 
Vs = Is * (R1 + R2) 
Vs = Is *  Req  
 
We can Conclude that:  Req = R1 + R2  when R1 & R2 are in series. 
 

 
  

R1 

R2 

+ 

_ 

Vs 

Is 
+ 

_ 

Vs 

Is 

Req 

“Original Circuit” “Equivalent Circuit” 
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� The General Form 

 
1) Apply Kirchhoff’s voltage law to the Original circuit 

-Vs + Is * R1 + I s * R2 + … + Is * Rn = 0  
Vs = Is * (R1 + R2 + … + Rn) 
 
Application of Ohms Law to the equivalent circuit 
Vs = Is *  Req. 
 
 

2) From above work, we have the following two equations: 
Vs = Is * (R1 + R2 + … + Rn) 
Vs = Is *  Req. 
 

We can conclude that:  Req = R1 + R2 + … + Rn = ∑
=

n

i

iR
1

  when R1, R2, …  

R1 R2 R3 

Rn R5 

R4 

. . . 

+ 

_ 

Vs 

Is 

+ 

_ 

Vs 

Is 

Req 

“Original Circuit” 
“Equivalent Circuit” 
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3.2. Parallel Resistors Configuration 

Two resistors are connected in parallel when the two resistors connect at the same node pair.  Combining 
parallel resistors simplifies circuit analysis as long as the Current in individual resistors is not of interest: 
 
We will start with a simple case of two resistors in parallel and expand to the general case of n resistors in 
Parallel. 
 

� Two resistors in parallel 

 
1) Apply Kirchhoff’s current law to the original circuit 

-Is + I1 + I2 = 0 
and  
Apply Ohms Law to the Equivalent Circuit 
Is  = Vs/Req 
 
Therefore  
Vs/Req = Vs/R1 + Vs/R2 
Divide by Vs 
 
1/Req = 1/R1 + 1/R2 for Parallel Resistors R1 and R2. 

  

+ 

_ 

Vs 

Is 

R1 R2 

I1 I2 

+ 

_ 

Vs 

Is 

Req 

“Equivalent Circuit” “Original Circuit” 
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� The More General Form 

 
1) Apply Kirchhoff’s current law to the original circuit 

-Is  + I1 + I2  +  I 3 +  …  + In = 0 
and  
Apply Ohms Law to the Equivalent Circuit 
Is  = Vs/Req 
 
Therefore  
Vs/Req = Vs/R1 + Vs/R2 + Vs/R3 + Vs/Rn 
Divide by Vs 

1/Req = 1/R1 + 1/R2 + 1/R3 + … + 1/Rn  = ∑
=

n

i iR1

1
 

 
2) Sometime it is easier to think of the above relationship in term of Conductance (G=1/R) 

Geq = G1 + G2 + … + Gn 
 
 

  

Rn 

+ 

_ 

Vs 

Is 

R1 R2 

. . . 

. . . 

R3 

I1 I2 I3 In 

+ 

_ 

Vs 

Is 

Req 

“Equivalent Circuit” “Original Circuit” 
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� Example – For the following circuit 
a) Find the value of voltage v 
b) Find the power delivered by the current source 
 

 
 
SOLUTION: 
a) Find the value of voltage v 
 

Simplify the circuit by finding the Equivalent Resistance (Left to right): 
Step 1) 6 Ω is in series with 10 Ω � Req = 6 + 10 = 16 Ω � circuit is redrawn as: 
 

 
Step 2) 16 Ω is in parallel with 64 Ω with Req = (16 || 64) = 12.8 Ω � circuit is redrawn as: 

 
Step 3) 7.2Ω is in series with 12.8Ω with Req = (7.2+12.8) = 20Ω � circuit is redrawn as: 

+ 
 
v 
 
 
- 

5 A 30 Ω 

7.2 Ω 

12.8 Ω 

Ib 

Ia 

+ 
 
v 
 
 
- 

5 A 30 Ω 

7.2 Ω 

64 Ω 16 Ω 

Ic Ib 

Ia 

+ 
 
v 
 
 
- 

5 A 30 Ω 

7.2 Ω 6 Ω 

64 Ω 10 Ω 

Ic Ib 

Ia 
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Step 4) 30 Ω is in parallel with 20 Ω with Req = (20 || 30) = 12Ω � circuit is redrawn as: 

 
”Note that the 4 steps can be combined as: Req = ((10 +  6) || (64)) + 7.2) || (30) =  12 Ω” 
 
Using the above circuit � v = Req * I = 12 * 5 = 60 v     

 
b) Find the power delivered by the current source 

 
P= V*I= - (5 * 60) = - 300 W 
Note: Negative sign was added since current enters the source on “–“ side of the voltage. 
 
 

� Example – Hints 
Determine the resistor equivalent at point a and b for the following circuit: 

 
� Solution 

 
 
 
 
 
 
 

30 KΩ 

7.2 KΩ 

64 Ω 1.65 KΩ 

a 
 
 
 
 
 
 
 
b 

+ 
 
v 
 
 
- 

5 A Req = 12 

+ 
 
v 
 
 
- 

5 A 30 Ω 20 Ω 

Ia 
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� Example – Hints 

Determine the percent measurement error if a voltmeter with 10 MΩ internal resistance is used to 
measure the 10 KΩ resistor: 

 
� Solution 

 
 
 
 
 
 

10 KΩ 

a 
 
 
 
 
 
 
 

b 

V 

10 MΩ 
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3.3. Voltage and Current Dividers  

Voltage and Current Dividers are circuits for developing multiple lower voltage and current levels from a 
fixed source by utilizing appropriately sized resistors.  Although similar in concept, there are enough 
differences between voltage and current dividers that it is beneficial to discuss each individually. 
 
� Voltage-divider Circuit 

A voltage divider is a combination of resistors that produces two or more voltages from a single power 
supply.  The concepts developed in parallel and series resistor simplification apply here also.  
 
� Producing the desired voltage using two resistors 

The two cases considered here include one without load (RL = ∞) and the other with load (RL < 

∞).  Load represents the device being powered by the power source. 
 

 
� Without Load 

Apply Kirchhoff’s Voltage Law � -Vs + Is * R1 + Is * R2 = 0  � Is = Vs / (R1 + R2) 
Therefore: 
1) V1 = Is * R1 = Vs * R1 / (R1 + R2) 
2) V2 = Is * R2 = Vs * R2 / (R1 + R2) 

 
� With the Load 

R2 has to be replaced by Resistor equivalence of parallel combination of R2 and RL 
Req = 1/(1/R2 + 1/RL) = (RL * R2)/(RL + R2) 
replacing R2 with Req in V2 equation: 
V2 = Vs * {(RL * R2)/(RL + R2)}/{R1 + (RL * R2)/(RL + R2)} 
 

� The concept of a voltage divider can be extended to n resistors in series creating n different 
voltages. Using: 
 

qRiVsVi Re/*=  for the voltage across the i
th
 resistor. 

 
  

+ 
_ 

Vs R1 

Is 

R2 
RL,  “Load Resistance” 

+ 
 

V1 
 
- 
 
 

+ 
 

V2 
 
- 
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� Example – Voltage Divider 
For the following circuit 

 
a) Find the no-load value of Vo in the circuit above. (RL=∞). 
b) Find Vo when RL is 150 kΩ. 
c) How much power is dissipated in the 25 kΩ if the load is short circuited (RL=0) 
d) What Value of R1 delivers the maximum power to the 75KΩ resistor? 
 
Solution: 
a) Find the no-load value of Vo in the circuit above. (RL=∞). 

Vo = 200 * 75 /(25 + 75) = 150 V 
 

b) Find Vo when RL is 150 kΩ 
R(75 || 150) = 1/((1/75) + 1/150)) = 50  kΩ 
Vo = 200 * 50 /(25 + 50) = 133.33 V 
 

c) How much power is dissipated in the 25 kΩ if the load is short circuited (RL=0)? 
R(75 || 0) = 0  Ω 
V1 = 200 * 25 /(25 + 0) = 200 V  (The whole 200 V is seen by the 25 KΩ) 
P(25KΩ ) = V1

2
/R = (200)

2
/25,000= 1.6 W 

 
d) What Value of R1 delivers the maximum power to the 75KΩ resistor? 

R1 = 0 � deliver max power to 75KΩ  
 
P(75KΩ) = Vo

2
/R = (200)

2
/75,000= 0.53 W 
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� Example – Voltage Divider 
For the following Circuit: 
 
 

 
 

a)  Find value of R1 and R2 such that voltage across R2 is 5v (RL = ∞). 
b)  What are the new values of R1 and R2 if you only have access to 1-20 MΩ resistors? 
c)  What are the new values of R1 and R2 if you only have access to 1-20 Ω resistors? 
d)  What is the difference in power required from the voltage source between parts b and c? 
e)  How does the answers to part b and c changes if RL = 1 kΩ? 
f)  What are the optimal resistors (R1 and R2) if RL = 1 kΩ, use minimum power and keep  
     voltage across RL equal to 5V  +/-10%. 
 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

V=20 v

R2

R1

RL
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� Current-divider Circuit 
A current divider is a combination of resistors that produces two or more current levels from a single 
power source.  The concepts are similar to the ones used in designing/analyzing voltage dividers.  
 
� Producing the desired current using two resistors 

 
1) Apply Kirchhoff’s current  Law and combining resistors � 

Vs = Is * Req = Is * (R1*R2 / (R1 + R2)) 
which results in two current levels inversely proportional to resistor sizes: 
I1 = Vs/R1 = (Is * R2) / (R1 + R2) 
I2 = Vs/R2 = = (Is * R1) / (R1 + R2) 
 

� The concept of a current divider can be extended to n resistors in parallel creating n different 
currents. 
 

RiqIsIi /Re*=   for the current through the i
th
 resistor 

 
� Example – For the following circuit  

a) Find the value of R that will cause 4 A of current to flow through the 80 Ω resistor in the above 
circuit. 
b) How much Power will R from part a need to dissipate? 
c) How much power will the current source generate for the value of R from part a? 

 
1) Solution: 
a) Find the value of R that will cause 4 A of current to flow through the 80 Ω resistor in the 

above circuit. 
 
(1) V = I1 * (40 + 80) = 4 * (120) = 480 V 
(2) Apply KCL � -20 + 4 + I2 =0   �  I2 = 16 A 

 
20 A 

80Ω  

R 

I2 

40Ω  

60Ω 

+ 
 
 

V 
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I1 
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V1 
 
- 

 

+ 
 
 

Vs 
 
 
_ 

Is R1 R2 
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(3)   V = I2R   �  480 = 16 * R  � R = 30 Ohms 
 

b) How much power will R calculated in part (a) need to dissipate? 
P = I2

2 
R = 16

2
 * 30 = 7680 W 

 
c) How much power will the current source generate for the value of R calculated in part a? 

V1 = V + 60*20 = 480 + 1,200 = -1,680 V 
P (20A source) = -V*I= -1,680*20=-33,600 W  (Generated Power) 
Note: Negative since current is entering the negative side of the voltage. 
 

� Example – For the following circuit 
a) Find Voltage Vo 
b) Find current through the 30 Ω resistor. 

 
1) Solution: 
 
a) Find the Voltage Vo 

Req1 = (((10+50) || 30) || 20) = 1/(1/60 + 1/30 + 1/20) = 10 Ω 

Apply voltage divider rules qRiVsVi Re/*=  � Vo = (60)(40/(40+10 + 70)) = 20V 

 
b) Find current through 30 Ω. 

Is = Vo/40 = 20/40 = 0.5A 
 

Apply Current divider rule RiqIsIi /Re*=  note IS to be shared among 20, 30 and (50+10) 

ohm resistors. So Ri=30 and Req2 = (20 || 30 || 60) =1/(1/20 +1/30+ 1/60) = 10 
I2 = Is * Req2/30 = 0.5 * 10 / 30 = 0.168 A 
 

+ 
- 60 V 20Ω  

40Ω 

+     Vo       - 

30Ω  
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3.4. Measurement Instruments  

Three important measurement instruments in electrical engineering are Voltmeters, Ammeters and 
Ohmmeters.  In the past these instruments were designed using a device called d’Arsonval meter 
movement.  Modern instruments use analog-to-digital conversion to implement all three functions and are 
called Digital MultiMeters (DMMs). 
 
� Voltmeter  

Voltmeters are designed to measure voltage across a portion of the circuit and present a very high 
resistance (R ≈ ∞).  This characteristic allows the voltmeter to be placed across a pair of nodes 
without impacting the behavior of the circuit since Req = R1 || ∞ = R1. 
 
So to measure voltage across the 30 Ω resistor, place the voltmeter in parallel as shown below: 

 
� Ammeter 

Ammeters are used to measure current through a branch of a circuit and are designed to present a 
very low resistance (R ≈ 0).  This characteristic allows the Ammeter to be placed between a pair of 
nodes without impacting the behavior of the circuit since Req = R1 + 0 = R1. 

 
� Digital Multi-Meter (DMM) 

Digital Multi-Meters, as the name implies are digital. DMMs sample a signal periodically and convert 
the reading from analog to digital in order to display it.  DMMs typically include Ammeter, Ohmmeter 
and Voltmeter functionality.  By selecting the appropriate function, the connection to the circuit will be 
of the same as describe in the earlier description of Ammeter and Voltmenter usage.  
 

� Pre-digital application -- Analog Meters (also called Volt Ohm Meter, VOM) 
These analog instruments relied on d’Arsonval meter movement for visualizing of the data.  The 
mechanism relied on flow of current to magnetize a dial that would move to show the measure of the 
current and voltage. 

+ 
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Below is a functional diagram of an instrument using d’Arsonval meter movement. 
 

 
The d’Arsonval meter movement is typically designed to require input of 50 mv and 1mA in order for 
the pointer to move to the full-scale position.  The d’Arsonval meter movement is typically 
represented as: 

 
A d’Arsonval meter movement along with a resistor can be used to design analog Ammeter or 
Voltmeter as shown below: 

 

 

D’Arsonval 
Movement 
 
 
Full Movement: 
1 mA, 50 mV, 
50 Ω  

Ra 

AmMeter 
Terminals 

 
 

VoltMeter 
Terminal 

0 Ω 

Rv ∞ Ω 

D’Arsonval 
Movement 
 
 
Full Movement: 
1 mA, 50 mV, 
50 Ω  

AmMeter Configuration VoltMeter Configuration 

 D’Arsonval Movement 
Full Movement: 1 mA, 50 mV, 50 Ω  

Scale - full deflection at 1mA and 50 mv across the coil. 

input 

Moveable 
Magnetic 
Coil & Core.  

Permanent 
magnet 

0                      1                      2                     3                      4    
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� Example - For the following circuit 

 
a) Find the current in the circuit. 
b) What would an Ammeter using the d’Arsonval meter movement  (Ra = 5.5 ohms) read? 
 
� Solution: 

 
a) Find the current in the circuit. 
  i= V/R = 1/100 = 10 mA 
 
b) what would an Ammeter using the d’Arsonval meter movement  (Ra = 5.5 ohms) read? 

 
 I = (1) / (100 + 5.5)= 9.5 mA  
 

� Another pre-digital Application -  The Wheatstone Bridge 
The Wheatstone Bridge was used to measure resistance using the following components and 
procedure: 

1) Components 
(1) Resistor to be measured (Rx)  
(2) a set of 2 fixed resistors R2 and R1 with R2/R1 ratio from 0.001 to 1000 driven by the 

size of resistor being measured. 

(3) Variable resistor R3 from 1 to 11,000 Ω with a physical dial that shows the value of  the 
resistor. 

(4) Ammeter using D’Arsonval movement 
(5) Voltage Source 

2) Procedure  
(1) Adjust variable resistor until no current flow through Ammeter (Ig=0)  
(2) Calculate value of Rx = (R2/R1)*R3 

 

+ 
- 

1 V 100Ω  
 

Ra=5.5Ω  

+ 
- 1 V 100Ω  
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� Proof  that Rx = (R2/R1)*R3 
1)  By applying Kirchhoff’s law and the fact that I1=I3 & I2=Ix since R3 is adjusted so that Ig=0 
2) Top Triangle � I1*R1 = I2* R2  (Since Ig =0) 
3) Bottom Triangle � I3*R3 = Ix*Rx  (Since Ig =0)  
4) Divide both side and remember that and I1=I3 & I2=Ix since R3 is adjusted so that Ig=0 

R1/R3 = R2/Rx  � Rx = (R2/R1) * R3 
 

� Accuracy 
The accuracy of the measurement by the Wheatstone Bridge depends on a number of factors as 
outlined below: 
 
1) Resistors with values below 1Ω are too small to  be measured with standard Wheatstone due 

to: 
(1) Thermoelectric voltage generated at the junction of dis-similar metal 
(2) Thermal heating effects (resistance increases as temperature goes up due to power 

consumption I^2*R) 
2) Higher value resistors’ measurements are affected by the leakage current.  Leakage current 

is any current through Ig, even if it is small. This  error will be amplified proportionally to the 
size of the large resistors being measured. 

Vs 

Ig=0 

R2 R1 

R3 Rx 

+ 
_ 

I1 
I2 

I3 
Ix 
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3.5. Delta and WYE Configurations 

Delta and Wye are two other resistor network configurations that are neither the series nor the parallel 
configurations that were discussed earlier.  These two configurations, Delta and Wye are shown in the 
following diagrams: 
 

� Delta (Δ) or Pi (π) Configuration 
The following diagrams show two ways to represent a Delta configuration: 

 
� Wye (Y) and Tee (T) Configuration 

The following diagrams shows two ways to represent a Y configuration: 

 
 
From time-to-time, conversion between Delta and Wye leads to circuit simplification.  Three equations are 
needed in order to convert from one to its equivalent circuit in the other forms,.  These equations are 
derived from setting the equivalent circuit for each node pairs in one configuration equal to the 
corresponding pair in the other configuration as shown below for node pairs ab, bc and ac:  
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By applying algebra to the above equations, each resistance can be found in-term of other resistances 
such as: 
 

� Delta-to-Wye Conversion 
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R
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� Wye-to-Delta Conversion 
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3.6. Summary 

 
� TBC 
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3.7. Additional Resources 

 
� Nilsson, J.  Electrical Circuits. (2004)  Pearson. 

Chapter 3. 
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3.8. Problems 

 
Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 

 
  



Fundamentals of Electrical Circuits, V3.6 Page 64 

Chapter 4.  Circuit Analysis/Modeling Techniques 

 
Key Concepts and Overview 
 
� Introduction 

� Node-voltage Method (based on KCL)  

� Mesh-current Method (based on KVL) 

� Node-Voltage and Mesh-Current Comparison 

� Source Transformation  

� Thévenin & Norton Equivalents  

� Delivering Maximum Power 

� Superposition Principle 

� Sensitivity Analysis 

� Additional Resources 
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4.1. Introduction 

This chapter introduces more generalized analysis techniques such as Mesh-Current, Node-Voltage, 
Source Transformation, Thevenin and Norton Equivalent and Super-Position.  These techniques can be 
applied to circuits with large numbers of elements. Many of these techniques are used in Computer Aided 
Design and Analysis tools for circuit analysis.  All the methods introduced here rely on the three 
fundamental laws of Electrical Circuits which were introduced in earlier chapters: 
 

1) Ohm’s Law 
2) Kirchhoff’s Current Law (KCL) 
3) Kirchhoff’s Voltage Law (KVL) 

 
� Basic Circuit Analysis Terms 

It is time to introduce the formal definition of key terms that will be used throughout Electrical Circuit 
Analysis: 
 
� Node:  A point where two or more circuit elements join. 

 
� Essential Node:  A node where three or more circuit elements join.  In a circuit analysis text, it is 

common to refer to essential nodes as simply nodes.  This inaccuracy is accepted since we are 
only interested in essential nodes in circuit analysis. 

 
� Path: A trace through adjoining basic elements where no element is traced more than once. 
� Branch: A path that connects two nodes. 
� Essential Branch:  A path which connects two essential nodes without passing through another 

essential node. 

 
In course of circuit analysis, it is common to refer to essential branches as simply branches.  This 
inaccuracy is accepted since generally we are only interested in essential branches in circuit 
analysis. 
  

� Loop:  A path where the end of the path is at the starting node. 

Essential Node Essential Node 
Node 

Essential 
Branch 

Branch 

Essential Node 

Node 
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� Mesh:  A loop that does not enclose any other loop. 

 
� Planar Circuit:  A circuit that can be drawn on a plane with no crossing branches.  In order to 

apply the circuit analysis techniques introduced in this text, the circuit must be planar and drawn 
such that no branch is crossing another branch of the circuit. 
 

� Example – Application of Definition of Term  
Apply the above definitions to the following Circuit:  

 
 

• This is a Planar Circuit since none of the branches cross each other. 
• Node = 6 
• Essential Node = 4 
• Path > 10 
• Branch = 10 
• Essential Branch= 8  
• Loop > 10 
• Mesh = 5 

 

+ 
-  

+ 
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A Loop but 
not a Mesh 

A Loop and a 
Mesh 
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4.2. Node-Voltage Method (Based on KCL) 

Node-Voltage Method is a formalized and systematic approach to the application of KCL to circuit 
analysis. This method is applicable to highly complex circuits due to the fact that is a systematic 
approach.  The following steps describe Node-Voltage Method: 
 

1) Redraw the circuit as a planar circuit 
2) Identify essential nodes (n) 
3) Select one essential node as reference and mark it with “   Ref” 

The voltage at the reference node is assumed to be zero.  Any of the essential nodes may be 
selected as reference since all the  voltages being calculated are relative. The reference node is 
typically the node with highest number of branches which results in the simplest analysis. 

4) Number of independent equations resulting from application of KCL to all nodes except reference 
node is (n-1). 

5) Define Voltage at every node (V1, V2, …, Vn) 
6) Using KCL, write the sum of current in-terms of voltage for every node except reference. 

Hints: 
a. Assume current going out of a node is positive 
b. If a branch contains a resistor, the current through the branch is the voltage difference 

across the resistor divided by the resistance. 
c. If the branch contains a current source, the current of the current source is also the 

branch current. 
 

� Example - Node-Voltage Method Application 
For the circuit shown below , find the value of voltage across the 5A current source. 

 
Solution: 

Circuit is drawn as planar, essential node voltages are marked with V1, V2 and the reference node 
(VRef=0) 
 
Write the KCL for each essential nodes (V1, V2) except reference node: 
  Node1 �  I1 + I2 + I3 =0   �    -5 + V1/2 + (V1 – V2)/(6 + 12) = 0 
  Node 2 �  I4 + I5 + I6 =0   �    (V2 – V1)/(6 + 12) + (V2)/9  +(V2 - 20)/3  =0   
 
Simplify and rewrite the equations: 
  -90 +10V1 – V2 =0 
  -120 – V1 + 9V2 =0 
 
Solve the above two simultaneous equations �  V1 = 10.45 V  &  V2 = 14.5 V 
Therefore Voltage across 5A current source � V1 = 10.45 V   
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� Node-Voltage Method Special Cases 
This section lists special cases that are encountered when using the Node-Voltage Method for 
analyzing the circuits. 
 
� Special Case 1 - Circuits with Dependent Source 

When the circuit being analyzed includes a dependent source, the analysis includes an additional 
variable which is the current or voltage controlling the dependent source. 
 
The analysis of this type of circuit is similar to the Node-Voltage method described earlier with the 
added requirement of writing an equation to relate the branch currents to the dependent source 
variable. 
 
For example,  the following circuit contains a dependent voltage source that depends on the 
variable current Ix: 

 
In order to find the node voltages and Ix using Node-Voltage Analysis, first apply all the Node-
Voltage Method steps and write the resulting KCL equations: 
 
  Node 1 �  I1 + I2 + I3 =0   �    -5 + V1/2 + (V1 – V2)/6 = 0  
  Node 2 �  I4 + I5 + I6 =0   �    (V2 – V1)/6 + (V2)/9  +(V2 – 4Ix)/3  = 0   
 
Simplify and rewrite the equations: 
  -90 + 4V1 – V2 =0 
  -24Ix – V1 + 11V2 =0 
 
The above two equations have three unknowns (V1, V2 and the dependent source variable, Ix).   
 
The third equation is derived from the circuit � Ix = V1 / 2 
 
Now, there are three equations and three unknowns so it can solved. 
  4V1 – V2 =90 
  -24Ix – V1 + 11V2 =0 
  2Ix - V1 = 0 
Solving the system of equation �  Ix = 16.0 A ,  V1 = 31.9 V,  V2 = 37.7 V 
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� Special Case 2 – Circuit with a Branch Containing Only a Voltage Source 
When a circuit contains a branch with only a voltage source, Ohms Law (I=V/R) cannot be 
applied to find branch current.  This means that the KCL equation for the node with such a branch 
cannot be written in term of voltage.  The good news is that you do not need to write the KCL 
equation since the node voltage is already known and is equal  to the value of the voltage source. 
 
For Example, in the analysis of the following circuit: 

 
There is no need to write a KCL equation for Node 2 since V2 = 20.  This means the system of 
equations is reduced to: 
 
  Node 1 � -5 + V1 + (V1 – v2)/(3 + 6) =0 �  45 +10V1 – V2 =0 
  Node 2 �  V2 = 20 V 
 
Which is a much simpler system of equation to solve. � V2 = 20 V,   V1 = 6.5 V 
 

� Special Case 3 – Super-Node 
When a circuit contains a voltage source between two essential nodes, it is possible to combine 
the two essential nodes as one Super-Node.  Only one KCL is needed for the Super-Node since 
the relation between the two node voltages is simply the value of the voltage source. 
 
The Super-Node concept may be applied for dependent and independent voltage sources 
between two essential nodes:  The Node-Voltage steps apply to circuits with  the additional 
requirements to: 
 

(1) Draw a circle around the two nodes and call it a super node; there is no need to place 
voltage label on it. 

(2) Write the KCL equations as if circle area is one node (Super Node KCL equation) 
(3) Write another equation that relates the two node voltages in the Super node 

 
For example in the following circuit, nodes V1 and V2 can be combined into a Super-Node as 
shown here: 

 
Super-Node KCL � I1 + I2 + I3 + I4 = 0  �  -5 + V1 +V2/12 + V2/6 =0 
The difference between the nodes is the voltage source voltage � V1 – V2 =10 
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Simplify the above two equations: 
  12V1 +3V2 =60 
  V1 – V2 =10 
Solve the two equations � V1= 6 V;  V2= -4 V; 
 

� Examples – Application of General Node-Voltage Method  
� Example 1 - Use the Node-Voltage Method to find V in the circuit shown. 

 
Solution: 

Super-Node KCL  �  6 + Va/10 + Va/15 + Vb/5 + (Vb – 8)/3 = 0V 
Super-Node internal Nodes’ voltage relationship  �  Va – Vb = 4Ix 
Control source Variable Equation � Ix = Va/10 
 
Simplify the 3 equations: 
5Va + 16Vb = -100 
-4Ix +Va - Vb = 0 
10 Ix –Va = 0 
 
Solve the system of 3 equations and 3 unknowns: 
Ix = 2.3  A; Va = 2.3 V; Vb = -7 V  �  V=Vb = -7 V 

 
� Example 2 - Use the Node-Voltage Method to find Vx in the following circuit. 

 
 
Solution: 

Super-Node KCL  �  -5 + (Va - Vb)/10 + (Vc – Vb)/5 + Vc/20 = 0 
Super-Node internal Nodes’ voltage relationship  �  Va – Vc = 3Ix 
Control source variable equation � Ix = (Va - Vb)/10 
Node “b” KCL � (Vb – Va)/10 + (Vb – Vc)/5 + Vb/15 = 0  
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Simplify the 4 equations: 
2Va - 6Vb + 5Vc= 100 
-3Ix + Va - Vc = 0 
10Ix – Va + Vb= 0 
-3Va + 11Vb - 6Vc = 0   
 
Solve the system of four equations and four unknowns: 
Ix = 1.1 A; Va = 50.6 V; Vb = 39.6 V; Vc = 47.2 V  � Vx = Vc = 47.2 V   

 
� Example 3 – Super Node Example 

Find Vy using Node Voltage Method:  

Solution: 
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4.3 Mesh-Current Method (based on KVL) 

Mesh-Current Method is a formalized and systematic approach to the application of KVL to circuit 
analysis. These techniques can also be applied to complex circuits since they represent a systematic 
approach: The following steps describe Mesh-Current Method:  
 

1) Redraw the circuit as a planar circuit. 
2) Identify all meshes in the circuit (Mesh is a loop that does not include other loops) and “m” is the 

number of meshes. 
3) Select mesh currents in the same direction (Clockwise or Counter-Clockwise), be consistent 

throughout the circuit! 
4) Mesh current exists on the perimeter of a mesh; current in the shared branches is the algebraic 

sum of the adjoining mesh currents. 
5) Apply KVL to each of the “m” meshes identified and write the resulting “m” independent equations 

in term of mesh currents.  
 

� Example - Mesh-Current Method 
For the circuit shown below, use the Mesh-Current method to find the Power delivered by 50 V 
supply. 
 

 
Three meshes have been identified.  For the identified meshes, we have selected mesh currents I1, I2 
& I3 with Counter-Clockwise direction.  In this case, the voltages are also shown for their educational 
value. 

30Ω 

5Ω 
10 Ω 

15Ω 

6 Ω 

50 V 
+ 
- 
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Now write the KVL equations (algebraic sum of voltages around the mesh and set it to zero) in term 
of mesh currents for each of the three meshes.  It is very important to notice that voltages are marked 
such that mesh current flows into the + terminals. It is recommended that the reader independently 
write the equations and then compare them with the equations below.  Special attention should be 
accorded to the signs of the terms  in each equation: 
 
Mesh 1 KVL  �  V1 + V2 + V3 = 0 � 10I1 + 5(I1 - I3) + 15(I1 – I2) = 0  
Mesh 2 KVL  �  V4 + V5 + V6 = 0 � 6I2 + 15(I2 – I1) + 30(I2 – I3) = 0  
Mesh 3 KVL  �  V7 + V8 + V9 = 0 � 5(I3 – I1) + (-50) + 30(I3 – I2) = 0 
 
Simplify and rewrite the equations: 
 
30I1 - 15I2 – 5I3 = 0 
-15I1 + 51I2 – 30I3 = 0 
-5I1 - 30I2 + 35I3 = 50 
 
Solve the equations � I1 =2.7 A;  I2 =3.8 A; I3 =5.1 A; 
P = V * I = -(50)(5.1) = - 255 W 
 

  

30Ω 

5Ω 
10 Ω 

15Ω 

6 Ω 

I1 

I2 

I3 

50 V 
+ 
- 

-      V3    + -      V9    + 
+ 
 
V1 
 
- 

-      V4   + 

- 
 
V2 
 
+ 

+ 
 
V7 
 
- 

- 
 
V8 
 
+ 

+      V6    - +      V5    - 
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� Mesh-Current Method Special Cases 
This section lists special cases that are encountered in analysis of circuits using Mesh-Current 
Method 
 
� Special Case 1 – Circuits with Dependent Source 

When the circuit under analysis includes a dependent source, the analysis requires an additional 
variable which is the current or voltage controlling the dependent source. 
 
The analysis step for this type of circuit is similar to Mesh-Current Method described earlier with 
the additional requirement to write an equation to relate the element voltage to the dependent 
source variable. 
 
For example, the following circuit contains a dependent voltage source: 

 
Application of Mesh-Current Method is the same as discussed earlier with the addition of  a 
dependent voltage source’s variable in-terms of mesh currents.. 

 
Write KVL equations for each mesh in terms of the mesh current: 
Mesh 1 KVL  �  4(I1 – I2) + 10(I1 – I3) + 15I1 - 25  = 0 �  29I1 - 4I2 - 10I3 -= 25 
Mesh 2 KVL  �  -2Vp - 8 + 5(I2 – I3) + 4(I2 – I1) = 0  �  -2Vp - 4I1 + 9I2 - 5I3 -= 8 
Mesh 3 KVL  �  +8 + 2I3 + 10(I3 – I1) + 5(I3 – I2) = 0 �  -10I1 - 5I2 + 17I3 -= -8 
  
There are 3 equations but we have 4 unknowns, so we use the definition of a dependent source 
to write another equation: 
Vp = 10 (I1 - I3) �   Vp -10I1 +10I3 = 0 
 
So here is the resulting system of 4 equations and 4 unknowns: 
29I1 - 4I2 - 10I3 -= 25 
-2Vp - 4I1 + 9I2 - 5I3 -= 8 

10Ω 

5Ω 

25V 

2Ω 

+   - 

4Ω 

15 Ω 

I2 

I1 

I3 
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8V 
+ 
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+ Vp - 
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2Ω 

+   - 
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15 Ω 
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8V 
+ 
- 

+ Vp - 



Fundamentals of Electrical Circuits, V3.6 Page 75 

-10I1 - 5I2 + 17I3 -= -8 
Vp -10I1 +10I3 = 0 
 
Solve the system � Vp=2.9 V;  I1 -= 1.8 A;  I2 -= 3.2 A;  I3 -= 1.6 A; 
 

� Special Case 2 – Circuits with Current Source 
When the circuit under analysis includes dependent or independent current source that is not 
shared between meshes, the analysis becomes easier since the current in the mesh with the 
current source is known.  This means that  there is no need for a KVL equation for the mesh.   
 
For example, the following circuit contains an independent source: 

 
Applying Mesh-Current Method is the same as discussed earlier with the only difference being 
that the KVL equation for I2 is not required since I2 = -2A.. So instead of three equations, we need 
to solve only two equations to find the mesh currents: 
 
Mesh 1 KVL  �  5(I1 – I2) + 8 + 3 I1 + 10(I1 – I3) = 0 �  
Mesh 2 current is given � I2 = -2A 
Mesh 3 KVL  �  -25 + 4(I3 – I2) + 10(I3 – I1)  + 15I3= 0   
 
Simplify and plug in I2 
 
18I1 - 10I3 = 18 
-10I1 +29I3 = 17  
 
Solve the equations �  I1 =2.6 A   ;   I3 = 1.15 A ; 
 

� Special Case 3 – Super-Mesh 
When a circuit contains a current source between two meshes, we can simplify the analysis by 
creating a Super-Mesh.  A Super-Mesh is a mesh created by combing the two meshes that have 
the shared current source while avoiding the branch with the current source..  
 
The Super-Mesh concept may be applied to circuits with dependent and independent voltage 
sources.   The Current-Mesh steps apply to circuits with Super-Mesh with the additional 
requirements to: 
 
1) Identify meshes with shared current source and combine them into a Super-Mesh 
2) Write one Super-Mesh KVL equation 
3) Write equation relating the current of the two combined meshes 

 
For example in the following in the following circuit, the 2A current source is shared between 
mesh 1 and 2. 
 

10Ω 

5Ω 

25V 

3Ω 

+   - 

4Ω 

15 Ω 

8V 
+ 
- 
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I2 

I3 
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Therefore, mesh 1 and 2 can be combined into a Super-Mesh as shown below: 

 
For the above circuit, equations for Super-Mesh, current in the shared branch and mesh 3 can be 
written:  
 
Super-Mesh KVL � -20 + 6I2  + 4(I2 – I3) + 12(I1 – I3)  = 0 
Current source branch � 2 = I1 – I2 
Mesh 3 � 6 + 3I3 +12(I3 – I1) + 4(I3 – I2) = 0  
 
Simplify the equations: 
12I1 + 10I2 - 16I3 = 20 
I1 – I2 = 2 
-12I1 - 4I2 + 19I3 = -6 
 
Solve the system of equation � I1 = 3.3 A; I2 = 1.3 A; I3 = 2.0 A; 
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� Examples – Application of General Mesh-Current Method  
Find Vy  in the following circuit using Mesh-Current Method. 

 
� Solution: 

 
 
 
 
 
 
 
 
 
 
 

40 kΩ 

6 mA 
100 kΩ 

+ 
 
Vx 
 
- 

+   - 

2Vx 

+ 
 

Vy 
 
 
- 

5 KΩ 20 kΩ 

10 kΩ 

2 mA 

50 kΩ 
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4.4. Node-Voltage and Mesh-Current Comparison 

The Node-Voltage and Mesh-Current Methods allow a systematic approach to circuit analysis as shown 
in previous section.  Although both methods are applicable to all planar circuits, for some circuits one 
method is more efficient and requires less  equations and therefore calculation.  So spending some time 
to consider the best approach upfront may save time in the analysis. 
 
Typical factors to consider when deciding between Node-Voltage Method and Mesh-Current Method 
include:   
 

� Number of nodes and meshes. 
 
1) if  (#node -1)  <  # mesh � use Node-Voltage Method 
2) if  (#node -1)  >  # mesh � use Mesh-Current Method 
3) if  (#node -1)  =  # mesh � Look for other factors to decide 
 

� Presence of Super-Node or Super-Mesh 
 
1)  If Super-Node is present � use Node-Voltage Method 
2)  If Super-Mesh is present � use Mesh-Current Method 
 

� Focus of analysis and the unknown parameter.  
 

 
� Example – Node-Voltage vs. Mesh-Current 

Which of Node-Voltage or Mesh-Current Method is more efficient approach to analyzing the following 
circuit? 

 
The above circuit has 4 nodes which require 3 equations.  There is also opportunity to take 
advantage of Super-Node which would reduce the number of equation to 2.. 
 
The above  circuit has 5 meshes which means we have to write 5 Mesh-Current equations. 
  
Based on the fact that node-voltage requires lower number of equations, the recommendation is 
to use Node-Voltage method to simplify the analysis. 
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- 

+ 
- 
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� Example – Node-Voltage vs. Mesh-Current  
Does Node-Voltage or Mesh-Current approach requires less effort to analyze the                                                                                 
following circuit?  

 
The above circuit has 4 nodes therefore requires 3 equations with Node-Voltage Method. 
 
The above circuit has 3 meshes which would require 3 equations with Mesh-Current Method.  But 
considering the current sources and existence of Super-Mesh, we only require one equation. 
 
Based on the fact that node-voltage requires higher number of equation, the recommendation is to 
use Mesh-Current Method for more efficient  analysis. 
 

+ 
- 

193V 
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4.5. Source Transformation  

Source Transformation is another circuit simplification and analysis technique.  In electrical circuit 
analysis, as long as the voltage and current are maintained, an equivalent circuit may be used. 
 
Source Transformation is a technique which allows current source to be replaced with a voltage source 
and visa-a-versa.   
 
As shown below, the following voltage source configuration and current source configuration are 
equivalent at terminals a and b: 
 

 
 

 
� Example - Source Transformation 

User source transformation to find the voltage V in the circuit shown below: 

 
Transformations: 

(1) 120V & 20 Ω Series � 120/20 = 6 A and 20 Ω parallel 
(2) 60V & 5 Ω Series � 60/5 = 12 A and 5 Ω parallel 

There fore 

+ 
- 

- 
+ 

5 Ω 

20 Ω 

6 Ω 8Ω 

1.6 Ω 

36 A 

60 V 

120 V 

+ 
 
 
V 
 
 
 
- 

 

Is 

b 

a 

RL 

+ 
 

VL 
 
- 

IL 

R 

R 

+ 
_ 

Vs 

b 

a 

RL 

+ 
 

VL 
 
- 

IL 

Valid transformation requires that IL & VL has to be the Same.  For the above circuits: 
 

• Voltage at terminal ab is VL  for both circuits 
• Current at terminal ab is IL for both circuits 

 
The only relationship required to transform from one form to another is: Is  = Vs / R 
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Or 

 
I = 72 / (4 + 8) = 6 A 
V= 8 x 6 = 48 V 

 
 
� Example - Source Transformation 

Draw the equivalent circuit with respect to current source terminals using only resistor and voltage 
source for the following circuits: 
 
a) 

 
b) 

R1 = 300

R2=100
I1

20 mA

2.4 Ω 8 Ω 

1.6 Ω 

30 A 

+ 
 
 
V 
 
 
 
- 

8Ω 
72 V 

+ 
 
 
V 
 
 
 
- 

I2 

+ 
- 

4  Ω 

I 

6 Ω 8Ω 

1.6 Ω 

36 A 

+ 
 
 
V 
 
 
 
- 

12 A 6 A 5 Ω 

20Ω 
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� Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example - Source Transformation 
Draw the equivalent circuit with respect to a and b terminals using only resistor and current source for 
the following circuits: 
 
a) 

 
 
b) 

 
 

R1 = 300

R2=100

I140 mA

a

b

 

R1 = 400

V=20 v

a 

b 

R1 = 300

V=30 v

a 

b 
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� Solution: 
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4.6. Thevenin & Norton Equivalents  

In many cases, it is useful to replace the circuit under analysis with a simpler circuit  where its voltage and 
current at the terminals behave the same as the original circuit.  Thevenin and Norton Equivalents enable 
us to come up with equivalent circuit consisting of one source and one resistor that is equivalent to the 
original circuit.  
 
The rest of this section outlines the process of finding a Thevenin or Norton Equivalent for any ideal 
circuit.  Thevenin equivalent consists of a voltage source and resistor while the Norton equivalent consists 
of a current source and resistor as shown below.  Further, the two forms are equivalent to each other. 
 

 
 
� Thevenin Equivalent (Voltage Source & Resistor) 

Thevenin Equivalent of a circuit is represented by only a voltage source referred to as the Vth or open 
connection voltage (Voc) and an equivalent or Thevenin resistor (Rth). 

 
Definitions: 

• Thevenin or Open Circuit Voltage (Vth = Voc) is voltage at terminal a and b when Current 
through terminal a and b is zero (open across a & b)). 

• Norton or Short Circuit Current (In=Isc) is the current through terminals a & b when Voltage 
across a and be is zero (Short across a & b) 

• Thevenin or equivalent resistor (Rth) is the ratio of Open Circuit voltage and Short Circuit 
current: 

+ 
_ 

Rth 

Vth 

b 

a 

+ 
_ 

Rth 

Vth 

b 

a 

 Rth 

b 

In 

a 

Thevenin Equivalent Norton Equivalent 
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   Rth = Voc / Isc 
 

� Thevenin equivalent using Standard Method  
Thevenin equivalent of circuit  is found with respect to a given pair of terminals since the Thevenin 
equivalent will be difference depending on the terminals selected.  Once the terminals and the circuit 
have been provided, calculate two of the three variables Rth, Voc or Isc to find the equivalent circuit. 
With two of variables, the third can be calculated using the Ohm’s law.. Here are the steps for the 
standard method: 
 

(1) Find the current across the terminals when the terminals are shorted  (connected).  This 
is the short circuit current, Isc=In. 

(2) Find the voltage across the terminals when the terminals are open.  This is the open 
circuit or Thevenin Voc=Vth. 

(3) Use Ohms law to find Rth = Voc/Isc  
(4) Draw the Thevenin equivalent circuit. 

 
� Example - Apply the Standard Method 

Find the  Thevenin Equivalent for the following circuit at terminals ab.  

 
(1) Open terminals ab and find the  voltage at terminals ab (Voc = Vth) 

 
  Mesh 1 �  terminals ab are open � I1 =0 
 Mesh 2 � -72 + 5(I2 – I3) + 20 (I2)= 0 
 Mesh 3 � 12 I3 + 8(I3) + 5(I3 – I2) =0  
 
Simplify 

+ 
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5 Ω 8 Ω 

20 Ω 
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I1 = 0 
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 25I2 -5I3 =72 
 -5I2 + 25I3 = 0 
 
I2 = 3 A;  I3 =3/5 A �    Voc =Vth = 8*3/5 + 20*3 = 64.8 V   
 

 
(2) Short the circuit at terminals ab and find Isc 

 
Applying Mesh-Current method 
  Mesh 1 � 20 (I1 – I2) + 8(I1 – I3) =0  
  Mesh 2 � -72 + 5(I2 – I3) + 20 (I2 –I1)= 0 
  Mesh 3 � 12 I3 + 8(I3 – I1) + 5(I3 – I2) =0  
 
Simplify the equations 
  28I1 -20I2 - 8I3 = 0 
 -20I1 + 25I2 -5I3 =72 
 -8I1 -5I2 + 25I3 = 0 
 
Solve � 1 = 10.8A;   I2=12.7A;  I3=6.0 A 
Isc=I1= 10.8 
 

(3) Calculated Rth 
We have Rth = Voc/Isc = 64.8/10.8 = 6 Ω 
 

(4) Thevenin Equivalent Circuit 
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_ 
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� Thevenin Equivalent – Special Cases  
In some cases, it may be easier (less calculations) to use an alternative method to find the Circuits 
Thevenin Equivalents.   
 
� Special Case 1 – Circuits only contains  Independent sources  

For this type of circuit, it is typically easier to find Thevenin equivalent by applying the following 
steps: 
 
1) Find Open circuit voltage at the terminals,  Voc=Vth, same as in the Standard method. 
2) Deactivate all independent current sources 

An independent current source is deactivated by replacing it with an open circuits (I=0) 
3) Deactivate all independent voltage sources 

An independent voltage source is deactivated by replacing it with a short circuit (V=0) 
4) Calculate Req for the resulting circuit which is the same as Rth 
5) Draw the Thevenin equivalent using the calculated Vth and Rth 

 
� Special Case 2– Circuits with dependent and independent sources 

For this type of circuit, it is sometime easier to find Thevenin equivalent by applying the following 
steps: 
 
1) Find Open circuit voltage at the terminals,  Voc=Vth, same as in the Standard method. 
2) Deactivate all independent current sources 

An independent current source is deactivated by replacing it with an open circuits (I=0) 
3) Deactivate all independent voltage sources 

An independent voltage source is deactivated by replacing it with a short circuit (V=0) 
4) Use either test voltage source or current source 

(1) Calculate test current while applying test voltage at terminals a and b. 
OR 

(2) Calculate test voltage while applying test current at terminals a and b. 
5) Rth =Vtest/Itest 
6) Draw the Thevenin equivalent using the calculated Vth and Rth 

 
� Example – Thevenin Equivalent 

Find the Thevenin equivalent of the following circuit with  respect to terminal ab (across R4): 

 
 
Solution: 

 
1.  Find Voc=Vth with terminals ab open 

see that 1 A is the current in that branch and resistance is 10 Ω therefore 
Vab = Vth = (-1)(10) = -10 V 
 

a 

b 

V1 V2 
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2.  Find IN = Isc with terminals ab short circuited 
ISC = -1A 
 

3. Calculate Rth = Vth / Isc 
Rth = -10/-1 = 10Ω 
 

4. Draw the Thevenin equivalent Circuit 
 

 
 

� Example – Thevenin Equivalent 
Find the Thevenin equivalent of the following circuit with  respect to terminal ab: 

 
 
Solution: 
Since this circuit only has independent source, we are able to use the special case 2 to find 
Thevenin equivalent. 

 
1.  Find Voc=Vth with terminals ab open 

KCL at V1 � V1 = 5V 
KCL at V2 � (V2 – V1) / 10 + V2/20 -2 = 0 
KCL at V3 � (V3 –V1)/5 +2 + V3/100 = 0 
 
Vth = Vab = V2 = 50/3 = 16.7 V 

a 

b 

V1 V2 V3 



Fundamentals of Electrical Circuits, V3.6 Page 89 

2.  Find Req with respect to terminal a and b when sources have been deactivated 
(open current source and short voltage source) 

 
Rth = Rab = (10 || 20) + 5 + 100 = 111.67 Ω 
 

3. Draw the Thevenin equivalent Circuit 
 

 
 

  

Rth=111.67 Ω 

a 

b 
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� Example – Thevenin Equivalent 
Find the Thevenin equivalent of the following circuit with  respect to terminal ab: 

 
Solution: 

 
1.  Find Voc=Vth with terminals ab open 

 
 
 
 
 
 

2.  Find IN = Isc with terminals ab short circuited 
 
 
 
 
 
 

3. Calculate Rth = Vth / Isc 
 
 
 
 
 
 
 

4. Draw the Thevenin equivalent Circuit 
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� Norton Equivalent (Current Source & Resistor) 
Norton and Thevenin are source transformation of each other.  The method is very similar to 
Thevenin Equivalent with the only difference is that the equivalent circuit consists of a current source, 
Isc, and resistor, Rth.  The Norton Equivalent circuit is shown below 

 
Definitions: 
• Thevenin or open circuit voltage (Vth = Voc) is voltage at terminal a and b when Current 

through terminal a and b is zero (open across a & b). 
• Norton or Short Circuit Current (In=Isc) is the current through terminals a & b when Voltage 

across a and be is zero (short across a & b) 
• Thevenin or equivalent resistance  (Rth) is the ratio of open circuit voltage and short circuit 

current: 
   Rth = Voc / Isc 
 

� Norton equivalent using Standard Method  
Norton equivalent of circuit  is found with respect to a given pair of terminals similar to Thevenin 
equivalent.  Once the terminals and circuit has been provided,  calculate two of the three variables 
Rth, Voc or Isc  to find the equivalent circuit. With two of variables, the third can be calculated using 
the Ohm’s law.. Here are the steps for the standard method: 
 

(2) Find the current across the terminals when the terminals are shorted  (connected).  This 
is the short circuit current or Norton current, Isc=In. 

(3) Find the voltage across the terminals when the terminals are open.  This is the open 
circuit or Thevenin Voc=Vth. 

(4) Use Ohms law to find Rth = Voc/Isc  
(5) Draw the Norton equivalent circuit. 

 
 

 Rth 

b 

In 
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� Example – Norton Equivalent 
Find the Norton equivalent of the following circuit with  respect to terminal ab (across R4): 

 
 
Solution: 

 
1.  Find Voc=Vth with terminals ab open 

see that 1 A is the current in that branch and resistance is 10 Ω therefore 
Vab = Vth = (-1)(10) = -10 V 
 

2.  Find IN = Isc with terminals ab short circuited 
ISC = -1A 
 

3. Calculate Rth = Vth / Isc 
Rth = -10/-1 = 10Ω 
 

4. Draw the Norton equivalent Circuit 
 

 
 

a 

b 

V1 V2 
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� Example – Norton Equivalent 
Find the Norton equivalent of the following circuit with  respect to terminal ab: 

 
 
Solution: 
Since this circuit only has independent source, we are able to use the special case 2 to find 
thevenin equivalent. 

 
1.  Find Isc=Iab with terminals ab Shortened 

 
KVL at I1 �  -5 + 10(I1 – I4) + 20 (I1 – I2) = 0 
KVL at I2 � I2 = 0 
KVL at supper mesh I3 & I4 �  5I4 + 100 I3 +10 (I4 – I1) = 0 
                                            �  I4 – I3 = 2   
Simplify: 
30 I1 -10 I4 = 5 
10 I1 + 100I3 -5I4 =0 
I4 – I3 = 2 
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I3 

I2 

I1 
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Solve to find: 
I2 = 0 ,   I3 = -2.66 A 
 
Isc = Iab = I2 - I3  = 2.66 A 
 

2.  Find Req with respect to terminal a and b when sources have been deactivated 
(open current source and short voltage source) 

 
Rth = Rab = (10 || 20 || (5 + 100) = 6.27 Ω 
 
 

3. Draw the Norton equivalent Circuit 
 

 
 

  

a 

b 
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� Example – Norton Equivalent 
Find the Norton equivalent of the following circuit with  respect to terminal ab: 

 
Solution: 

 
1.  Find Voc=Vth with terminals ab open 

 
 
 
 
 
 

2.  Find IN = Isc with terminals ab short circuited 
 
 
 
 
 
 

3. Calculate Rth = Vth / Isc 
 
 
 
 
 
 
 

4. Draw the Norton equivalent Circuit 
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4.7. Delivering Maximum Power 

There is a cost associated with electrical power generation therefore producers objective are to deliver 
the maximum power to the load (user).  This is also true when applied to radio, cell phone and other 
devices.  Although, the actual calculation for devices other than resistors and supply is beyond this 
section,  the underlying concept of wanting to maximize power to the load is applicable.  
 
� Requirements for delivering maximum Power 

The following steps are used to prove  the load and generating circuit configurations that delivers the 
maximum power delivered to the  load (user) must meet the following conditions: 
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� Find and draw the Thevenin equivalent of the generator circuit and represent the load as RL 

 

 
 

� Calculate the power of the load connected to Thevenin equivalent circuit 
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To find the maximum power, set the derivative of p with respect to RL to zero.  Note for the 
following calculation RL is a variable.  
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Derivate must be 0 to find the RL of Pmax. So 
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� RL = Rth is the condition for obtaining maximum  

th

th

l

th

l

Rthl

th

R

V

R

V
R

RR

V
p

44
)(

22

2

max ==
+

=  

 
� Example – Maximum Power 

Find the value of RL in order for  maximum power to be delivered to the load: 

 
Solution: 
 
 
 
 
 
 
 
 

� Example – Maximum Power 
North Bonneville Dam generates 500 MW at 100 kV.  For this system, find load (RL) such that 
maximum power is delivered to the load. 
 
Solution: 
 
 
 
 
 
 
 

20 Ω 

20 Ω 

4 A 

+  - 

160 i∆ 

20 Ω 20 Ω 

i∆ 

RL 

20 Ω 

Load 
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4.8. Super-Position Principle 

Super-Position Principle can only be applied to linear systems.  Fortunately, the ideal circuits with only 
linear elements such as resistor, independent source and dependent source with power of one control  
variables are linear systems.  This means we can apply the  Super-Position Principles to simplify, analyze 
and design these circuits.  The Super-Position Principle simply states that the effect of each independent 
source can be added to find the total response in a linear system. 
 
� Application of Super-position to Circuits Analysis 

Here are steps to apply the Super-Position to Circuits: 
 
� Deactivate all independent sources (short for voltage source and open for current source) 

Note: Dependent sources cannot be deactivated 
� Activate one independent source at a time and calculate the response for it 
� Repeat the previous step for all the independent sources 
� Sum all the individual responses to find the total response   

 
� Example – Application of super-position principal 

Find Vq in the following Circuit using super position: 

 
1) Deactivate all independent sources except 12 A current source 

 
 
Circuit the simplifies to : 

12 A  

+   -  

4Vq 

20 Ω 

60 Ω 

18 Ω 

15 Ω 

+ 
 
 
Vq 
 
 
- 

+ 
- 

20 V 

3 A 

12 A  

+   -  

4Vq 

20 Ω 

60 Ω 

18 Ω 

15 Ω 

+ 
 
 
Vq 
 
 
- 
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2) Deactivate all independent sources except  3A current source 

 
 
Circuit the simplifies to : 

 
 

3 A 

+   -  

4Vq 

60 Ω 

+ 
 
 
Vq 
 
 
- 

Vq2 = 60 * 3 = 180 v.  

3 A 

+   -  

4Vq 

20 Ω 

60 Ω 

18 Ω 

15 Ω 

+ 
 
 
Vq 
 
 
- 

12 A  

20 Ω 

60 Ω 

18 Ω 

+ 
 
 
Vq 
 
 
- 

Vq1 = 60 * 12 = 720 v.  
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3) Deactivate all independent sources except  20 V current source 

 
There are not any closed loops between the independent source and the 60 Ohms resister 
therefore Vq3 = 0 
 

4) Total value of Vq can be calculated by summing the individual responses: 
Vq = Vq1 + Vq2 + Vq3 = 720 + 180 + 0 = 900 V 
 
 

+ 
- 

20 V 

+   -  

4Vq 

20 Ω 

60 Ω 

18 Ω 

15 Ω 

+ 
 
 
Vq 
 
 
- 
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4.9. Sensitivity Analysis 

Sensitivity analysis is the process of determining the relative effect of change in one element of the circuit 
on specific voltage or  current in the circuit.  The following steps are used to find out sensitivity of voltage 
or current with respect to an element (resistor) in the circuit: 
 

5) Write the voltage or current in term of the element value (V=f(r1, r2, …)) 

6) dv/dr1  V/Ω gives us the sensitivity V with respect to r1 
 

As discussed in the previous section, this course is focused on  linear systems (circuits) which mean we 
can apply the Super-Position Principle to the sensitivity analysis.  In other words, calculate sensitivity with 
respect to individual elements and sum them to calculate the total sensitivity as shown below: 
 
V sensitivity to r1 and r2 = dv/dr1 + dv/dr2  
 
� Example -  Sensitivity Analysis 

 What is the sensitivity of V4 to r1, r2 and r3.  

 
Use Node Voltage method to write V1 in terms of r1, r2, r3 �  (V1 – 10)/(15+r3) + V1/r1 + V1/r2 =0 
Applying ohms to  branch with the voltage source �  V4/15 = (V1 – 10)/(15+r3)  
 
Simplify the first equation � (1/(15+r3) + 1/r1 + 1/r2)V1 = 10/(15+r3) 
From Second equation find V1 in term of V4 � V1 = V4 (15 + r3)/15 +10 
 
plug in V1 from 2

nd
 equation to first one �  

 
reader is encouraged to complete the example 

+ 
- 

10 V 

r3  

r2 

15 Ω 
 

r1 

+  V4  - 

V1 
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4.10. Summary 

 
� Ohms Law 

  

� Node Voltage Method (KCL) 







=∑ )()( nn

EN

n vfiRvi  

 
1) Identify number of Essential Nodes (EN: nodes with more than 2 branches) 

2) Set of one of the EN to Reference Node (Vref = 0) 

“Select the EN with most branches” 

3) For Each of the other ENs write the sum of currents equation in terms of node voltage 

* Assume current leaving the node is positive 

* Label Nodes V1, V2, V3, … 

* Write currents in term of V1, V2, V3, … 

4) Solve the system of equations to find V1, V2, V3, … 

 

Special Cases: 
a) Voltage Source from Essential Node to Reference Node  
b) Dependent Source 
c) Voltage Source between two Essential Node 

 

� Mesh Current Methold (KVL) 







=∑ )(/)( nn

Mesh

m ifivRv  

 
1) Identify number of Meshes (Loops that do not include other loops) 

2) For Each of Meshes write the sum of voltage equation in terms of current 

* Label Mesh current (clock wise) I1, I2, I3, … 

* Write voltages in term of I1, I2, I3, … 

3) Solve the system of equations to find I1, I2, I3, … 

 
Special Cases: 

1) Current source in unshared branch  
2) Dependent Source 
3) Current source in shared branch 

 
 

+       v(t)          - 

i(t) 

Ω=
I

V
R  
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4.11. Additional Resources 

 
� Nilsson, J.  Electrical Circuits. (2004)  Pearson. 

Chapter 4. 
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4.12. Problems 

 
Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 5.  Operational Amplifier 

 
Key Concepts and Overview 
 
� Transistor Overview 

� Operational Amplifier (Op-Amp) 

� Op Amp Applications 

� Common Mode (cm) vs. Differential Mode (dm) 

� Op Amp DC Model  

� Additional Resources 
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5.1.  Transistor Overview 

Transistors are fundamental building blocks of electrical and computer systems.  A Transistor may be 
used to amplify current or voltage (as an amplifier), or as a switch.  In its operation as an amplifier, 
transistors are used to build Op Amps and a multitude of other analog devices.   In its operation as a 
switch, a transistor is the building block of all computer and digital systems. 
 
Transistors are implemented on a range of material with variety of polarities and configurations. In this 
introductory section on transistors, NPN transistor will be used to describe transistor fundamentals.  NPN 
transistors are one of the earliest types of transistors.  NPN Transistor was developed based on Silicon 
physical Characteristics with specialized processes to leverage and direct its characteristics. 
 
Silicon, a semiconductor material, is turned into transistors through processes with most important one 
being doping where impurities are added. The doping results in material that either has extra electrons 
(which are called N-type for the extra negative charges) or add "holes" to the silicon's crystal structure 
(which is called P-type because it results in more positive charges).  
 
The following diagram shows the NPN transistor circuit symbol and physical construction: 

 
The following diagram utilizes a controlled current source and resistors to model the behavior of a 
transistor as an electrical circuit element.  The model is referred to as the Ideal DC model for 
theTransistor.  

Base 

Emitter  

Collector  

Base 

Collector  
Emitter  

N-Type 

N-Type 

P-Type 

Circuit Symbol Physical Construction 

 Ic = β Ib 
Ib 

Ib 

Ic 
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As it is shown by the above transistor Ideal DC model, the current into the base (ib) is amplified by a factor  
of  β and flows from collector to emitter (ic = βib ).  Typical β is around 300.  This means in a typical case, 
1 mA base current produces 300 mA Collector current. 
 
The following chart shows the relationship between the VBE and the current through the Collector Emitter 
Junction(Ic): 

 
As shown above, Transistors operate in three distinct regions: 

• Saturation Region  
• Linear Region 
• Cut-Off Region 

 

Approx. 0.7 v 
VBE 

Saturation region, VCE>2.4 & Ic = Max, 
Collector / Emitter shorted or switch closed. 

Ic 

Max 

Approx. 0 

Cut-off Region, VCE≈∞ & Ic≈0, Collector / 
Emitter is open or switch closed. 

Linear Regions, ic = β ib 
(In-between open and close) 

Base 

Emitter  

Collector  

Re 

Ib 

 ic = β ib 

Rc 

Base 

ib 

Collector  

Emitter  

Ideal DC Model of an NPN Transistor 

ic = βib  

+   VBE   - 

R 

+Vcc  
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Analog electronics use transistors in Linear mode which operate as an amplifier.  In this type of 
applications, designer challenge is to design a circuit that remains in linear region and avoids the cut off 
and saturation region. 
 
All digital and computer systems operate transistors in the cut off and saturation region with special focus 
on minimizing the amount of time spent in the linear regions.  Since digital system utilize the transistor as 
a switch by applying VBE≈0 to put the transistor in cut off region or open Collector / Emitter Connection 
(Switch open).  For NPN transistor VBE is increase as quickly as possible to above 3 volts to put the 
transistor in the saturation mode or short Collector / Emitter connection (Switch closed). 
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5.2. Operational Amplifier (Op Amp) 

The Operational Amplifier (Op Amp) was initially used to implement mathematical operations such as 
summing and integration in analog computers.  This initial application is where the Op Amp gets its name. 
Op Amp is a versatile component with wide variety of applications.  Refer to LM 324 specification for an 
example of a general purpose low frequency low cost Op Amp. 
 
The most common uses of Op Amp in the industry are: 
 

1) Signal Inversion 
2) Signals Summation 
3) Signals Subtraction 
4) Signal Amplification 
5) Signal Filtration 

 
This section covers the application and external behavior of Op Amp in circuits but does not discuss the 
internal design of the Op Amps. In this text, the Op Amp is typically represented by the following symbol: 
 

 
As shown above, the Op Amp has two inputs (positive & negative), either one or two bias supplies (also 
called rails since they provide the upper and lower output limits) and one output.  When one bias supply is 
used such as in LM 324, the other bias is set to ground (V=0). 
 
Typically, the simplified schematic which is use in the rest of the section, the supply connection to ground 
is not shown.  This will simplify the schematic therefore making it easier to analyze the circuit.  The 
following diagram shows a fully drawn schematic to the left and a simplified version to the right.  

Out 

IN - 
(Inverting Input) 

IN+ 
(Noninverting Input) 

- 

+ 
V- 

V+ 

Negative Bias (rail) 

Positive Bias (rail) 



Fundamentals of Electrical Circuits, V3.6 Page 110 

 
 
Open Loop Gain (A) is the value that input voltage difference (Vp – Vn) is multiplied by to get the output.  
A is called Open Loop Gain since it is the gain when input and output of Op Amp are not connected (open 
loop) and therefore there is no feedback.  The value of A is typically well above the 10,000.  In general, 
output and input are related based on the following equation as long as the output is within the supply 
range (-VEE ≤ Vcc ≤ Vcc) which is also called the linear region: 
 
  Vo = A (Vp – Vn)   if  -VEE ≤ Vo ≤ Vcc 
 
 
In open loop configuration, the relationship between the input voltages (Vp & Vn)  and output voltage (Vo) 
depends on the Op Amp modes and relationship of A(Vp – Vn) with supply voltage Vcc and -VEE. 
 

 
Open Loop Gain , A, for LM 324 is 100,000 at low frequencies and assuming Vcc = 30 v supply is used  
to bias the Op Amp then (Vp – Vn) must be less than 0.3 mV in order for the LM 324 Op Amp to operate 
in the linear region as shown below: 
 
Linear Region requires that   A(VP – Vn) < Vcc � 100000(Vp – Vn) < 30   � (Vp – Vn) < 0.3 mV 

Negative Saturation 
Vo = -VEE  when A(Vp – Vn)  < -VEE 

-VEE/A 

Vcc/A 

(Vp-Vn) 

Linear Region 
Vo = A(Vp – Vn) when 
                –V EE ≤ A(Vp – Vn) ≤ V cc 

+ Vcc 

- VEE 

Vo Positive Saturation 
Vo = Vcc  when A(Vp – Vn)  > Vcc 

_ 

+ V- 

V+ 

- 
VEE 
+ 

+ 
Vcc 
- 

+ 
 
 
 

Vn 
 
 
 
_ 

+ 
 
 

Vp 
_ 
 

Ip 

In 

Io 

IEE 

ICC 

+ 
 
 

Vo 
 
 
_ 

Common or Reference Node (Gnd) 

_ 

+ 
V- 

V+ 

-VEE 

Vcc 

Vn 

Vp Ip 

In 

Io 

Vo 
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This limitation is a major constraint since the smallest difference between Vp and Vn results in the Op 
Amp to the saturated and no longer operating as an amplifier.  In order to extend the input range in the 
linear region, the designer needs to design the Op Amp with negative feedback which is discussed in 
latter part of this section. 
 
In order to analyze a circuit with an Op Amp, an equivalent Op Amp circuit or a model is required.  The 
first model is the simplest one and is called the Ideal Op Amp Model.  Although simple, the Ideal Op Amp 
Model is an effect tool in analyzing circuits with Op Amp.  The Ideal Op Amp Model has the following 
three characteristics: 
 

1) Open Loop Gain is infinite (A = ∞) 
2) Voltage Constraint – Input Voltages are the same (Vp – Vn = 0 or Vp=Vn) 
3) Current Constraint – Input is virtual open (Ip =  In = 0) 
 
Note:  Characteristics 2 and 3 are based on the assumption that the input resistance (between 
input p and n) is infinite and no current flows through it. 

 
Ideal Op Amp Model in conjunction with Kirchhoff Current Law (KCL) is the preferred approach to 
analyzing circuits with Op Amp in order to approximate the circuit’s behavior. 
 
� Example – Application of Ideal Op Amp Model to circuit analysis 

For the following circuit:  

 
Find Vo for the values of Vs=1.2,  6.0, -1.5 and -5. 
 
Solution 
KCL for Node Vn � (Vn – Vs)/8000 + (Vn – Vo)/48000 + In = 0 
From the circuit � Vp = 0 
Ideal Op Amp Characteristic � A = ∞, In = Ip=0 & Vp = Vn 
 
Combine the above set of equations �  -Vs/8000 - Vo/48000 = 0  � Vo = -6Vs 
 
Vs= 1.2   �   Vo = -7.2 
Vs= 6.0   �   Vo = -36  (this is less than  –VEE=-10V so Saturates) � Vo = -10 
Vs= -1.5  �   Vo =  9.0  
Vs = -5   �  Vo =  30  (this is more than  Vcc=20V so  Saturates)  � Vo =  20 
 

_ 
 
 
+ 

+ 
- 

“GND, V=0” 

-10V 

+20V 

8 KΩ 

48 KΩ 

Vs 

Ip 

In Vn 

Vo 

Vp 
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Another way is to calculate the range in which the Op Amp  saturates as shown below: 
    -10 ≤ Vo ≤ 20   � -10 ≤ -6Vs ≤ 20  �  -3.3 ≤ Vs ≤ 1.7   
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5.3. Op Amp Applications 

Op Amps are typically used to invert, amplify, add, subtract and compare signals in a circuit.  This section 
introduces the basic design and analysis approach for this type of applications.  Throughout this section, 
the Ideal Op Amp Model is used to analyze these circuits. 
 
� Inverting-Amplifier Circuit 

Inverting-Amplifier negates and scales (amplifies or attenuates) source voltage (Vs) and outputs it as 
Output Voltage (Vo).  
 
� Circuit Diagram 

 
� Circuit Analysis 

KCL Node  Vn � (Vn – Vs)/Rs + (Vn – Vo)/Rf + In = 0 
Ideal Op Amp Characteristics � A=∞, Vp=Vn, Ip = In = 0 
From the circuit  Vp = 0 
 
Combine the above equation set � -Vs/RS – Vo/Rf =0  �   Vs/Rs = -Vo/Rf 
 
  Vo = - (Rf/Rs)*Vs  where: 
   ”-“ indicates an inverting amplifier 
  ”Rf/Rs” is the scaling factor or gain 
        If Rf/Rs > 1 then signal is amplifier 
        If Rf/RS < 1 then signal is attenuated 
 
The above relationship is valid only in the linear region where –VEE ≤ Vo ≤ Vcc or 
-Vcc ≤ -(Rf/Rs)*Vs ≤ Vcc. As discussed earlier, outside of linear regions, Vo will be limited by 
either the Vcc or –VEE rail.. 
 

� Example -  Inverting amplifier 
For the following circuit: 

_ 
 
+ 

+ 

_ 

Rs 

Vs 

-VEE 

+VCC 

Vo 

In Vn 

Rf 

Vp 
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Find the range of Rf values that keeps the amplifier in the linear region. 
 
Solutions 
KCL Node  Vn � (Vn – 2)/5000 + (Vn – Vo)/Rf + In = 0 
Ideal Op Amp Characteristics � A=∞, Vp=Vn, Ip = In = 0 
From the circuit  � Vp = 0 
 
Combining the above set of equations � -2/5000 + (-Vo/Rf) = 0 �  Vo = - (2/5000)Rf 
 
For the Op Amp to be in Linear Region � -20 ≤ Vo ≤ 10 
 
Substitute Vo equivalent in term of Rf Vo �  -20 ≤ - (2/5000)Rf ≤ 10  �  50000 ≥ Rf  ≥ -25000 
since R cannot be less than 0 lower limit is 0 �  
  Rf  ≤ 50 KΩ for Op Amp to operate in linear region 

 

_ 
 
 
+ 

+ 
- -20V 

+10V 

Vo 

5 KΩ 

Rf 

2 V 

Ip 

In 
Vn 

Vp 
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� Summing-Amplifier Circuit  
Sums a number of voltage sources (Va, Vb, …) and output the scaled (amplified or attenuated) result 
as the Output Voltage (Vo). 
 
� Circuit Diagram 

 
� Circuit Analysis 

KCL at the Node  n � (Vn –Va)/Ra +  (Vn –Vb)/Rb + (Vn –Vc)/Rc + In +(Vn –Vo)/Rf = 0 
Ideal Op Amp � In = Ip = 0  & Vp=Vn  
From the circuit � Vp = 0  
 
Combining the above set of equations � Va/Ra + Vb/Rb + Vc/Rc + 0 + Vo/Rf = 0 � 
 
Vo = -Rf *(Va/Ra + Vb/Rb + Vc/Rc)  
 
The above relationship is valid only in the linear region where –VEE < Vo < Vcc 
 

� Example – Summing-Amplifier 
For the following circuit: 

 
Find the largest value of Vx while Op Amp is in linear region. 
 
Solution 
Vo = -Rf *(Va/Ra + Vb/Rb) = -400(2/10 + Vx /50) = - 80 - 8Vx  
Linear region �  -20 ≤ Vo ≤ 15   �  -20 ≤ - 80 - 8Vx ≤ 15  
Simplify � 60 ≤ - 8Vx ≤ 95 � -7.5 ≥ Vx ≥ -11.9 
The largest value of Vb that keeps the Op Amp in Linear Region (not saturated) is -7.5 V 

 

_ 
 
 
+ 

+ 
- -20V 

+15V 

Vo 

50 KΩ 

400 KΩ 

Vx 

ip 

in Vn 

+ 
- 

10 KΩ 

2 V 

_ 
 
+ 

-VEE 

+Vcc 

If 

Vo 

In 

Ra 
Va 

Ia 
Rf 

Vn Rb 
Vb 

Ib 

Rc 
Vc 

Ic Vp 
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� Non-inverting-Amplifier Circuit 
Non-inverting-Amplifier scales (amplified or attenuated) the source voltage (Vg) and outputs it as 
Output Voltage (Vo). 
 
� Circuit Diagram 

 
� Circuit Analysis 

KCL at the Node  n � Vn/Rs + (Vn –V0)/Rf + In = 0 
Ideal Op Amp � In = Ip = 0  & Vp=Vn  
From the circuit � Vp = Vg   since Ip =0 then there is no voltage drop across Rg 
 
Combine above equation set � Vg/Rs + (Vg –V0)/Rf = 0  � Vo = {(Rs + Rf)/Rs}*Vg  
 
{(Rs + Rf)/Rs} is the scaling factor and the above relationship is valid only in the linear region 
where  –VEE ≤ Vo ≤ Vcc  or  -V EE ≤ {(Rs + Rf)/Rs}*Vg} ≤ VCC. 
 
 

� Example – Non-inverting-Amplifier 
For the following circuit: 

 
Find the Output Voltage, Vo. 
 
Solutions 
Ideal Op Amp � In = Ip = 0  & Vp=Vn  
KCL at the Node  n � Vn/5 + (Vn –Vo)/30 + In = 0  

_ 
 
 
+ 

+ 
- 

-5V 

+5V 

Vo 10 KΩ 

30 KΩ 

500 mv 

ip 

In Vn 
5 KΩ 

Vp 

20 KΩ 

_ 
 

+ 

+ 

_ 

Rs 

-VEE 

+Vcc 

Vo Rg 

Vg 

Vp 

Rf 

Vn 

Ip 

In 
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KCL at the Node  p � (Vp – 0.5)/10 + Vp/20 + Ip = 0 � Vp = 1/3 V 
 
Combine the above set of equation � 1/15 + (1/3 – Vo)/30 = 0 � Vo = 2.33 V. 
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� The Difference Amplifier Circuit 
The output voltage of difference amplifier is proportional to the difference between the two input 
voltages. 
 
� Circuit Diagram 

 
 

� Circuit Analysis 
KCL at the Node  n � (Vn-Va)/Ra + (Vn-Vo)/Rb + In = 0 
KCL at the Node  p � (Vp-Vb)/Rc + Vp/Rd + Ip = 0 
Ideal Op Amp � In = Ip = 0  & Vp=Vn  
 
Combine the above set of equations � 
(Vp-Va)/Ra + (Vp-Vo)/Rb = 0 
Vp = {Rd/(Rc+Rd)}Vb 
 

Plug value of VP in the first equation � 
a

a

b
b

dca

bad V
R

R
V

RRR

RRR
Vo −

+

+
=

)(

)(
 

 
A useful simplified special case is where k= Rb/Ra = Rd/Rc simplifies the equation to: 
  
  Vo = k(Vb – Va) 
 
The above relationship is valid only in the linear region where  –VEE < Vo < Vcc  
 
 

� Example  - Difference Amplifier 
For the following circuit: 

_ 
 
+ 

+ 

_ 

Ra 

- V EE 

V CC 

Vo Rc 

Vb 
+ 
_ 

Va 

Rb 

Rd 

Vn 

Vp 
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Find the range of Vx  values that will result in Linear operation (Not Saturated) of OpAmp. 
 
KCL at Vn  � (Vn – 2)/10 + (Vn – Vo)/40 = 0  �  5Vn -8 = Vo 
KCL at Vp  � (Vp – Vx)/2.5 + Vp/10 =0   �   5Vp - 4Vx = 0  � Vp = 4Vx/5 
Ideal Op Amp Characteristics In=Ip=0; Vn=Vp 
 
Combine the above  equations � Vo = 5(4Vx/5) -8  � Vo= 4Vx -8 
 
Linear region  �  -20 ≤ Vo ≤ 20   �  -20 ≤ 4Vx -8 ≤ 20  � -3 ≤ Vx ≤ 7 
 

 
� Example – Build a comparator using ideals Op Amps such that it meets the following conditions (0.2 

volts of tolerance is allowed):: 

 
Solution 
This problem can be solved using 4 Non-inverting Amplifiers as shown below: 

• Vout1 > 3.5 Volts when Vin >1 v , otherwise Vout1 < 0.4 
• Vout2 > 3.5 Volts when Vin > 2 v , otherwise Vout2 < 0.4 
• Vout3 > 3.5 Volts when Vin > 3 v , otherwise Vout3 < 0.4 
• Vout4 > 3.5 Volts when Vin >  4 v , otherwise Vout4 < 0.4 

+5 V 
Gnd 

Vin 

Comparator Vout1 
 
Vout2 
 
Vout3 
 
Vout4 

_ 
 
 
+ 

+ 
- 

-20V 

20V 

Vo 2.5 KΩ 

40 KΩ 

2.0V 
Ip 

In Vn 10 KΩ 

Vp 

+ 
- 10 KΩ 

Vx 
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_ 
 
+ 

GND 

+5V 

Vout1 1 KΩ 

1 KΩ 

33 KΩ 

1 V 

_ 
 
+ 

GND 

+5V 

1 KΩ 

1 KΩ 

33 KΩ 

2 V 

_ 
 
+ 

GND 

+5V 

1 KΩ 

1 KΩ 

33 KΩ 

3 V 

_ 
 
+ 

GND 

+5V 

1 KΩ 

1 KΩ 

33 KΩ 

4 V 

Vout2 

Vout3 

Vout4 

Vin 
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5.4. Common Mode (cm) vs. Differential Mode (dm) 

Op Amp’s two input present two types of voltages.  One is the difference between the positive and 
negative input voltage which is called the Differential Mode voltage and the other is the difference 
between the input and the ground or  common) which is called the Common Mode voltage. 
 
In most application, the signal is carried by the Differential Mode voltage and the Common Mode voltage 
is the result of unwanted energy (noise) from other electrical sources in the environment.  So it is 
important to minimize the impact of Common Mode voltage (noise) and maximize the impact of 
Differential Mode voltage. 
 
The first step is to redraw Op Amp circuits so that the input is represented in terms of Common Mode and 
Differential Mode voltage.  Starting with the Difference-Amplifier circuit shown below: 

 
Applying the definition of Differential Model and Common Mode voltages results in the following two 
equations: 

1) Vdm = Vb – Va   (Differential Mode voltage - Signal) 
2) Vcm = (Vb + Va)/2 (Common mode voltage - Noise) 

 
Rewriting the equation so that the value of voltage sources are written in terms of Vcm and Vdm results in 
the following two equations:: 

1) Va = Vcm – (1/2)Vdm 
2) Vb = Vcm + (1/2)Vdm 
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Using the above two equation, the initial Difference-Amplifier can be redrawn as: 

 
From earlier section, it is known that for a Difference amplifier, the following relationship is correct: 
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By substituting for Va and Vb with their equivalent in terms of  Vcm and Vdm, the output voltage equation 
may be rewritten as: 
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An Ideal Difference Amplifier has a Common Mode Gain of zero (Acm = 0). This is an Ideal Difference 
Amplifier since it eliminates the impact of Common Mode voltage (Noise) from the output.   
 
Ideal Difference Amplifier definition (Acm  = 0) �  RaRd – RbRc = 0 �   Rc=Ra & Rd=Rb 
 
 which means the output equation simplifies to the following equation for an Ideal Difference Amplifier: 

   
dm

a

b V
R

R
Vo =  

 
The goodness of a Non-Ideal Difference Amplifier is measured based on the value of Common Mode 
Rejection Ratio ( CMRR = |Adm/Acm| ).  The larger CMRR, the closer the ideal Difference-Amplifier. In 

other word, CMRR = ∞ represent an ideal Differential Amplifier which Occurs when either Vcm is infinite or 
Vdm is zero.. 
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5.5. Op Amp DC Model 

Although the Ideal Op Amp model provides a simple model for analyzing OP Amp circuits, some 
application required better approximation.  In this section, a more realistic model for the Op Amp is 
introduced which is referred to as the DC Model.  Here are three differences between DC and Ideal Model 
of OP Amp: 
 

1) Ideal Model assumed an infinite input resistance, DC model uses the input resistance which can 
be found in the Op Amp Specifications (for example: Ri for LM 324 is 2 MΩ) 

2) Ideal Model assumed an infinite open loop gain, DC model uses the value from the Op Amp 
Specifications (for example: A for LM 324 is 100,000) 

3) Ideal Model assumed an output resistance of zero, DC model uses the value from the Op Amp 

Specifications (for example: Ro for LM 324 is 75 Ω) 
 

It is understood that the ideal Op Amp Model assumptions such as Vp=Vn and Ip=In=0 are not valid when 
using the DC model.  The following  circuit diagram shows the equivalent circuit for Op Amp when using a 
DC Model: 
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� Example – OpAmp DC Model 
Use OpAmp DC Model (Ro=75Ω and Ri = 2 MΩ) to find Vo for the following circuit: 

 
 
Solutions 
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KCL @ Vn �  (Vn – 2) + (Vn – Vo)/10 + (Vn -3)/2003 = 0 
KCL @Vo � (Vo - Vn)/10 + Vo – 105(Vp-Vn)/0.075 + Vo = 0 
Where Vp = 3 + 3(Vn -3)/2003 
 
 
� Example – OpAmp DC Model 

Find Vo for the following circuit using the DC model of Op Amp: 

 
Form the circuit � Vp=0  
KCL at Vn � (Vn – Vs)/Rs + Vn/Ri + (Vn – V0)/Rf = 0 
KCL at Vo � (V0 – Vn)/Rf + (V0 – A(Vp – Vn)/Ro) + Vo/RL=0 
 
Simplify the equations 
(1/Rs + 1/Ri + 1/Rf)Vn – Vo/Rf - Vs/Rs = 0  � Vo = Rf {(1/Rs + 1/Ri + 1/Rf)Vn - Vs/Rs} 
 (1/Rf + 1/Ro + 1/RL)V0 – (1/Rf – A/Ro)Vn=0  � Vn = (1/Rf + 1/Ro + 1/RL)/(1/Rf – A/Ro) 
 
Plug Vn into first equation 
Vo = Rf {(1/Rs + 1/Ri + 1/Rf)(1/Rf + 1/Ro + 1/RL)/(1/Rf – A/Ro) - Vs/Rs} 
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5.6. Summary 

 
� Ideal Op Amp Model 

A=∞ 
Vp = Vn 
Ip = In = 0 
 

� DC Op Amp Model 

 
� Common & Differential Mode 
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5.7. Additional Resources 

 
� Nilsson, J.  Electrical Circuits. (2004)  Pearson. 

Chapter 5. 
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5.8. Problems 

 
Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 6.  Capacitors and Inductors  

 
Key Concepts and Overview 
 
� Passive Elements 

� Inductor, L 

� Series and Parallel Inductors 

� Capacitor, C 

� Series and Parallel Capacitors 

� Additional Resources 
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6.1. Passive Elements 

 
In the study of electricity, electrical components are classified either as passive elements or active 
elements.  Passive elements are the elements that consume energy.  In other words, they are not 
capable of power gain.   On the contrary, active elements are the elements that can produce energy or 
are capable of power gain. 
 
So far four active elements have been introduced which are current source, voltage source, transistor and 
OpAmp.  And the only passive element introduced is resistor which relates voltage and current.  In 
addition to resistor, inductor and capacitor are also passive elements that are well understood and will be 
introduced in detail later in this section. The fourth element is called a Memristor and in 1971, Leon Chua 
theorized its existence but it was not until 2008 that a working memristance was developed by scientists 
at Hewlett Packard. 
 
The four fundamental circuit variables are current, I; voltage, V, charge, Q; and magnetic flux, Φ.  The first 
three circuit variables have already been introduced in earlier chapters. Magnetic flux, represented by the 
Greek letter Φ (phi), is a measure of quantity of magnetism.  Magnetic flux is measured in units of weber 
(volt-seconds) per square meter, or tesla.  Magnetic field surrounds electric current so if charge is 
traveling through a wire (current), it will result in a magnetic field that would surround the wire. 
 
Each of the four basic passive components relates two of the four circuit variables as shown below: 
 

 
 
You may have noticed that both capital and lower case letters are used to represent circuit variables such 
as current and voltage. In electrical engineering, capital letters are used to refer to circuit variables when 
they are constant with respect to time.  Prior to this section most of the circuits analysis was done with 
constant circuit variables.  In this section, circuit variables may not be constant with respect to time and 
therefore lower case letters will be used as it is done in the above overview diagram of relationship 
between electrical circuit elements and variables. 
 
Remainder of this chapter introduces inductor, L, and capacitor, C. 

Voltage, v 

Charge, q Current, i 

Flux, φ 

Resistor, R, dv=Rdi Capacitor, C, dq=Cdv 

Inductor, L, dφ=Ldi 
Memristor, M, dφ=Mdq 

dφ=vdt 

dq=idt 
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6.2. Inductor, L 

Inductor is traditionally built by winding a coil of wire around a supporting core which its material may or 
may not be magnetic.  In some cases, the core is simply air (a nonconducting - dielectric).  Inductors are 
manufactured from variety of material and are packaged based on the application requirement so it is 
difficult to know an inductor’s characteristic without the manufacturer’s specifications. 
 
Below is a basic inductor construction for the purpose of demonstrating the underlying physical 
phenomenon and corresponding schematics: 

 
“henry” is the units used to measure inductance.  The henry (symbol: H) is named after Joseph Henry, the 
18

th
 century American scientist who discovered electromagnetic induction (see flux lines) about the same 

time as Michael Faraday made the similar discovery in England.  Faraday is not forgotten, Farad which is 
units of capacitance measurement is named after him. 
 
As electric current flows through a wire (charge moving), the charge movement causes the generation of 
electromagnetic field (flux) which induces voltage across the inductor terminals.  The resulting voltage is 
derived by the following equation: 
 

dt

tdi
Ltv

)(
)( = When 

Voltage, v(t), is in Volts 
Current, i(t), is in Amps 
Inductance, L, is in henrys 
 

As it can be seen from the above equation, voltage is only generated when the current changes.  Here 
are a few observations: 
 

1) If current is constant then the voltage across the inductor is Zero. 
2) If the Current is changed from one level to another in time interval dt �0 then v (t) � ∞. 
3) If the current changes linearly then voltage remain constant as shown in the following 

diagram: 

Core 

+                 v(t)                      - 

i(t) 

+       v(t)          - 

i(t) 

Physical Construction  ���� 

Circuit Symbol  ���� 
Note that passive convention is used. 

Flux Lines 

Flux Lines 

L 
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Application of introductory calculus  is used to calculated inductor current in the term of voltage as shown 
below: 
 

Integrate 
dt

tdi
Ltv

)(
)( =   from t0 to t  

∫ +=
t

t

tidv
L

ti

0

)()(
1

)( 0ττ   Where i(t0) is value of inductor current at t0 also called initial condition 

 
The Power and Energy calculation in inductor are shown here 
 

� Inductor Power Calculation, p(t) 
Start with  p(t) = v(t) * i(t)  and substitute equivalent of v(t) in terms of i(t) 

dt

tdi
tLitp

)(
)()( =  

 
�  Inductor Energy or Work Calculation, w(t) 
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tLitw
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∫∫  

  where w(t) is in Joules, L is in henrys and i(t) is in Amperes 
 

As it can been seen from the above power and energy calculation, inductor stores energy that may be 
delivered over time.  This is different from resistor which did not have the ability to store electrical energy 
and would instantly react to changes in current or voltage. 
 
� Example – Application of Inductor basic relationships 

The current source in the following circuit generates a current, ig: 
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Find: 
  a) v(t) immediately after t=0 which is referred to as v(0

+
) 

 b)  t>0 when voltage v(t) passes through zero. 
 c) The expression for the power delivered to inductor 
 d) Power delivered at t= 25 msec. 
 e) Total energy stored at t=25 msec. 
 
Solutions 
Part a) Find v(t) immediately after t=0 which is referred to as v(0

+
) 
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Part b) Find t>0 when voltage v(t) passes through zero. 
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Part c) The expression for the power delivered to inductor 
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Part d) ) Power delivered to the inductor at t= 25 msec. 
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Part e)  Total energy stored in the inductor at t=25 msec. 

uJouls

ee

ee
tt

5.60000065.0

)1212(*(0.002)*½ =0.025)(t w
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6.3. Series and Parallel Inductors 

Circuits with multiple inductors may be simplified by replacing a network of inductors with one equivalent 
inductor.  As will be demonstrated in this section, the parallel and series networks may be replaced by 
their respective equivalent inductors in order to simplify the circuit. 
 
� Serial Inductors 

This section covers the process for simplifying a series network of inductors. 

 

Original Circuit � v = v1 + v2 + … + vn   �   
dt

tdi
L

dt

tdi
L

dt

tdi
Lv n

)(
...

)()(
21 +++=  

Equivalent Circuit �   
dt

tdi
Lv equ

)(
=  

From the above two equations   �   
dt

tdi
L

dt

tdi
L

dt

tdi
L

dt

tdi
Lv nequ

)(
...

)()()(
21 +++==  

)...(
)(

21 nequ LLL
dt

tdi
L +++=  

For Series network   �  nequ LLLL +++= ...21   with initial condition i(t0) at t= t0 

 
� Example – Simplify Series Inductors 

Find the equivalent inductance of the circuit shown below: 

 
 
Solution 
 

Series network  �  HLequ 0.92.46.32.1 =++=   
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� Parallel Inductors 
This section covers the process of simplifying a parallel inductor network. 

 
KCL at the node in original circuit � i(t) = i1(t) + i2(t) + … +in(t)  

Note:  ik(t) and ik(t0)  represent the instantaneous and initial condition current. 
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KCL at the node in the equivalent  circuit � )()(
1
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From the above two equations �  
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Therefore in a parallel inductors network, equivalent is calculated by:    

  
nequ LLLL

1
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111
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  )(...)()()( 002010 titititi n+++=     “initial conditions of the resulting inductor” 

 
� Example – Simplification of Parallel Inductors Network 

Simplify the following Circuit: 

 
 

The three 300 H are in parallels � HLequ 100
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1
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The two 400 H are in parallels � HLequ 200

400

1

400

1

1
2 =

+

=  

 

 
 

The 100 H is in parallel with (200+200) H � HLequ 80

400

1

100

1

1
3 =

+

=  

 

 
 
The equivalent of the total network � Leq = 25 + 80 = 105 H 
 

 

105 H 

25 H 

80 H 

25 H 

100 H 200 H 

200 H 
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6.4. Capacitor, C 

A capacitor is a circuit element made up of two electricity conducting surface, separated by dielectric (a 
non-conducting or insulating) material. Capacitors are manufactured from variety of material and are 
packaged based on the application requirement so it is difficult to know a capacitor characteristic without 
the manufacturer’s specifications. 
 
Below is a basic capacitor construction for the purpose of demonstrating the underlying physical 
phenomenon and corresponding symbol: 

 
As voltage varies with time, the displacement of charge also varies with time, causing what is known as 
the displacement current. The displacement current is proportional with the change in voltage over time 
and can be calculated based on the following equation: 
 

  
dt

dv
Cti =)(  where: 

    v(t) is the voltage in Volts 
    i(t) is the current in Amps 
    C is measure of capacitance in Farad 
 
Here a few observations based on this equation: 
 

• If voltage, v(t),  is constant then the current through the capacitor is zero. 
• When the voltage changes instantly (dt � 0) then the current, i(t) will be infinity (i(t) � ∞).  

Although voltage cannot change instantly, the nearest approximates is to place a voltage source 
across the capacitor terminal long enough to fully charge the capacitor {i(t)=0}, then replace the 
source with a short across the terminals. This experiment will results in a large current discharge 
and may be extremely dangerous due to large instantaneous current generated. 

Physical Construction ���� 

d

A
C

ε
=  where 

  C is capacitance in Farad 
  A is area of conductor plate 
  d is the thickness of dielectric 
  ε the permittivity of the dielectric 

+       v(t)         - 

i(t) 

C 

Dielectric 

Conductor 

Circuit Symbol ���� 
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Conductor 

i(t) 
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v(t) 
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• Capacitor is a passive component meaning it does not produce power but is able to store energy. 
Below is an example of relating a linear change in voltage with resulting current in a capacitor: 

 

Integrating the earlier equations 
dt

dv
Cti =)(  provides with an equation to calculate Voltage across the 

capacitor in term of current: 

   ∫ +=
t

t

tvdi
c

tv

0

)()(
1

)( 0ττ  

 
Power and energy equations will complete the discussion of capacitor’s behavior: 
 

� Capacitor Power, p(t) Calculation 
Form earlier discussion �  Start with p(t) = v(t) * i(t) 
Substitute Capacitance current equation in the p(t) equation � 

 
dt

dv
tvCtp )()( =  where: 

     Power, p(t), in Watts (W) 
     voltage, v(t), in Volts (A) 
     Capacitance, C, in Farads (F) 
 

� Capacitor Energy or Work, w(t), Calculation 
Form earlier discussion � p(t)= dw/dt  � dw/dt = Cvdv/dt  � dw = Cvdv 
Integrate both side with respect to t �  

  )(
2

1
)( 2 tvCtw =  where: 

     Energy or Work, w(t) is in Joules 
     Voltage, v(t) is in Volts 
     Capacitance, C, is in Farads 
 

Finally it is important to notice the duality of Capacitors and Inductors as one is driven by voltage change 
while the other is driven by the current change. 
 
� Example – Applying Basic Capacitance Relationships 

For the following Circuit: 
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The voltage at the terminals of 0.4 uF capacitor is: 
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tVtetv

tVtv
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g

 

 
Find: 
a) i(t) at t=0

+
 

b) power delivered to the capacitor at t=100 usec. 
c) energy stored in the capacitor at t=200 usec. 
 
Solutions 
a)  Find i(0
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b)  Find the power delivered to the capacitor at t= 100 usec. 
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c) Find the energy stored in the capacitor at t=200 usec. 
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6.5. Series and Parallel Capacitors 

Circuits with multiple capacitors may be simplified by replacing a network of capacitors with one 
equivalent capacitor.  As will be discussed in this section, the parallel and series networks may be 
replaced by their respective equivalent to simplify the circuit. 
 
� Serial capacitor network 

This section covers the calculation of equivalent capacitor for a series capacitor network. 

 
Original Circuit   � v=v1 + v2 + … + vn v=
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1

0tvdtti
C

+∫  

From the above two equations � 
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Therefore   �  

  
nequ CCCC

1
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++=     For series Capacitors 

  )(...)()()( 0020101 tvtvtvtv n+++=  “Initial condition relationship” 
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+ v1 - + v2 - + vn - 

Ceq 

+        v          - I I 
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� Parallel capacitor network 
This section covers the calculation of equivalent capacitor for a parallel capacitor network. 

 
� Example – Application of Capacitor Network Simplification 

The following capacitor network at time t0 is shown with the following initial condition.  Find the 
equivalent capacitor for the following network: 

 
Solutions 
 
5, 3 and 6 uF capacitors are in series �  

  uFCequA 4.1

6

1

3

1

5

1

1
=

++

=  

  vA(t0) = v1(t0)+ v2(t0)+ v3(t0)=7+4-4=7 V 
 
4 and 10 uf capacitors are in series � 

 uFCequB 9.2

10

1

4

1

1
=

+

=  

  vB(t0) = v4(t0)+ v5(t0) =7 V 
  
Redraw the circuit as: 

+ 
v2(t0)=7V 

- 

+ 
v1(t0)=4V 

- 
3 uF 

6 uF 

5 uF 

+  v3(t0)=4V  - 

+ 
v5(t0)=5V 

- 

+ 
v4(t0)=2V 

- 
4 uF 

10 uF 

a 

b 

… 

… 

+ 
 
 

v(t) 
 
 
- 

i 

i1 i2 In 

C1 C2 Cn Ceq 

I= I1 + I2 + … + In 
Ceq dv/dt = C1 dv/dt + C2 dv/dt + …  � 
 
Ceq = C1 + C2 + C3 + …        for Parallel Capacitors 

+ 
 

 
v(t) 
 
 
- 

i 
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1.4 and 2.9 uF capacitors are in parallel � 
  Ceq = CA + CB = 1.4 + 2.9 = 4.3 uF 
  veq(t0) = 7 V 

 

+ 
veq(t0)=7V 

- 
4.3 uF 

+ 
vA(t0)=7V 

- 
1.4 uF 

+ 
vB(t0)=7V 

- 
2.9 uF 

a 

b 

a 

b 
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6.6. Summary 

 

� Relationships 

 

 

 
 

� Simplification 
 
Resistors 

Series:   nequ RRRR +++= ...21  Parallel:   
nequ RRRR

1
...

111

21

+++=  

 
Inductors 

Series:   nequ LLLL +++= ...21  Parallel:   
nequ LLLL

1
...

111

21

+++=  

               Iequ(t0) = I1(t0)= I2(t0)=.. =In(t0)                  iequ(t0) = I1(t0) + I2(t0) +.. + In(t0) 
 

Capacitors 

Series: 
nequ CCCC

1
...

111

21

++=  Parallel:  nequ CCCC +++= ...21  

             Vequ(t0) = V1(t0) + V2(t0) +.. + Vn(t0)                 Vequ(t0) = V1(t0)= V2(t0)=.. =Vn(t0) 
 

+       v(t)         - 

i(t) 

C 

Capacitor, C Farads 

dt

dv
Cti =)(  ∫ +=

t

t

tvdi
c

tv

0

)()(
1

)( 0ττ  

dt

dv
tvCtp )()( =  )(

2

1
)( 2 tvCtw =  

+       v(t)          - 

i(t) 

Inductor, L Henrys 

L dt

tdi
Ltv

)(
)( =  ∫ +=

t

t

tIdv
L

ti

0

)()(
1

)( 0ττ  

dt

tdi
tLitp

)(
)()( =  )(

2

1
)( 2 tLitw =  

 

+       v(t)          - 

i(t) 

Resistor, R Ohms 

)(*)( tiRtv =  
R
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ti
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)( =  

Rti
R
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tp

2
2

)(
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t
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6.7. Additional Resources 

 
� Nilsson, J.  Electrical Circuits. (2004)  Pearson. 

Chapter 6. 
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6.8. Problems 

 
Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 7.  First-Order (RL & RC) Circuits  

 
Key Concepts and Overview 
 
� Definitions 

� Step Response of a First Order Circuit (RL & RC) 

� Natural (Source-Free) of a First Order Circuit (RL & RC) 

� Additional Resources 
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7.1. Definitions  

Inductors (L) and capacitors (C) have the ability to store energy which means the relationships between 
current and voltage in circuits with L and C are not linear algebraic as they were with only resistors (R).  
Therefore, analysis of circuits with R, L and C will be discussed in two levels: 
 

First Order Circuit – The circuit with only one storage element (C or L) and R is called first order 
circuit since the equation describing the relationship between current and voltage is first order 
differential equation.  The first order circuit may be a RL circuit or a RC circuit.  This chapter 
introduces first order circuits.   Instaneouse equation for given RL and RC circuits may be written 
as a differential equation and solved as shown below: 

 
 
Second Order Circuit – The circuits with both L and C present is a second order circuit which is 
also refers to as an RLC circuit. This is called second order circuit since the equation describing 
the relationship between current of voltage is 2

nd
 order differential equation.  This type of circuit 

will be covered in the next chapter. Instantaneous equation for a given RLC circuit may be written 
as a differential equation using KCL as shown below: 

+ 
- 

Vs(t) C 
I(t) L 

+ 
 
v(t) 
 
_ 

R 

+ 
- 

Vs(t) 

I(t) 

+ 
 
v(t) 
 
_ 

R 

-Vs + Ri + L di/dt = 0 

0
1

0
1

=++−

=++− ∫

i
Cdt

di
R

dt

dv

or

idt
C

Riv

s

s
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For any circuit with storage elements (C & L), finding the circuit response (output) requires understanding 
the three distinct circuit phases (Start up, on-going operation and shutdown).  The following three 
responses match the three phases of a typical RC, RL or RLC circuit:  
 

Step Response - Refers to circuit analysis and response when the power is first applied and 
before the circuit has stabilized.  The Step Response for first order circuits (RC and RL) will be 
discussed in the next sections. 
 
Steady State Response - After the circuit has been powered long enough for the circuit to 
stabilize and long enough before the power is removed as not to impact operation, it is said that 
the circuit is in Steady State.  The circuit analysis in this phase is referred to as the Steady State 
analysis and the output is referred to as the steady state response.  During this state, the circuit is 
operating in Steady State mode. 
 
Natural Response - After the circuit power supply has been removed, the circuit is said to be in 
Natural state (no external power).  The Response from this type of circuit is referred to as the 
natural response. The Natural Response for first order circuits (RC and RL) will be discussed in 
this chapter also.  
 

C 
+ 
- 

Vs(t) 

I(t) 

+ 
 
v(t) 
 
_ 

R 

0
1)(1

0
1)(

2

2

=++
−

=++
−

∫

v
Ldt

vd
C

dt

vvd

R

or

vdt
Ldt

dv
C

R

vv

s

s

 

L 
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The remainder of this chapter introduces analysis of Step Response and Natural Response of RL and RC 
circuits and associated first order differential eauations.  Next chapter will repeat the analysis for RLC 
circuits and associated second order differential equations.  Finally, Chapter 9 covers the Steady State 
Response. 
 
 

Step Response 
“Circuit Response During Power Up” 

Natural Response 
“Circuit Response During Power Down” 

t 

Steady State Response 
“Circuit Response (output) During Normal or Steady State Operation” 
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7.2. Step Response of a First Order Circuit (RL & RC) 

Step response is the current and voltage that results when a source is connected to a circuit that has not 
been powered long enough so that the energy stored in the inductor and capacitor is equal to zero.  In 
other words, the voltage across the capacitor equals zero and current through the inductor equals zero at 
the time the power is connected to the circuit.  The following diagrams are typically used to demonstrate 
this concept.  

 

t=0 

+ 
- 

Vs 
+ 
v(t) 
_ 

R 
C 

Typical RC Circuit 
 
Step Response (t≥0) 
 
Use Node Voltage and integrate: 
 

( ) 0)( /

0 ≥−+=

=+

−
tforeRIVRItv

I
R

v

dt

dv
C

RCt

ss

s
 

 
Where: 
  V0 is initial capacitor current (=0)  

  Circuit Time Constant  τ = RC  

t=0 

Typical RL Circuit 
 
Step Response (t≥0) 
 
Use Mesh Current and Integrate: 

0)( )/(

0 ≥







−+=

+=

−
tfore

R

V
I

R

Vs
ti

dt

di
LiRVs

tLRs

Where: 
  I0 is initial inductor current  (=0) 

  Circuit Time Constant  τ = L/R  

I(t) 

i(t) 

t 

Vs/R 

Is 

L 

+ 
 
v(t) 
 
_ 

R 

v(t) 

t 

Vs 

0        τ        2τ        3τ 
 

Vs/e 

0        τ        2τ        3τ 
 

(1- 1/e
2
) Vs/R 

(1- 1/e) Vs/R 
 

Vs/e
2
 

v(t) 

t 

IsR 

0        τ        2τ        3τ 
 

(1- 1/e
2
) IsR 

(1- 1/e) IsR 
 

i(t) 

t 

Is 

0        τ        2τ        3τ 
 

Is/e 

Is/e
2
 

i(t) 
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� Observations 

� As the power is applied to the capacitor, initially, it appears as a short and then after a long time 

(>>τ) it will appear as an open.  
� As the power is applied to the inductor, initially, it appears as an open and then after a long time 

(>>τ) it will appear as a short. 
� Typically t=0

-
 is used to refer time just before 0 and t=0

+
 is used to refer time just after time 0. 

 

 
� Although the typical RL and RC circuits shown above are simple, from earlier chapters, it is 

understood that any first order circuit may be simplified to the typical circuit form: 
� Any RL circuit may be simplified to the typical form shown, by finding the venin’s equivalent 

with respect to inductor’s terminals. 
� Any RC circuit may be simplified to the typical form shown above by finding the Norton 

equivalent circuit with respect to capacitor’s terminals.  
 
� Examples – First Order Circuit Step Response 

For the following circuit:  
 

 
Switch has been open for a long time before the switch is closed at t=0. Calculate the value of i(0

-
), 

i(0
+
).  Find the equations for i(t) and v(t) for t > 0. 

 
Solution 
t=0

-
 refers to time just before the switch is closed or T�0 from the negative side.  v(0

-
) refer to 

voltage after the circuit has been in the following configuration for a long time. 
 

Which means the inductor does not have any energy � i(0
-
) = 0 V 

+ 
- 

20 V 400 mH 

5 kΩ 

10 kΩ 

i(t) 

+ 
- 

20 V 

t=0 

400 mH 

i(t) 

5 kΩ 

10 kΩ 

t=0
- 
                       t=0                       t=0

+
 

ε �0 ε �0 
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t=0

+
 refers to time just after the switch is closed since Δt = {(t=0

+
) – (t=0

-
)} � 0  and it physically not 

possible for inductor current to change instantly, we can conclude that i(0
+
) = i(0

-
) = 0 V 

 
To Calculate i(t) for t>0, draw the circuit with the switch closed: 

 
At this point we have a choice to either derive the differential equation for this circuit or get the circuit 
to the typical circuit which we have the solution for.  The easier method is to find the Thevenin 
equivalent of the circuit with respect to terminals a and b. 
 
Rth can we found by deactivating the voltage source (short) which reduces the circuit to: 

 
Rth = (5 || 10) = 3.3 kΩ 
 
To find Vth or Voc, use the following circuit which is simply a voltage divider. 

 
Voc = 20 * 10 / ( 10 + 5) = 13.3 V 
 
Now that we have Thevenin equivalent, apply it to the original circuit at t>0 which results in the 
following equivalent circuit  
 

+ 
- 

20 V 

5 kΩ 

10 kΩ 

a 

b 

+ 
 
Voc 
 
- 

5 kΩ 

10 kΩ 

a 

b 

+ 
- 

20 V 400 mH 

+ 
 
 
v(t) 
 
 
_ 

5 kΩ 

10 kΩ 

a 

b 
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With the above circuit, the Step Response equation derived for typical RL circuit can be used in this 
problem: 
 

0)( )/(

0 ≥







−+=

+=

−
tfore

R

V
I

R

Vs
ti

dt

di
LiRVs

tLRs

 

044)(

0
3.3

3.13
0

3.3

3.13
)(

8250

)4.0/3300(

≥−=

≥







−+=

−

−

tAforeti

tforeti

t

t

 

019300)(

08250*4*4.0
)(

)(

8250

8250

≥=

≥==

−

−

tforVetv

tfore
dt

tdi
Ltv

t

t

 

 

+ 
- 

13.3 V 400 mH 

+ 
 
 
v(t) 
 
 
_ 

3.3 kΩ a 

b 
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7.3. Natural (Source-Free) Response of a First Order Circuit (RL & RC) 

When the circuit has been supplied by a source for a long-time such that the circuit is in steady state and 
then the source is removed, the response is called a Natural Response. In other words,  Natural response 
is the currents and voltages that result from discharge of stored energy is the inductor and capacitors. 
 
The following section uses a typical RL and RC circuit to derive the relationship for Natural Response. 
 

 
� Examples – First Order Circuit  Natural  Response 

For the following circuit:  

+ 
- 

Rth 

Vth 

+ 
 
 

v(t) 
 
 
_ 

R 
C 

Typical RC Circuit 
 
Natural Response (t≥0) 
 
Using Node Voltage & Integrate:  

0)0()(

0

/ ≥=

=+

−
tforevtv

R

v

dt

dv
C

RCt

 

 
Where: 

   Circuit Time Constant  ττττ = RC  

i 
t=0 

R 

Typical RL Circuit 
 
Natural Response (t≥0) 
 
Using Mesh Current & Integrate: 

0)0()(

0

)/( ≥=

=+

−
tforeiti

iR
dt

di
L

tLR

 

 
Where: 

   Circuit Time Constant  ττττ = L/R  

i 

Isc Ro 

L 

+ 
 
 

v(t) 
 
 
_ 

t=0 

v(t) 

t 

v(0) 

0        τ        2τ        3τ 
 

v(0)/e 

v(0)/e
2
 

i(t) 

t 

i(0) 

0        τ        2τ        3τ 
 

i(0)/e 

i(0)/e
2
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V  
Switch has been in position A for a long time.  At the time t=0, the switch is moved to position B, find 
i(t) for t >0. 
 
Solution 
First calculate the Initial condition vC(0

-
). C has been energized for a long time, therefore the C will 

appear open.  The circuit can be redrawn as shown below just before the switch is moved: 
 

 
vc(o

-
) = 15 * 12/ (8 + 12) = 9 V  Initial voltage of the capacitor. 

 
At time t > 0, after the switch has been moved to Position B � 
Our goal is to simplify the circuit to be the same as the typical RC circuit so that we can apply the 
equations derived. 

 
Combine the resistors � 

8 kΩ v(t) 

12 kΩ 
200 uF 

+ 
 
Vc(t) 
 
- 

i(t) 

+ 
- 

8 kΩ v(t) 

12 kΩ 
15 V 

+ 
 
Vc(t) 
 
- 

+ 
- 

8 kΩ v(t) 

12 kΩ 
200 uF 

t=0 

A 

B 

15 V 

+ 
 
Vc(t) 
 
- 

i(t) 
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KCL � 0
4800

2.0 =+ CC v

dt

dv
 

Apply the natural response  equation 

0)0()(

0

/ ≥=

=+

−
tforevtv

R

v

dt

dv
C

RCt

 

 

09)( 96./ ≥= − tforetv t
 

0
4800

9)(
)(

96./

≥==
−

tfor
e

R

tv
ti

t

 

  

v(t) 

4.8 kΩ 

+ 
 
Vc(t) 
 
- 

i(t) 

200 uF 
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7.4. Summary 
 

� Step Response of a First Order Circuit (RL & RC) 
 

 
  

t=0 

+ 
- 

Vs 
+ 
v(t) 
_ 

R 
C 

Typical RC Circuit 
 
Step Response (t≥0) 
 
Use Node Voltage and integrate: 
 

( ) 0)( /

0 ≥−+=

=+

−
tforeRIVRItv

I
R

v

dt

dv
C

RCt

ss

s
 

 
Where: 
  V0 is initial capacitor current (=0)  

  Circuit Time Constant  τ = RC  

t=0 

Typical RL Circuit 
 
Step Response (t≥0) 
 
Use Mesh Current and Integrate: 

0)( )/(

0 ≥







−+=

+=

−
tfore

R

V
I

R

Vs
ti

dt

di
LiRVs

tLRs

Where: 
  I0 is initial inductor current  (=0) 

  Circuit Time Constant  τ = L/R  

I(t) 

i(t) 

t 

Vs/R 

Is 

L 

+ 
 
v(t) 
 
_ 

R 

0        τ        2τ        3τ 
 

(1- 1/e
2
) Vs/R 

(1- 1/e) Vs/R 
 

v(t) 

t 

IsR 

0        τ        2τ        3τ 
 

(1- 1/e
2
) IsR 

(1- 1/e) IsR 
 

i(t) 
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� Natural Response of a First Order Circuit (RL & RC) 
 

 
�  Process of determining Step and Natural Response 
 

1) Decide if the circuit has Step Response (includes at least one source) after the change or the 

circuit has Natural Response (No Source). Select the appropriate typical circuit & associated 

solution. 

2) Calculate initial conditions (After a long time of constand voltage and current settings). 

(Inductor is short or vL(t0)=0 ; Capacitor is open or iC(t0)=0) 

3) Use the standard solution form for your circuit to calculated v(t) and i(t) for t>t0. 

 

+ 
- 

Rth 

Vth 

+ 
 
 

v(t) 
 
 
_ 

R 
C 

Typical RC Circuit 
 
Natural Response (t≥0) 
 
Using Node Voltage & Integrate:  

0)0()(

0

/ ≥=

=+

−
tforevtv

R

v

dt

dv
C

RCt

 

 
Where: 

   Circuit Time Constant  ττττ = RC  

i 
t=0 

R 

Typical RL Circuit 
 
Natural Response (t≥0) 
 
Using Mesh Current & Integrate: 

0)0()(

0

)/( ≥=

=+

−
tforeiti

iR
dt

di
L

tLR

 

 
Where: 

   Circuit Time Constant  ττττ = L/R  

i 

Isc Ro 

L 

+ 
 
 

v(t) 
 
 
_ 

t=0 

v(t) 

t 

v(0) 

0        τ        2τ        3τ 
 

v(0)/e 

v(0)/e
2
 

i(t) 

t 

i(0) 

0        τ        2τ        3τ 
 

i(0)/e 

i(0)/e
2
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7.5. Additional Resources 

 
� Nilsson, J.  Electrical Circuits. (2004)  Pearson. 

Chapter 7. 
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7.6. Problems 

 
Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 

 
.  
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Chapter 8.  Second Order (RLC) Circuits 

 
Key Concepts and Overview 
 
� Overview 

� Parallel RLC Circuit Step Responses 

� Parallel RLC Circuit Natural Responses 

� Series RLC Circuit Step Responses 

� Series RLC Circuit Natural Responses  

�  Summary – General Form 

� Additional Resources 
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8.1. Overview 

This chapter is focused on RLC circuit which includes at least a capacitor, an inductor and a resistor.  
Techniques such as KCL, KVL and their extensions from earlier chapters will be used to analyze the RLC 
circuit.  The resulting equations for RLC circuit step and natural responses will be ordinary second order 
differential equations.  The word ordinary implies the all derivatives are with respect to one variable which 
is time, t. 
 
It is understood that not all ordinary differential equations have analytical solution (mathematically 
solvable).  In many cases numerical techniques and aid of computer programming will be required to 
approximate the answer.  In this chapter the analyzed circuits will be limited to pure series or pure parallel 
RLC circuits which ensure the resulting differential equations are of the following form: 
 

02 2

02

2

=++ xw
dt

dx

dt

xd
α  

 
This differential equation form is known to have analytical solutions consisting of linear combinations of 
Ke

st
.  Differential equation solutions are typically found by using the known differential equations and 

solutions form.  The specific solutions to a differential equation can be found by plugging the known 
archetype solutions into to differential equation to find the specific solutions.  The initial condition values 
of x(t) and dx/dt are used to find the associated constants and parameters. 
 
The following derivation uses the technique described above to find the specific solutions to the earlier 
general differential equation using the archetype solutions, x(t)=Ke

st
: 

 

02 2
0

2 =++ ststst
KewKseeKs α  

Ke
s
  is factored out. 

0)2( 2
0

2 =++ wssKe
st α  

It is known that Ke
st
≠0 for all finite values of t. Therefore, both sides can be divided by Ke

st
, resulting  in 

the following quadratic equation: 

02 2
0

2 =++ wss α  

Solving the above quadratic equation � 

2

0

2 ws −±−= αα    

 
Therefore response, x(t),  may be written as: 

tsts

f eKeKXtx 21

21)( ++=  Where: 

 

Characteristic equation is { 02 2
0

2 =++ wss α } 

 
s1 and s2 are the characteristic roots, also referred to as the complex frequencies. They 

describe the mathematical character of the system. 

sec/

sec/

2

0

2

2

2

0

2

1

radws

radws

−−−=

−+−=

αα

αα
 

 

α is the neper frequency, also referred to as the damping coefficient or factor.  The name is 
derived from the fact that x(t) is damped equal to e

- α
. 

 
ω0 is the resonant radian frequency, also referred to as the undamped natural frequency. 
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ωd is the damped radian frequency, and is defined as: sec/22

0 radwwd α−=  

 
Xf is the time independent portion of x(t) and also referred to as the final value.  The name “final 

value” means that as t approaches infinity, Xf is the only non-zero portion of x(t).  In other 
words, Xf = x(∞). 
 

K1 and K2 are constants that are calculated using the initial condition of x(t) and dx/dt.  
 

Depending on the relationship between ω0 and  α, the response, x(t), may be Overdamped (ω0
2
 < α

2
),  

Critically damped (ω0
2
 = α

2
),  or Underdamped (ω0

2
 > α

2 
). More information on each of the three circuit 

types are presented below: 
 

� x(t) is Overdamped if ω0
2
 < α

2
  

o s1 and s2 will be both real and distinct.  
o x(t) approaches final value without oscillation 

 
o Response may be rewritten as: 

tsts

f eAeAXtx 21

21)( ++=  

 
� x(t) is Critically damped if ω0

2
 = α

2
  

o s1 and s2 will be both real and equal. 
o x(t) is on the verge of Oscillating about its final value 

 
o Response may be rewritten as: 

tt

f eDteDXtx
αα −− ++= 21)(  

 
� x(t) is Underdamped if ω0

2
 > α

2
 

o s1 and s2 will be both complex and conjugate of each other.  
Note: (a+jb) is conjugate of (a-jb); conjugate means j is replaced by –j. 

o x(t) oscillates about its final value 

 
o Response may be rewritten as: 

tweBtweBXtx d

t

d

t

f sincos)( 21

αα −− ++=  

 
 
The remainder of this chapter focuses on application of the above mathematical model to Step and 
Natural responses analysis of the following specific circuit types: 
 

Final Value, Xf t 

x(t) 

Final Value, Xf 
t 

x(t) 

Final Value, Xf t 

x(t) 
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1. Parallel RLC Circuit Step Response 
2. Parallel RLC Circuit Natural Response 
3. Series RLC Circuit Step Response 
4. Series RLC Circuit Natural Response 

 
The steady state RLC circuit response will be covered in chapter 9. 
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8.2. Step Response of a Parallel RLC Circuit 

This section introduces the Parallel RLC circuit and step response analysis.  At time, t=0, the switch is 
opened which means current starts to flow to the RLC part of the circuit.  For this analysis, it is assumed 
that energy stored in C as represented by voltage, Vo and the energy in L as represent by current, Io, are 
both equal to zero at t=0. 
 

 
Apply KCL � 
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Comparing the above equation with the characteristic equation: 02 2
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Depending on the relationship between ω0 and  α, the response “output voltage, v(t)” may be 
Overdamped (ω0

2
 < α

2
),  Underdamped (ω0

2
 > α

2 
) or  Critically damped (ω0

2
 = α

2
),  one of the following 

three types: 
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+ 
Vo 
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Io 
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tweBtweBItidUnderdampe
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eAeAItiOverdamped
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Where: 

• A1, A2, B1, B2, D1, D2, A1
’
, A2

’
, B1

’
, B2

’
, D1

’
, D2

’  
coefficients can be found by using the initial 

conditions: 
o For voltage use v(0

+
) =V0 and dv(0

+
)/dt which are derived from the capacitor 

voltage. 
o For current use i(0

+
), =I0 and di(0

+
)/dt which are derived from the inductor current. 

• Vf is the value of voltage source or the capacitor voltage as t approaches infinity. 
• If is the value of current source or the inductor current as t approaches infinity. 

 
In summary, the following four steps may be used to find v(t): 
 

(1) Find roots of Characteristic equation using R,L & C value. 
(2) Decide if the circuit is over damped, under damped or critically damped. 
(3) Find v(o

+
) and dv(0

+
)/dt using circuit analysis 

(4) Find Coefficients of v(t) using initial Conditions. 
 

Similar approach may be used to find the expression for i(t).  Additionally, this process is applicable to 
all 4 types of circuits discussed in the chapter. 

 
� Example – Parallel RLC Step Response  

For the following circuit where the switch is opened after a long time.: 

Find: 
a) Range of R values such that the circuit is underdamped, overdamped and critically damped. 
b) Expression for iL(t) when t ≥ 0 and R=250 Ω. 
 
Solution 
a)  Range of R values such that the circuit is underdamped, overdamped and critically damped 

FrequencyRadiansonantrad
LC

w

FrequencyNeperrad
R

x

RC

Resec/10
1

sec/
1025

2

1

5

0

6

==

==α

 

Conditions for each type of circuit response are listed below: 

C=20 nf 5 mH R 

+ 
 

v(t) 
 
- 

t=0 20 mA ic iL iR 
+ 
Vo 
- 

Io 
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b) Expression for iL(t) when t ≥ 0 and R=250 Ω 

Based on Calculation in part a, the circuit is critically damped for this value of R.  Therefore, the 
Critically damped current equation for the circuit may be used: 

tt

L eDteDItiDampedCritically 1
'

2

'

1

22

0 )()(( αααω −− ++=⇒=  

 
I is the final value of Inductor current which would the same as the source current of 20 mA 
therefore: 

tt

L eDteDti 1100000'

2

100000'

102.0)( −− ++=  

Now, need to find the values of D1 and D2’  using the initial conditions  
 
There is no energy stored in inductor prior to opening the switch � IL(0

+
) =0 

initial voltage of the capacitor is zero therefore it will after switch is closed  

0)0( =⇒= +

dt

di

dt

Ldi
v LL

 

Apply the initial conditions to the characteristic equation. 
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therefore  
tt

L teeti 100000100000 02.0000,202.0)( −− −+=  

 
It is recommended that the reader plot the iL(t) to see an example of critically damped signal.  
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8.3. Natural Response of a Parallel RLC Circuit 

This section introduces the Parallel RLC circuit natural response analysis.  At t=0, the source is removed 
from the circuit which means the energy stored in L and C will be powering the circuit.  For this analysis, it 
is assumed that energy stored in C as represented by Vo and the energy in L as represent by Io.. 
 

 
 

0
11

0
1

0

2

2

0

0

=++

−

=+++

=++

∫

v
LCdt

dv

RCdt

vd

arrangereandatedifferenti

R

v
Ivdt

Ldt

dv
C

iii

t

RLC

 

Comparing the above equation to the characteristic equation: 02 2
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Depending on the relationship between ω0 and  α, the response “output voltage, v(t)” may be 
Overdamped (ω0

2
 < α

2
),  Underdamped (ω0

2
 > α

2 
) or  Critically damped (ω0

2
 = α

2
),  one of the following 

three types: 
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tweBtweBtidUnderdampe

eDteDtiDampedCritically

eAeAtiOverdamped
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Where: 

• A1, A2, B1, B2, D1, D2, A1
’
, A2

’
, B1

’
, B2

’
, D1

’
, D2

’  
coefficients can be found by using the initial 

conditions: 
o For voltage use v(0

+
) =V0 and dv(0

+
)/dt which are derived from the capacitor 

voltage. 
o For current use i(0

+
), =I0 and di(0

+
)/dt which are derived from the inductor current. 

 
� Example – Parallel RLC Natural Response  

For the following circuit, source has been removed at t=0 after a long time of being connected. 

 
a) Determine the response type. 
b) Find the equation for v(t) during t>0 with initial conditions V0=0 and I0=-10 mA at t=0. 
 
Solution 
a ) Determine the response type 
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Conditions for each type of circuit response are listed below: 

circuitdUnderdampeSince ⇒> 22

0 αω  

 
b) Find the equation for v(t) during t>0 with initial conditions V0=0 and I0=-10 mA at t=0. 
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At t=0

+
 � 

  v(0
+
) = V0 = 0 voltage across the capacitor is 0 

  Capacitor is a short therefore Ic(0
+
)=-iL(0

+
)=-I0 = -10 mA � dv(0

+
)/dt = ic(0

+
)/C = -5x10

5
 

 
Apply the above initial conditions to v(t) to find B1 and B2 

20 nF 5 mH 2.5 kΩ 
+ 
Vo 
- 

Io 
+ 
 

v(t) 
 
- 

ic iL iR 
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Therefore 

tetv t 7.99498sin2.0)( 10000−−=  V  for t> 0 

It is recommended that the reader plot the iL(t) to see an example of Underdamped signal. 
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8.4. Step Response for Series RLC Circuit 

This section introduces the Series RLC circuit step response analysis.  At time, t=0, the switch is closed 
which means current starts to flow to the RLC part of the circuit.  For this derivation, it is assumed that 
energy stored in C as represented by vo and the energy in L as represent by Io.are both equal to zero. 
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Comparing the above equation to the characteristic equation: 02 2
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Depending on the relationship between ω0 and  α, the response “output voltage, v(t)” may be 
Overdamped (ω0

2
 < α

2
),  Underdamped (ω0

2
 > α

2 
) or  Critically damped (ω0

2
 = α

2
),  one of the following 

three types: 
 

tweBtweBItidUnderdampe

eDteDItiDampedCritically

eAeAItiOverdamped

d

t

d

t

f

tt

f

tsts

f

sincos)()(

)()((

)()(

21

22

0

21

22

0

21

22

0
21

αα

αα

αω

αω

αω

−−

−−

++=⇒>

++=⇒=

++=⇒<

 

 

i(t) 

R L 

C 
+ 

Vo 
- 

Io t=0 
+ 
- 

V 



Fundamentals of Electrical Circuits, V3.6 Page 173 
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Where: 

• A1, A2, B1, B2, D1, D2, A1
’
, A2

’
, B1

’
, B2

’
, D1

’
, D2

’  
coefficients can be found by using the initial 

conditions: 
o For voltage use v(0

+
) =V0 and dv(0

+
)/dt which are derived from the capacitor 

voltage. 
o For current use i(0

+
), =I0 and di(0

+
)/dt which are derived from the inductor current. 

• Vf is the value of voltage source or the capacitor voltage as t approaches infinity. 
• If is the value of current source or the inductor current as t approaches infinity. 

 
 

� Example – Series RLC Step Response  
For the following circuit where the switch is closes at time t=0 after being open for a long time with no 
stored energy: 

 
a)  Find the minimum value C to the nearest uF so that this circuit is overdamped. 
b)  Find the expression for vC(t) 
  
Solution 
a)  Find the minimum value C to the nearest uF so that this circuit is overdamped. 
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b)  Find the expression for vC(t) 
We know the circuit is overdamped therefore 
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Calculate Characteristic roots s1 & s2: 

i(t) 

2.5 kΩ 40 mH 
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+ 
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- 
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- 
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Substitute and solve for A1’ and A2’: 
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8.5. Natural Response for Series RLC Circuit 

This section introduces the series RLC circuit natural response analysis.  At time, t=0, the switch is open 
which means current start to flow to the RLC part of the circuit.  For this derivation, it is assumed that 
energy stored in C as represented by vo and the energy in L as represent by Io. 
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Comparing the above equation to the characteristic equation: 02 2
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Depending on the relationship between ω0 and  α, the response “output voltage, v(t)” may be 
Overdamped (ω0

2
 < α

2
),  Underdamped (ω0

2
 > α

2 
) or  Critically damped (ω0

2
 = α

2
),  one of the following 

three types: 
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Where: 

• A1, A2, B1, B2, D1, D2, A1
’
, A2

’
, B1

’
, B2

’
, D1

’
, D2

’  
coefficients can be found by using the initial 

conditions: 
o For voltage use v(0

+
) =V0 and dv(0

+
)/dt which are derived from the capacitor 

voltage. 
o For current use i(0

+
), =I0 and di(0

+
)/dt which are derived from the inductor current. 

 
� Example – Series RLC Natural Response  

For the following circuit the initial current through inductor is 10 mA and initial voltage through the 
capacitor is 5 volts at time t=0.  

 
If R=40 kΩ and C=2 nF, what value of L ensures that the circuit is critically damped. 
 
Solutions 
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8.6. Summary 
This section summarizes all four type of RLC circuit Reponses into a general form where x(t) may be 
current or voltage signal.  To use the equation here, simply apply the appropriate initial conditions to find 
the constant and circuit parameters. 
 
The general equations describing the circuit and its behavior: 

� Characteristic equation:  02
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=++ xw
dt
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• 
L
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� Damped Radian Frequency (rad/sec.):
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The following table summarizes the responses of all RLC circuits discussed in this chapter: 
 

Overdamped 
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0 α<w  

X(t) approaches final value 
without Oscillation. 

 

Critically Damped 
22

0 α=w  

x(t) is on the verge of 
Oscillating about its final value. 

 

Underdamped  
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x(t) oscillates about its final value. 
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Step Response (Xf,is Source Value) 
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8.7. Additional Resources 

 
� Nilsson, J.  Electrical Circuits. (2004)  Pearson. 

Chapter 8. 
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8.8. Problems 

 
Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 9.  Sinusoidal Steady State Analysis 

 
Key Concepts and Overview 
 
� Sinusoidal Source & Steady State Response 

� Root Mean Square (RMS) Value and Total Response 

� Phasor Domain Definition 

� Passive Circuit Elements in Phasor Domain 

� Phasor Domain Circuit Analysis Techniques 

� Phasor Domain Circuit Analysis Exercises 

� Additional Resources 
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9.1. Sinusoidal Source & Steady State Response 

In the last two chapters, circuits with R, L and C were introduced and analyzed for their performance 
during turn on phase (Step Response) and turn off phase (Natural Response).  This chapter focuses on 
the steady state operation phase.  The steady state phase starts after turn on phase has stabilized and 
before impact of turn off phase has affected the circuit operation. 
 
Further in this section, all sources are assumed to be sine or cosine functions which are generally 
referred to as the sinusoidal sources and general forms of  RLC circuits are analyzed in their Steady 
State.  The output under these conditions is referred to as  the Sinusoidal Steady State Response. 
 
Sinusoidal source can be expressed either as a cosine or as a sine since Cos (x) = Sin (x – 90

o
).  In 

Electrical Circuit analysis, the general Sinusoidal source is typically represented by Cosine as shown 
below: 
 

v(t) = Vm cos(wt + φ) for Sinusoidal Voltage Source 
or  

i(t) = Im cos(wt + φ) for Sinusoidal Current Source 
 
where: 

� w = angular frequency in radian/second 

 w= 2π/T where T =1/f  period in seconds 

 w= 2πf where f=1/T is the frequency in Hertz(cycles/second) 

   “degree = radian * 180/π” 
� t is time in seconds. 
� Im and Vm are maximum amplitude of current/voltage also called peak value. 
� φ is the phase shift which is basically a measure of dt,  the distance from t=0 of the start of 

the period. 
• Meaning of sign of φ 

(1) If φ>0 the signal is shifted to the  left 

(2) If φ<0 the signal is shifted to the right 
• Relationship between φ & dt 

 φ= (dt * w) radians  which is the phase shift in radian or dt = φ/w which is shift in time in 
seconds. 
 
It is common to express  “w” in radians/sec and “φ” in radians since the process requires 
less conversions than if degrees were used instead of radians. 
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Below is a diagram of typical generalized sinusoidal signal, x(t) = Xm cos(wt - φ): 

 
A Sinusoidal signal is completely defined when its frequency, maximum amplitude and phase angle is 
given or can be derived from the available information.  
 
� Example – Sinusoidal Signal 

Write the Sinusoidal signal equation for the Following x(t) function: 

 
Solutions: 
 
  Phase shift = dt * (2π/T) = 0.01 * (2π/0.08) = π/4 rad 
  DC offset = (Max + Min ) /2 = 0 V 
  Radial Freq = w = 2πf = 2π/T = 2π/0.08 = 25π rad/sec 
 
  x(t) = 15 Cos(25πt - π/4) V 
 

x(t) 

t,sec 

+15 

-15 

.08 sec 

.01 sec. 

x(t) 

t 

+Xm 

-Xm 

T 

dt =φ/w 
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� Example – Sinusoidal Signal  
Write the Sinusoidal signal equation for the Following x(t) function: 

 
Solutions: 
 
 

 

x(t) 

t,sec 

+10 

-30 

0.001 sec 

.0004 sec 
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9.2. Root Mean Square (RMS) Value and Total Response 

Before focusing on steady state response analysis, it is important to consider two other type of analysis 
for circuit with sinusoidal signals (RMS and Total Responses).  
 
Root Mean Square (RMS) Value is such named because it is calculated by taking the square root of 
averages of the squared signal value over a single period as shown below. 
 

2

2

2
)(cos

1
0

0

22 mm

Tt

t

m

VV
dttV

T
Vrms ==+= ∫

+

φω  for Sinusoidal voltage only 

2

2

2
)(cos

1
0

0

22 mm

Tt

t

m

II
dttI

T
Irms ==+= ∫

+

φω  for Sinusoidal current only 

 
RMS value is useful in understanding the voltage, current and power equivalent of the sinusoidal signal 
as if it was a constant DC voltage and current.  It is commonly used to calculate average power delivered 
by the sources or absorbed by an element. 
 
The following trigonometry equalities are used to prove that RMS value of a sinusoidal signal is 

2

mX
Xrms =  : 

• sin
2
x + cos

2
x=1  

• Cos(x+y) =CosxCosy – Sinx Siny 
• cos(2x) = Cos

2
x – sin

2
x  

• Cos
2
x = ½(cos(2x) +1) 

 
Another concept to consider is the Total Response.  Total Response includes a transient portion and a 
steady state portion.  As the name implies transient portion goes to zero after the circuit has been in 
operation for some time.  On the other hand the steady state portion will continue to present until the 
source has been removed.  
 
An example is the best way to demonstrate the concept.  For the following circuit find the total response, 
i(t) for t> 0. 

 

Vs 
+ 
- 

t=0 R 

L 
I(t) 

Given: 
* Initial State Energy is 0 at t=0 

* φ+= wtVmCosVs ( ) 
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)/(tan)cos()cos(

)(

1

222

)/(

222
RwLWherewt

LwR

Vm
e

LwR

Vm
i

DFQabovetheSolving

wtVmCosRi
dt

di
L

tLR −− =−+
+

+−
+

−
=

+=+

θθφθφ

φ

 

 
The total response includes: 

• Transient response (first term) which reduces in magnitude over time 

Transient response of i(t)=
tLRe

LwR

Vm )/(

222
)cos( −−

+

−
θφ  

• Steady State Response which is periodic therefore will not diminish over time 

Steady State Response i(t) = )cos(
222

θφ −+
+

wt
LwR

Vm
  

where: 
(1) Output signal Frequency is the same as input signal frequency (w). 

(2) Maximum amplitude of response is 
222

LwR

Vm

+
when input maximum  

amplitude is Vm. 
(3) The phase angle of the output will generally be different from the input signal unless 

the circuit is purely resistive (no inductors or capacitors) 
 

 
� Example – Total response 

The Voltage applied to the circuit shown below at t=0 is 20cos(800t + 25
o
) where the Initial current is 

0 at t=0. 

 
Find the Total Response i(t) and identify its transient and steady state response: 
 
Solution 
 

Vs 
+ 
- 

t=0 R=80 Ω 

L=75mH I(t) 
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)9.11800cos(2.0196.

)9.3625800cos()2.0()9.3625)(cos(2.0(

)cos()cos(

9.36)80/075.0*800(tan)/(tan

25,800,20)25800cos(20)(
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tei
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e

LwR
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i

RwL
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−++−−=
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=
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−
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θφθφ

θ
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Therefore: 

  Transient Response for i(t) = 
t

e
67.1066196.0 −

 

  Steady State Response for i(t) = )9.11800cos(2.0 ot −  

 
As we discussed earlier, the resulting differential equation may be difficult or not possible to solve directly 
in order to obtain the total response.  Since the transient response is only of interest during the initial start 
up phase, it will not be needed in steady state analysis which is the most common circuit analysis .   
. 
In the following section, Phasor or Frequency Domain analysis will be introduced for calculating the 
steady state response of arbitrary RLC circuits without needing to use differential equations. Phasor 
Domain analysis enables the use of algebra to find the RLC steady state circuit response. 



Fundamentals of Electrical Circuits, V3.6 Page 187 

9.3. Phasor Domain Definition 

All the previous analysis has been in time domain where the independent variable is time.  In this section, 
Frequency or Phasor Domain will be introducing where time is not part of the equation.  But before 
starting the circuit analysis in Phasor domain, it is important to introduce and review a number of key 
concepts. 
 
Start with some basic trigonometry equalities which are commonly used in analysis: 
 

• Euler’s identity is foundation of the transformation. 

j

ee
Sinor

ee
CosorjSinCose

jjjj
j

22

θθθθ
θ θθθθ

−+−+
± −

=
+

=±=  

 
• Real and Imaginary part of complex number (e

jθ
) 

Real Part = θθ Cose j =ℜ )(  

Imaginary Part = θθ Sine j =ℑ )(  

 
 
With the above information, It is time to introduce Phasor transformation.  By applying Euler’s identity, the 
sinusoidal signal may be rewritten as shown below: 
 

{ } { } { }jwtj

m

jjwt

m

wtj

mm eeVeeVeVwtCosVtv
φφφφ ℜ=ℜ=ℜ=+= + )()()(  

 
In this chapter, only linear RLC circuits are analyzed which means the circuit frequency is the same for all 
input and output.   So in the Phasor Domain, there is no need to carry the e

jwt
 (it is implied) therefore 

Phasor representation of the sinusoidal signal may be written as  Vme
jφ

.  In other words, the Phasor 

representation of VmCos(wt+φ) carries the phase angle and amplitude information.  In other words, the 
frequency is assumed to be “w” and is not explicitly shown in the Phasor representation of the signal. 
 
P[x(t)] is the notation used to indicate Phasor transformation of x(t)  which is shown below: 
 

  [ ] φφ j

meVwtVmCosonpresentatiPhasororTransformPhasor =+Ρ= )(Re  

 
This transformation transfers the sinusoidal function from the time domain to the complex number domain 
which is also called the Frequency or Phasor Domain since now the response mainly depends on phase. 
 
In Phasor domain, Phasor variables are shown as capital letter and may be presented in one of the 
following three accepted Phasor representations: 
 

• Polar Form: 
φj

meV
±=V  

• Rectangular Form: φφ SinjVCosVV mm ±=  

Note: conversion between Polar and rectangular form uses θθθ jSinCose j ±=±
 

• Angular Form: V = Vm|φ
o 

Note: Angular Form is a variation of Polar Form.  
 
In all three formats, the maximum amplitude (Peak value) and phase are present.  Of course the 
frequency is the same as w (implicit in the Phasor Transformation).  It may be useful to revisit Unit Circle 
and Complex Coordinate systems in order to show the relationship between the three Phasor forms: 
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So far, transformation from Time to Phasor domain has been shown.  The inverse transformation may be 
represented by the following notation and relationship: 
 

  { } )(}{1 φφφ +=ℜ=− wtCosVeeVeVP m

jwtj

m

j

m  

 
The benefit of Phasor domain is that it simplifies analysis of circuit in steady state mode with sinusoidal 
input.  This simplification is the result of the fact that Phasor domain only requires solutions to algebraic 
equations instead of the more complex differential equations. 
 
Proper use of Phasor and Time domain dictate that analysis must be completed either fully in Time 
domain or fully in Phasor domain.  It is incorrect to mix the two on the same circuit analysis.  All the 
analysis techniques such as Kirchhoff’s Laws and associated methods apply to the Phasor domain in 
much the same way as they did to the Time domain analysis. 
 
� Example - Phasor transformation 

Find time-based equation and Phasor transformation for the Voltage v(t) signal: 

Solution: 
 
Form the above diagram, it is observed that: 
  Maximum voltage, Vm = 6.2 V 
  Period, T = 10 msec   �  Linear frequency, f = 1/T = 100 Hz  �   

       Radial Frequency, w = 2πf = 2π/T = 200π radians/Sec. 
  dt =-1 msec �  φ = w*dt =200π*(-10

-3
)= -π/5 

 

t 

1 msec 

10 msec 

6.2 V 

Cos(θ) 

Sin(θ) 

θ 

Vm 

φ 

VmSinφ 
 

VmCosφ 
 

Real Axis 

Imaginary Axis 

Vm 

Polar & Angular Form on  

Unit Circle 

Radius=1 

Rectangular Form on  
Complex Rectangular Coordinate System 

v 
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Therefore the Time domain signal may be presented as: 
 

   v(t)=VmCos(wt + φ) = 6.2Cos(200πt -π/5) = 6.2Cos(200πt – π/5) 
 
Phasor Representations are: 

  Polar Form: 
)

5
(

2.6V
π

φ
j

j

m eeV
−

+ ==  

  Rectangular Form: )5/(2.6)5/(2.6 ππφφ −−=±= SinjCosSinjVCosVV mm  

  Angular Form: V = Vm|φ
  
=  6.2 |-π/5 
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9.4. Passive Circuit Elements in Phasor Domain 

In the previous section, the transformation of signals (current and voltage sources) between time and 
Phasor domain was discussed. In this section, the focus is on conversion of elements (R, L and C) value 
between Time domain and Phasor domain. The transformation of passive elements is based on the 
relationship between Phasor Voltage (V) & Phasor Current (I).  The general term for V/I is impedance and 
starting with section, impedance will be used to refer to the value V/I.  You may recall for a purely resistive 
circuit, we referred to V/I=R as resistance which is a special case of impedance. 
 
In this section, Phasor domain element values for R, L and C will be derived along with their relationship 
to the corresponding Time domain element values.  
 
� Resistor’s impendence in Phasor domain (Z=R)  

 
Resistor’s current and voltage in the Time domain can be driven as shown below: 
 

  For the given  i(t) = ImCos(wt + θi)  � 
  v(t) = RImCos(wt + θi) 
  Therefore R = v(t)/i(t) 
 
Now, transform the current and voltage equation to Phasor Domain as shown below: 
 

 
i

i

j

m

j

m

eRI

eI

φ

φ

±

±

=

=

V

I

 
 
Therefore Z = V/I = R   “Impedance for resistor in Phasor Domain” 
 

• Observations: 
(1) I & V are in-phase (no phase shift) 
(2) Resistor only impacts the signal magnitude  

 
 

� Inductor’s Impendence in Phasor domain (Z=jwL)  

 
Inductor’s Current and voltage in the Time domain is derived below: 
 

  For the given i(t) = ImCos(wt + θi) �  
  v(t)=Ldi/dt = -wLImSin(wt + θi) 
  Using the fact that sine and cosine are only shifted by 90

O
,  v(t) can we written as: 

+             v(t)             - 

i(t) 

L 

+             V             - 

I 

Z=jwL 

+             v(t)             - 

i(t) 

R 

+             V             - 

I 

Z=R 
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  v(t)=-wLImCos(wt + θI - 90
o
) 

 
  Now, writing the Phasor transformation of i(t) and v(t) results in: 

  

"Im"

i(t) oftion TransformaPhasor 

90sin90cos'

V v(t)oftion TransformaPhasor 

90

90)90(

DomainPhasorininductorsofpedancejwL
I

V
Z

Therefore

eII

ejwLIVjjeIdentitysEulerApply

eewLIewLI

j

j

jj

j

m

j

m

j

jj

m

j

m

==

=⇒

=⇒−=−=

−=−=⇒

−

−−

φ

φ

φφ

 

 
• Observations: 

(1) Current flowing through inductor will results in voltage with 90 degree phase lead (+90
o
) 

V=wLIm|(θI + 90)
o 

 

*  Voltage leads current or in other words current lags voltage in Inductors as shown 
below: 

 
(2) L impacts both the amplitude and phase  

It has shown the impact on the phase (90 degrees shift) and the amplitude Vm = wLIm as 

shown by earlier equation V=wLIm|(θI + 90)
o
. 

 
� Capacitor’s impendence in Phasor domain (Z=1/(jwC) = - j/wC)  

 
Capacitor’s current and voltage in the Time domain can be derived as shown below: 
 
  For the  given v(t) = VmCos(wt + θi) � 

  i(t)=CdV/dt = -wCVmSin(wt + θv)  
 Using the fact the sine and cosine are only shifted by 90

O
, i(t) can we rewritten as: 

  i(t) = - wCVmCos(wt + θv - 90
o
) 

 

+             v             - 

i 

C 

+             V             - 

I 

Z= 1/(jwC)= -j/(wC) 

i(t) v(t) 

90
o
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  Now, writing the Phasor transformation of i(t) and v(t) results in: 

  

"Im"
1

 v(t)oftion TransformaPhasor 

90sin90cos'

Ii(t) oftion TransformaPhasor 

90

90)90(

DomainPhasorincapacitorsofpedance
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• Observations: 

(1) Voltage across capacitor results in current with 90 degree phase lead (+90
o
) 

I=wCVm |(θv + 90)
o 

 

*  Current leads voltage or in other words voltage lags current in capacitors 

 
(2) C impacts both the amplitude and phase 

It has been shown the impact on the phase (90 degrees) and the amplitude Im = wCVm as 

shown by earlier equation I = wCVm |(θI + 90)
o
. 

 
� Summary of Relationships and additional terminology 

 
Element 

Impedance 
(Z=V/I) In Ohms 

Reactance 
(Imaginary Part of Z) 

Admittance 
(Y=I/V=1/Z) in Mhos 

Susceptance 
(Imaginary part of Y) 

Resistor R(resistance) 0 G=1/R (conductance) 0 
Capacitor 1/jwC = -j/wC -1/wC jwC wC 
Inductor jwL wL 1/jwL= -j/wL -1/wL 

 
• Impedance may be a  complex number (a + jb) 
• j*j = -1 so 1/j=-j (multiply top & bottom by j) 
• R, L and C use passive sign convention which means current flows through the element in 

the direction of voltage drop (from + to – voltage). 
 
  

t 

v(t) i(t) 

90
o
 



Fundamentals of Electrical Circuits, V3.6 Page 193 

� Example –  Phase and Time Domain Transformations for a Steady State Circuit 
For the following circuit element: 

 
a) Find the inductive reactance and the impendence of the inductor 
b) Find the Steady State Time domain voltage expression 
c) Find the Steady State Phasor domain voltage expression 
 
Solution 
a) Find the inductive reactance and the impendence of the inductor 
Compare i= 10 Cos(10,000t + 30

o
) mA with standard for i=Im Cos(wt + Φ) � w = 10,000 

Therefore  Reactance = wL = (10000)(20x10
-3

) = 200 Ω and  
   Impedance = jwl=j200 Ω 
 
b) Find the Steady State Time domain voltage expression 
V=(jwL)I =  j2000 Cos(10,000t + 30

o
) V 

 
c) the Phasor Voltage V 

"tanRe"7.12)120sin(2)120(2

""1202

""22

9090sin:

1203090

90

FormgularckVjjCosV

FormAngularkVV

FormPolarkVeeeV

eCosJJNote

oo

o

jjj

joo

+=+=

=

==

=+=

 

 

+             v(t)             - 

i(t)= 10 Cos(10,000t + 30
o
) A 

20 mH 
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9.5. Phasor Domain Circuit Analysis Techniques 
In the earlier sections of this chapter, Phasor transformation of signals and elements values have been 
described.  Once the circuit (elements and sources) has been transformed into the Phasor domain, all the 
circuit analysis techniques developed for circuit analysis applies where R is replaced by Z.  The only 
difference being that R was always real number where Z may be a complex number.  
 
By replacing the R with Z, all the circuit analysis tools learned in Previous sections which are listed below 
apply: 
 

� Kirchhoff’s current and voltage law 
� Node Voltage and Mesh Current method 
� Parallel and Series simplification 
� Source Transformation  
� Thevenin and Norton equivalent 
� … 
 

For example Kirchhoff’s Voltage (KVL) in Phasor domain require writing “V1+V2+V3+ … + Vn = 0” when 
these are Phasor representation of voltages around a mesh.  When using Kirchhoff’s Current Law (KCL) 
in Phasor domain, the equation “I1+I2+I3+ … + In=0”  applies where these are Phasor representation of 
currents out of a node.  Other techniques such as Norton and Thevenin similarly apply. 
 
Here are few pointers when applying Phasor analysis: 
 

� Transform all the signals and elements in the circuit to Phasor domain and redraw the circuit in 
Phasor domain prior to start of your Phasor domain analysis. 

� Typically, Rectangular Form (a +jb) of Phasor representation is best suited for equations requiring 
addition or subtraction to solve.  While the Polar Form (de

jk
) of Phasor representation works well  

for equations requiring multiplication and division to solve. 
� Once the problem is solved then results may be transformed back to Time domain if needed. 

 
Simplifications techniques such as Serial, Parallel and Delta-to-Wye Transformations may be used in 
Phasor analysis. As shown below, these techniques work the same as they did when the circuit only 
contained R instead of impedance, Z. 
 
� Combining Impedances (Z) in Series 

 
� Combining Impedances (Z) in Parallel 

 

Zn Z2 Z1 . . . 
+ 
 
Vab 
 
- 

I= I1 + I2 + … + In  
Vab /Zab= Vab /Z1 + Vab /Z2 + … + Vab /Zn 
 
Divide by Vab 
 
1 /Zab= 1 /Z1 + 1/Z2 + … + 1 /Zn 

or  
Yab= Y1 + Y2 + … + Yn 

a 

b 

In I2 In 

I 

Zn Z2 Z1 
. . . 

I 
+ 
 
Vab 
 
- 

Vab = Z1I + Z2I + … + ZnI 
Zab I= Z1I + Z2I + … + ZnI  
Divide by I 
 
Zab= Z1 + Z2 + … + Zn  
 

a 

b 
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� Simplification using Delta-to-Wye and Wye-to-Delta transformations 

 
� Equations for transforming Delta-to-Wye 

Cba

ba

Cba
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Cba
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ZZZ
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� Equations for transforming Wye-to-Delta 

3

313221

2

313221

1

313221

Z
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Z
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Z

ZZZZZZ
Z

c

b

a
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=
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Z3 

Z1 Z2 

Zc 

Zb 
Za 

a b 

c 

Note it is important to label 
your nodes and impedances 
as shown here for the 
following equations to be 
applicable. 
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9.6. Phasor Domain Circuit Analysis Exercises  

This section provides a number of examples for the application of circuit analysis techniques from earlier 
chapters to the Phasor domain circuit analysis.   As discussed in the previous section, these are 
techniques introduced for resistive circuit analysis which apply to RCL circuits when R (resistance, real 
number) is generalized to  Z (impedance, complex number).  
 
� Example – Application of KCL and Network Simplification  

For the following circuit: 

Find the expression for v(t).. 
  
Solution 
Here is step by step process of using Phasor Domain for the analysis: 
 
Form the equation of the i(t)=ImCos(wt + Φ) = 922Cos(20,000t + 30

o
) � 

  Radial Frequency, w = 20,000 radians/sec 
  Maximum Current, Im = 922 A 
  Phase, Φ = 30

O
  

 
Step 1)  Transform the circuit signals and elements to Phasor domain ( user Rectangular form) 
. Current i(t) in rectangular form, I = 922 Cos(30) + j922 Sin (30)=798.5 + j461 A 
  Inductor, 20 uH � Z= jwL = j(20000)(20x10

-6
) = j0.4 Ω 

.  Capacitor, 5 uH � Z= 1/jwC = 1/j(20000)(5x10
-6

) = -j10 Ω 
  Resistor value, R and Z, are the same in both domains 
  
Step 2) Redraw the circuit in Phasor domain 

 
Step 3 - Option A) Apply Kirchhoff’s current law to solve find V 
  I = I1 + I2 + I3 �  798.5 + j461 = V/(10 + j0.4) + V/10 + V/-j10 
 
Solve for V  

I = 798.5 + j461 

+ 
 

V 
 
_ 

Z1=10 + j0.4Ω Z2 = 10 Ω Z2 = -j10Ω 

i1 I2 I3 

I 

20 uH 
10 Ω 5 uF 

10 Ω 

i(t) = 922Cos(20,000t + 30
o
) A 

+ 
 
 

v(t) 
 
 
_ 
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Note that we can apply the (a + bj)(a -  bj) = a
2  

+ b
2 
 to first fraction to have all imaginary part in the 

numerator: 
  798.5 + j461 = (10 – j0.4)V/(100 + .16) + V/10 +jV/10 
  798.5 + j461 = 0.1V – j0.004V + 0.1V +j0.1V  
  798.5 + j461 = 0.2V + j.096V 
  V= (798.5 + j461) / (0.2 + j0.096)  
  Since there is a division, it may be easier to use angular or polar form to find the value of V. 

  

φ|6.55|9.4190

)6.25(30|91.4190
6.25|22.

30| 922

2.0

096.0
tan|096.02.0

30| 922
  V

o

122

o

VmV ==

−−=
−

=









+

=
−

 

 
Step 3 - Option B)  Combine Impedances using parallel simplification 
Zeq = 1/(1/Z1 + 1/Z2 + 1/Z3) = 1/(1/(10 + j0.4) + 1/10 + 1/-j10)=4.07 +j1.95 
Then  V= I* Zeq =(798.5 + j461)(4.07 +j1.95)=2350.9 + j3433.3 
V=4190.9 |55.6

o
 

 
Step 4) Transform Phasor domain form “V=Vm | Φ “ to Time domain “v(t)=VmCos(wt + Φ)”  
 
Form derivation so far it is given that  
  radial frequency, w=20,000 radian/sec 
  peak voltage, Vm= 4190.91V 
  phase shift, Φ=55.6

o 

 

Therefore v(t) = 4190.91Cos(20,000t+55.6
o
)  

 
 

� Example—Application o delta-to-Wye transformation 
Find current I in the following circuit. 

 
1) Apply Wye-to-Delta Transformation 

4072
50

20003600

5090
40

20003600

5090
40

20003600

40

)50*4050*4040*40(

3

313221

2

313221

1

313221

+=
+

=
++

=

+=
+

=
++

=

−=
+

=
++

=
++

=

j
j

Z

ZZZZZZ
Z

j
j

Z

ZZZZZZ
Z

j
j

j

j

jj

Z

ZZZZZZ
Z

c

b

a

 

+ 
- 

Z1= j40 Ω 

Z3=50 Ω 

10 Ω Z2=40 Ω 

-j15 Ω 

14 Ω 

136|0
o  

V 

I 

a 

b 

c 
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2)  Redraw the circuit 

 

=+

+
+

+
−

+

−
+

+

= 14

4072

1

)
10

1

5090

1
(

1

)
15

1

5090

1
(

1

1

1

j

jjj

Z eq 30 - j15.9 = 34 |-28.07
o
 

 
I = V/Zab = (136 |0

o 
)  / (34 |-28.07

o 
) = 4 |-28.07

o  A 

 
� Example - Application of Source Transformation 

Find the Steady state expression for v(t) for the following circuit where: 
v1(t) = 240 cos(4000t+53.13

o
) V  and v2(t) = 96 sin(4000t) V    

 
Step1) Convert the signal and V, I and elements to Phasor Domain  
  V1 = 240 |53.13

o
 = 240cos(53.13

o
) + j240sin(53.13

o
) = 144 + j192 

 V2 = 96 |-90
o
 = 96cos(-90

o
) + j96sin(-90) = -j96   

   “remember needs to have the signal first in Cosine form v2(t) = 96 cos(4000t - 90)” 
 
  ZC = 1/jwC = 1/(j*4000*25*10

-6
)=-j10 Ω 

  ZL = jwL = j*4000*0.01=j40 Ω 
  ZR =  40 Ω  & 20 Ω   
 
Step2) Redraw circuit in Phasor Domain  

+ 
- 20 Ω 25 uF 

10mH 

v1 - 
+ 

v2 

40 Ω 

+ 
 

v(t) 
 
- 

+ 
- 

10 Ω 

-j15 Ω 

14 Ω 

136|0
o  

V 

I 

b 

c 
Zc=j72+40 

Za=90-j50 

Zb=j90+50 

Zeq = [{Zb || (-j15)} + {Za || (10)}] || Zc + 14 
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Step2) Apply Source Transformation: 
   V1= 144 + j192  and Z1 = j40 Ω � I1 = V1/Z1 = 4.8 - j3.6 A and Z1=j40 Ω 
   V2= - j96 and Z2=40 Ω � I2 = V2/Z2 = j2.4 A and Z2=40 Ω 

 
Step 3) Using Parallel Impedances Simplification 
  Zeq = 1 / (1/j40 + 1/20 – 1/j10 + 1/40) = 6.7 - j6.7 

 
 
V = I * Zeq = (4.8 – j5)(6.7 – j6.7) = -1.3 - j65.7 V 
 
 
� Example - Application of Thevenin Equivalence 

Find Thevenin equivalence with respect to terminals a,b.  

 
Step 1) Find Vth (Open a,b) using Mesh-Current technique 

20 Ω 
-j10 Ω 

J10 Ω 

2|45
0 
 A 

10 Ω 

10 Ix 

Ix 

+ 
- 

a 

b 

4.8 – j5 A 
6.7 – j6.7 Ω 

+ 
 
 

v(t) 
 
 
- 

I1 I2 

+ 
 
 

v(t) 
 
 
- 

20 Ω 
-j10 Ω 

40 Ω 
j40 Ω 

+ 
- 

v1 - 
+ 

v2 

+ 
 
 

v(t) 
 
 
- 

J40 Ω 

20 Ω 
-j10 Ω 

40 Ω 
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  Mesh#1 � I1 = 2|45

0 
 = 1.4 + j1.4 

 Mesh#2 � 20(I2 – I1) + j10I2 +10Ix  =0  � -20I1 +20I2+ j10I2+10I1 - 10I2= 0
 

  Mesh#3 � -10Ix + 10I3 – j10I3 = 0 �  -10I1 + 10I2+ 10I3 – j10I3 = 0
 

  
Dependent source � Ix = I1 – I2 

 

  The above four equations can be reduced to two:  
  -10I1 +10I2+ j10I2= 0   �  30(1.4 + j1.4) +(- 30+ j10)I2= 0   � I2= 0.8 + j1.7

 

  -10I1 + 10I2+ 10I3 – j10I3 = 0 � -10(1.4 + j1.4) + 10I2+ (10– j10)I3= 0 
 
 rewrite last equation with value of I2  
  -10(1.4 + j1.4) + 10(0.8 + j1.7)+ (10– j10)I3= 0  � I3= (6 - j3) / (10 - j10)  =0.45 + j0.15 
 
  Vth = Voc = (-j10)*( I3)= 1.5 - j4.5 V 
 
 
Step 2) Find Isc (Short a,b) using Mesh-Current technique 

 
note that the capacitor is in parallel with a short circuit so will not have any effect and can be 
removed to redraw the circuit as: 

 
 Mesh#1 � I1 = 2|45

0 
 = 1.4 + j1.4 

 Mesh#2 � 20(I1 – I2) + J10I2 +10Ix  =0 � 20 I1 +(-20+j10) I2  + 10 I3  =0  
  Mesh#3 � -10Ix + 10I3 = 0  �  Ix = I3

 

  
Dependent source � Ix = I1 – I2     �  I3 = I1 – I2  =   1.4 + j1.4 – I2   

 

  We can reduce above 4 equations to the following two equations: 

20 Ω 

J10 Ω 

2|45
0
 

10 Ω 

10 Ix 

Ix 

+ 
- 

a 

b 

I1 I2 I3 

Isc 

20 Ω -j10 Ω 

J10 Ω 

2|45
0
 

10 Ω 

10 Ix 

Ix 

+ 
- 

a 

b 

I1 I2 I3 

Isc 

20 Ω -j10 Ω 

J10 Ω 

2|45
0
 

10 Ω 

10 Ix 

Ix 

+ 
- 

a 

b 

I1 I2 I3 

+ 
 

Vth = Voc 
 
- 
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  20 (1.4 + j1.4) +(-20+j10) I2  + 10 I3  =0 
   I3  =  1.4 + j1.4 – I2   
 
  Plug I3  into first equation: 
  20 (1.4 + j1.4) +(-20+j10) I2  + 10(1.4 + j1.4 – I2  )  =0 � I2 =(42+j42)/(30 – j10) 
  �   I2 =0.84+j1.68 
  I3 =0.6 – j0.3 
 
  Isc =  I3 = 0.6 – j0.3  
 
Step 3: Find Zth = Vth / Isc & Draw the Thevenin Equivalent 
 
  Zth = Vth / Isc = (1.5 - j4.5)/( 0.6 – j0.3) = (1.5 – %i*4.5)/( 0.6 – %i*0.3)=5 –j5 Ω 

 
 

� Example – Phasor Domain Analysis 
Find value of Vo(t) in the following circuit: 

 
 
• Solution (Ans: 0.1 cos(1000t - 0.52)): 

 
 

-   v0(t)   + 

+ 
- 

Vth =1.5 - j4.5 V 

a 

b 

Zth = 5-j5 Ω 
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Ф 

XM 

Img. Axis 

Real 
Axis 

Ximg 

Xreal 

x(t) 

t 

T 
2π 

dt, Ф 

9.7. Summary 

 
� Sinusoidal Signal in Time Domain: 

 
 

� Time-domain to complex format 
 

• In time domain, time is the variable and 
function is real number. 

 
 
• XMCos(wt + ϕ) 

• Complex Coordinate System and time is not a 
variable. 

 

 
 
Rectangular Form:  

φφ SinjXCosXjXXX MMimgreal +=+=  

Polar Form:  

)/(tan22
1

realimg XXj

imgreal

j

M eXXeXX
−

+== φ
 

Angular Form:  φMXX =  

 

Euler’s Identity:  θθθ sincos je j +=  

 
 
  

t 

x(t) 

)cos()( φ+= wtXtx M   Where 

 Angular Frequency, w=2πf=2π/T 
  Phase shift, Ф 

  Linear/Angular relation:  
π

φ

2
=

T

dt
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� Time - Phasor domain Transformations 
The Phaser Domain Transformation is only valid for Sinusoidal Steady State Operation with single 
frequency (w constant). 

 

Time Domain  Phasor Domain 

x(t)=XmCos(wt + φ) 

 

• Polar Form: φj
meX=X  

• Rectangular Form:  φφ SinjXCosXX mm +=  

• Angular Form: X = Xm|φ
o   

 

 

v(t)& i(t) Relationships 
v(t) = R i(t) 
v(t) = L di(t)/dt 
i(t) = C dv(t)/dt 

V & I Relationships (Impedance  Z = V/I  Ohms) 
Z=R 
Z=jwL 
Z=1/(jwC)=-j/wC 
 

Analysis/Modeling Tools 
Passive convention  
Resistor simplification 
KCL 
KVL 
Thevenin Equivalent 
Norton Equivalent 
RL=Rth � Maximum power in Resistive circuit  

Analysis/Modeling Tools 
Passive convention 
Impedance (Z) simplification 
KCL 
KVL 
Thevenin equivalent 
Norton equivalent 
ZL=Zth � Maximum power in RLC circuit  
 

Phasor Domain Problem Solving Steps. 
1) Transform the circuit to Phasor Domain 
2) Apply appropriate analysis/modeling tools to solve the problem 
3) Transform the solution back to Time Domain if required 

 

Useful Relationships 

• Euler’s Identity  �   θθθ jSinCose j +=   or  
2

θθ

θ
jj

ee
Cos

−+ +
=   or  

2

θθ

θ
jj

ee
Sin

−+ −
=  

• Z=(R + jX)  is impedance, R is Resistance, X is Reactance and all are in Ohms  
Y=1/Z is referred to as Admittance and Imaginary part of 1/Z is referred to as Susceptance 

• 
j

ej j 1
1 2/ −==−= π

 

• )2/( πθθ −= CosSin  

 

Xm 

φ 

Xm Sinφ 

Xm Cosφ 

Real Axis 

Imaginary Axis 

x(t) 

t 

+Xm 

-Xm 

T = 1/f = 2π/w 

dt =-φ/w 
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9.8. Additional Resources 

 
� Nilsson, J.  Electrical Circuits. (2004)  Pearson. 

Chapter 9. 
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9.9. Problems 

 
Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 10.  AC Power Analysis 

 
Key Concepts and Overview 
 
� AC Power Components 

� Root Mean Squared (RMS) or Effective Power 

� Complex Power  

� Maximum (Average or Real) Power Transfer 

� Additional Resources 
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10.1 AC Power Components 

Similar to DC power calculation, Alternative Current (AC) power can be calculated using the following 
equation: 
 
  p(t)= v(t)I(t)  where v(t) and I(t) are the Instantaneous current 
 
p(t) is the power at time t which is referred to as instantaneous power. Instantaneous power consists of 
Average (or Real) Power and Magnetizing Reactive Power .   
 
In DC analysis, upper case letter were used to refer to constant value of voltage, current and power (V, I, 
P) in the circuit.  In order to signify dependency of AC voltage, current and power on time (t), these signal 
parameters are represented using lower case letters (i, v, p).  It is common to write p, v and I, instead of 
writing p(t), v(t) and i(t). 
 
� Instantaneous Power, p(t) 

As mentioned earlier instantaneous power is represented by the following equation and the sign is 
define by passive convention (current enters the positive voltage terminal indicates positive power): 
 
 p = v(t) i(t) = v i 

 
 
As discussed in earlier chapters, steady-state sinusoidal circuits represent majority of circuits in use. 
Therefore, we will continue to focus on these types of circuits.  Power Engineering work on energy 
generation and delivery which has led to a rich set of theories, technology and processes to design 
and analyze power system in steady-state sinusoidal condition. 
 
The first step is to define the current and voltage equations.  As shown in earlier chapters, the general 
sinusoidal equations for current and voltage are as follows: 
 
  v = Vm cos(wt + θv) 
  i = Im cos(wt +  θi) 
 
In power analysis, we are interested in difference between current and voltage phases so instead of 
having to deal with two general forms.  It can be assumed that θi is the reference. This assumption 
lead to simplification of current equation as shown below: 
 
  Current has a phase shift of (θi – θi)=0   �   i = Im cos(wt) 
  voltage has a phase shift of (θv – θi)       �   v = Vm cos(wt + θv – θi) 
 
Now that current and voltage have been defined, instantaneous power is simply the product of the 
two parameters: 
 
  p = v i = Im Vm cos(wt + θv – θi) cos(wt) 
 
We could stop here since given the current and voltage, the power can be calculated using the above 
equation.  But we need to manipulate this equation further to identify two key components for 
instantaneous power that provides valuable insight. 
 
Applying  trigonometric identity {cos(a) cos(b) = ½ cos(a – b) + ½ cos(a + b)}, p can be rewritten as: 
 

Black box 
Passive Convention 

+ 
v 
- 

i 
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  )2cos(
2

)cos(
2

iv

mm

iv

mm wt
IVIV

p θθθθ −++−=  

 
Applying trigonometric identity {cos(a + b) =  cos(a) cos(b) - sin(a) sin(b)} to second term results in: 
 

 )2sin()sin(
2

)2cos()cos(
2

)cos(
2

wt
IV

wt
IVIV

p iv

mm

iv

mm

iv

mm θθθθθθ −−−+−=  

• Observations: 
(1) Instantaneous power consists of constant first term and two time-dependent terms with 

opposing sign. 
(2) Frequency of instantaneous power is twice the frequency voltage or current. 
(3) Instantaneous power may be negative for a portion of each cycle (even for completely 

passive devices.  For a completely passive device, the negative power (generating 
power) means that the energy stored in C or L is being extracted. 

 
At this point, it would be helpful to look at a graphical representation of instantaneous power when current 
phase shift θi = 0

o
 and voltage phase shift θv = 60

o
 = π/3. 

. 

 
� Average and Reactive Power 

Instantaneous power has two distinct components that will be discussed in this section.  The Average 
(or Real) Power and Reactive Power components. 
 
Let’s start with the instantaneous equation derived in the previous section: 
 

  )2sin()sin(
2

)2cos()cos(
2

)cos(
2

wt
IV

wt
IVIV

p iv

mm

iv

mm

iv

mm θθθθθθ −−−+−=  

 
The first term is not time-dependent and is referred to as Average or Real Power: 

  P = Average Power or Real Power = )cos(
2

iv

mm IV
θθ −  

The name average power is derived from the fact that it is equal to the average of instantaneous 

π 2π 
wt 

radians 

v, i, p 

3VmIm/4 

-VmIm/4 

Vm 

-Vm 

-Im 

Im 

p 

i 

v 

VmIm/2 

π/3 
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power over a full period is equal to P.  You may want to carry out the following integral to prove that it 
is true: 
 

  P = ∫
+ 0

0

1
tT

t

pdt
T

 = )cos(
2

iv

mm IV
θθ −  

 
Additionally, Average Power is the portion of instantaneous electric power that can be  converted to 
non-electric form and visa versa.  This is the reason that Average Power is also referred to as Real 
Power. 
 
By applying the definition of P to the instantaneous power equation, p, can be written as: 
 

 )2sin()sin(
2

)2cos( wt
IV

wtPPp iv
mm θθ −−+=  

The coefficient of sin(2wt) in the third term is referred to as the reactive power, Q: 

 Q = reactive power = )sin(
2

iv

mm IV
θθ −  

The reactive power is the electric power exchanged between magnetic fields of power supply, 
capacitors and inductors.  Reactive power is never converted to non-electric power. 
 
Utilizing the instantaneous, average and real power, the instantaneous power equation can be 
rewritten as:  

As a consumer of electricity, Average Power, P, is the power that does the work of running your 
motors and heating while Q is power that is moved around in the system between capacitors and 
inductors.  Both consumers and generators of electricity prefer P to be as large as possible and Q to 
be as small as possible.  Later in this chapter, we will discuss how to maximize Average Power. 
 
Power Factor is used to define the relationship between the Average and Reactive power.  Power 
Factor as a measure is important to power industry since the ratio of Average and Reactive power 
defines the efficiency of the power generation and consumption systems.  
 
The key Power Factor definitions are: 

 
Observations: 
� If (θv – θi)=0 then pf = cos(θv – θi) = 1 and rf = sin(θv – θi)=0 which means all the power is Real 

and non is Reactive.  Most efficient system from generator and consumers’ point-of-view.  Both 
consumers and generator work toward this ideal situation but is very hard to achieve under 
variable load. 

Power Factor Angle = (θv – θi) 
Power Factor = pf = cos(θv – θi) 
Reactive Factor = rf = sin(θv – θi) 

p = P + P cos(2wt) – Q sin(2wt)  where 

 P = Average Power or Real Power = )cos(
2

iv

mm IV
θθ −  

 Q = Reactive Power = )sin(
2

iv

mm IV
θθ −  
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� Power Factor (pf) is not sufficient to describe the power factor angle since  
cos(θv – θi) = cos(θi – θv) so we have to use the phrase of leading or lagging to qualify it. 
• Lagging power factor implies that current lags the voltage �  

θi = θv – A
o
 �   (θv – θi) > 0   ”Inductive load” 

• Leading power factor implies that current leads the voltage �  
θi = θv + A

o
 �   (θv – θi) < 0   ”Capacitive Load” 

 
At this point, let’s apply the concepts of instantaneous, Average and Reactive power to the three pure 
circuits (pure resistive, capacitive and inductive): 
 
� Power in purely resistive circuits 

Since resistive circuit impedance is a real number then Voltage and Current are in phase.  
Therefore (θv – θi)=0 or θv = θi  which means: 
 
  p = P + P cos(2wt) where 
   P = (Vm Im) / 2 
   Q  = 0; 
 
Graphic representation of Instantaneous, Real, Reactive power 

 
Observations: 
• Instantaneous power is all real 
• No negative power (one cannot extract power from Purely Resistive circuit) 
• Power’s frequency (2wt) is twice the voltage’s and current’s frequency (wt). 

 
 

� Power for Purely Inductive Circuits 

Impendence of a purely inductive circuit is {jwL = wLe
Jπ/2

} which means the current lags the 
voltage by π/2 therefore (θv – θi) = π/2 = 90

o
  

 
  p = -Q sin (2wt) where 
   Q = (Vm Im) / 2 
   P = 0; 
 
Graphic representation of Instantaneous, Real, Reactive power 

wt 
Radians 

P P=(Vm Im)/2 

p 
2P 

0 
Q 

π π/2 

Instantaneous (p, Watts), Average (P, Watts) and  Reactive (Q, VAR)  power 
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Observations: 
• Instantaneous power has no real component (real power is zero) meaning no transforming 

from electrical to non-electric energy takes place. 
(1) The name reactive comes from the fact that this is the only power from reactive elements 

such as Capacitors and inductors. 
• Although average power and reactive power carry the same dimensions, we use different unit 

to distinguish between the two types of power: 
(1) Watt (W) is used as the unit for real or average powers and instantaneous power 
(2) VAR (Volt-Amp Reactive) is used as the unit for reactive powers 

• Circuit continuously exchange power at power’s frequency (twice voltage or current 
frequency, 2wt)  
(1) p is positive , energy is being stored in the magnetic field associated with the inductor 
(2) p is negative, energy is being extracted from the magnetic field 

 
� Power for Purely Capacitive Circuits 

Impendence of a purely Capacitive Circuit is {1/jwC = e
-jπ/2

/wC} which means the current leads the 
Voltage by π/2 therefore (θv – θi) = -π/2 = -90

o
  

 
  p = Q sin (2wt) 
  Q = – (Vm Im) / 2 
   P = 0; 
 
Graphic representation of Instantaneous, Real, Reactive power 

 
Observations 

(1) Instantaneous power has no real component (real power is zero) meaning no 
transforming from electrical to non-electric energy takes place. 

(2) Circuit continuously exchange power at power’s frequency (twice voltage or current 
frequency, 2wt)  
(a) p is positive , energy is being stored in the electric field associated with the capacitors 

P 

Instantaneous (p, Watts),Average (P,W) and  Reactive (Q, VAR)  power 

p 

0 

Q 

π π/2 

(Vm Im)/2 

wt 
Radians 

-(Vm Im)/2 

P 

Instantaneous (p, Watts),Average (P,W) and  Reactive (Q, VAR)  power 

p 

0 

Q 

π π/2 

(Vm Im)/2 

wt 
Radians 

-(Vm Im)/2 
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(b) p is negative, energy is being extracted from the electric field 
 

Power industry recognizes the algebraic sign of + for inductors and – for capacitors by saying: 
• Inductors demand (or absorb) magnetizing VARs. 
• Capacitors furnish (or deliver) magnetizing VARs.  
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� Example –AC Power Analysis 
Calculate the Real, Reactive Power transferring between network A and B, state whether the power 
flow is from A to B or vice-versa.  Also state whether magnetizing VARs are being transferred from A 
to B or vice versa.  Use the following voltage and current equations, and figure. 

 
Solution:  

)(6.173)sin(
2

Re

)(8.984)190cos(
2

)100)(20(
)cos(

2
Re

190))155(35()(

BtoAVAR
IV

QPoweractive

AtoBW
IV

PPoweral

AngleFactorPower

iv
mm

iv
mm

o

iv

=−==

−=−=−==

−=−−=−=

θθ

θθ

θθ

 

Note:  B is configured as passive device (Current flows to positive terminal) in the diagram. Therefore, 
if the power is positive then B is consuming and A is generating power 
 
 

� Example  -- AC Power Analysis  
Compute the power factor and the reactive factor for the network inside the box, with the following 
current and voltage. 

SOLUTION: 
First step is to convert i to standard cosine form � i = 95 cos(wt – 15

o 
-  90

o
) = 95 cos(wt - 105) A 

Therefore: 
 
  θv  = 15  
  θi  = - 105 
 
Power Factor Angle = (θv – θi) = 15 – (-105) = 120

o
   

Power Factor = pf = cos(θv – θi) = cos (120) = - 0.5   
Reactive Factor = rf = sin(θv – θi) = sin(120) = 0.866 
 
Lagging power factor since (θv – θi )= +120

o
 > 0  which means it is an inductive load. 

 
 

Network + 
v 
- 

i 
v = 200 cos(wt + 15

o
)  V 

i = 95 sin(wt – 15
o
)  A 

 

A B + 
v 
- 

i v = 100 cos(wt – 35
o
)  V 

i = 20 cos(wt + 155
o
)  A 
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� Example – AC Power Analysis 
v(t) is a sinusoidal signal with 60 Hz frequency and maximum voltage of 156 V in the following circuit. 
 

 
Find Power Factor (pf), Real Power (P), Reactive Power (Q). 
 
SOLUTION: 
Covert circuit components to Phasor Domain (w= 2πf = 120π): 

 
Zeq = 1000 + (-j265.3 + j37.7) || (-j26.53 + j3.77) = 1000 – j20.7 = 1000.2 e

-j1.2
 

 
Power Factor = pf = cos(power factor Angle) = cos (Θv – Θi) = cos (-1.2) = 1  Leading 
 
Im = Vm/Zeq = 156/1000 e

-j1.2
  = 0.156 | 1.2

o 

 
Real Power = P = (VmIm/2) cos (Θv – Θi) = 12.2 W 
 
Reactive Power = Q = (VmIm/2) sin (Θv – Θi) = -.25 VARs 
 

v (t)

C1

10 uF

C2

100 uF

L1

10 mH

L2

100 mH

R1

1k

156| 0  

1/(jwc) = -j26.53 jwl = j37.7 

1/(jwc) = -j265.3 jwl = j3.77 

i(t) 
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10.2. Root Mean Squared (RMS) or Effective Power 

Root Mean Squared (RMS) is used to calculate the sustained power consumption or generation ability of 
a device.  Instantaneous power changes with time from a maximum positive value to a minimum position 
value.  In a steady-state sinusoidal system, RMS power is the accepted method of calculating the 
sustained power and it is commonly referred to as the effective value also. 
 
In order to calculate the RMS or Effective power, we have to start by calculating the RMS or Effective 
voltage and current for a sinusoidal steady-state circuit: 
 

2
)(cos

11

2
)(cos

11

22
0

0

2

22
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0

2

m

T

im

tT

t

effrms
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t

effrms

I
dtwtI

T
dti

T
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V
dtwtV

T
dtv
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=+===

=+===
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∫∫

+

+

ϕ

ϕ

 

 
Vrms or Veff deliver the same power to a resistive load as a DC voltage of the same magnitude as shown in 
the following figure: 
 

The effective values of sinusoidal signal in power calculations is so widely used that voltage ratings of 
circuits and equipments in power utilization is always given in terms of rms value.  For example the 
voltage of electricity in typical US homes is stated as v=110 V which means that the RMS or Effective 
voltage is 110 V.  The Peak Voltage value may be calculated using the following equation: 
 

  Peak Voltage = Vmax = rmsV2  = 156 V 

 
If we need to find the effective current through a 100 Watts light bulb in a typically US home Then: 
 
  Ieff = P / V eff = 100/110 = 0.91 A rms 
 
Of course the peak current value may calculated using the following equation: 
 

  Peak Current = Imax = rmsI2 = 1.29 A  

 
The definition of RMS value can be applied to the Average and Reactive Power as shown below: 
 

+ 
- 

R 
Vs =  
45 V  rms 

+ 
- 

R 
Vs =  
45 V  dc 

The effective value of vs (45 V rms) deliver the same power to R as the dc 
voltage vs (45 V dc) 
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� Example - Power consumption and rating 

A typical system is capable of generating or consuming peak power at many times its RMS power 
rating.  Furthermore, Average Power is the portion of power that can be converted to non-electrical 
power and used.  It is expected and recommended that electrical devices be rated in terms of 
Effective or RMS Average power, P. 
 
Find the number of computers that can run off a circuit breaker capable of Ieff=15 Amp at Veff =110v.  
Each computer consists of a SPU (RMS Average Power of 200 watts) and a LCD display (Average 
Power of 100 watts). 
 
Pone computer = 200 + 100 = 300 Watt 
Pavailable = Ieff * V = 15 * 110 = 1650 Watt 
# of computer = integer { Pavailable  / Pone computer and monitor) = integer {1650/300} = 5 
 
Note: the instance power many be an issue if all system are turned on at the same time since turn-on 
power requirements are higher than steady state usage.  
 

� Example – RMS Value for non-Sinusoidal Signals  
A source is capable of delivering a periodic triangular signal with peak current of 100 mA.  Find the 
average power delivered to a 4 KΩ resistor. 

 

∫∫ ===
+ 4/

0

2

0

0

2 41
TtT

t

effrms dti
T

dti
T

II  

Note:  only need to calculate 0 to T/4 then multiply by 4 (simplification) 
 
The line equation representing i(t) 0 ≤ t ≤ T/4 �   i = (0.1/(T/4) t = (0.4/T) t 

T, s 

I, mA 

.1 A 

-.1 A 

-T/4 T/4 T/2 T 3T/4 -T/2 

P = average power = )cos()cos(
22

)cos(
2

iveffeffiv

mm

iv

mm IV
IVIV

θθθθθθ −=−=−  

Q = reactive power = )sin()sin(
22

)sin(
2

iveffeffiv

mm

iv

mm IV
IVIV

θθθθθθ −=−=−  
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A
T

T

t

T
dttT

T
I

T

T

rms 003.0)
)4)(3(

(
)4.0(4

|
3

(
)4.0(4

})/4.0{(
4

3

3

3

2
4/

0

3

3

24/

0

2 ==== ∫  

Note: Period is cancels out and does not effect the value of Irms. 
 
P = Ieff

2
 R  = (0.003) * 4000 = 12 W 
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10.3. Complex Power  

As we discussed in earlier Chapter, steady-state sinusoidal analysis and associated mathematics may be 
simplified by using complex number and Phasor representation.   The same is true for AC power analysis.  
AC power may be represented using complex number form which is referred to as Complex Power and is 
represented by letter S and defined below: 
 
 Complex Power = S = P + jQ  in Volt-Amp (VA) 
   where: 
   P = Average or Real Power = Real part of {S}  in Watts (W) 
   Q = Reactive Power = Imaginary part of {S} in Volt-Amp Reactive (VAR) 
 
Using the Complex Power offers two advantages: 
  (1) Use of complex representation of V, I and Z to calculate power 
  (2) Ability to relate power components using trigonometry as shown below (Power Rectangle): 
 

Observations: 
(1) Angle θ in the above diagram is the Power Factor Angle (θv – θi).  Below is the proof: 

)()tan(
)cos()2/(

)sin()2/(
tan iviv

ivmm

ivmm

IV

IV

P

Q
θθθθθ

θθ

θθ
θ −=→−=

−

−
==  

(2) The magnitude of the complex power is called Apparent Power: 

22|| QPS +=  

Apparent Power like Complex Power is measured in Volt-Amp (VA).  |S| is more important 
than real power when discussing devices that have a leading or lagging Power Factor 
(Capacitance or inductive load).  In other words are not pure resistive circuits. 
 
In general Average Power represents the usable output of the transferred energy. While the 
apparent power represents the volt-amp capacity required to supply the desired Average 
Power. Only in a resistive circuit, the capacity to supply Average Power and Apparent Power 
are the same.  In inductive loads (most common), we need to correct for the lag power factor 
to maximize average power delivered. 
 

(3) Power Factor, PF = Cos(θ) = P / |S| 
 

Complex Power, S, calculation utilizes the learning from the Phasor section and definition of Average and 
Reactive power earlier in this Chapter.  
 
Starting with the following definition of a device where effective current and voltage are represented in 
complex form: 

Q = Reactive Power = |S| sin(θ) 

P= Average Power = |S| cos(θ) 
 

θ=Power Factor Angle 

|S|= Apparent Power 
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Also it is useful to write complex power in term of complex I and V directly as shown below: 
)()()()( iiviv j

eff

j

eff

j

effeffiveffeff eIeVeIVIVS
θθθθθθ −− ==−==  

Here is a summary of Complex Power Calculation:  

 
 
Using the Impedance equation (Z= R+jX)  for a typical device shown below, we can develop an additional 
set of Complex Power equations: 

 
 

Z 
+  

Veff 
- 

Ieff 

)()()()()(

2

1
)( iiviiviv j

m

j

m

j

eff

j

eff

j

effeffiveffeff eIeVeIeVeIVIVjQPS
θθθθθθθθ −−− ===−=+=  

                  ZI
Z

V
IZIIVIV eff

eff

effeffeffeff

2

*

2

** ..
2

1
=====  

 
Note: 
1) Bold  I & V represent max.current and voltage and I eff & V eff represent the effective or RMS 

values. 
2) The “*” indicates conjugate which means imaginary portion is multiplied by negative (or 

replace j with –j) 

 
Circuit  +  

Veff 
- 

Ieff 
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By applying  Veff = Z Ieff    to     S = Veff I*eff  
Complex Power may be written as: 
     S = Z Ieff I*eff   
 
We know that product of a complex number with its conjugate KK*= (a+jb)(a+jb)* = (a+jb)(a-jb)=a

2 
+ b

2  
� 

22 ba + =|K| 
Therefore  
 
  S = Z |Ieff|

2
 =  |Ieff|

2
 (R + jX) = |Ieff|

2
 R + j|Ieff|

2
 X) = P + JQ  

  Which means: 
   P = |Ieff|

2
 R = ½ Im

2
R 

   Q = |Ieff|
2
 X = ½ Im

2
X 

 
If the circuit is purely inductive then Reactance X is positive and if the circuit is pure capacitance then 
Reactance X will be negative. 
 
Of course the Complex Power may be also written in terms of voltage using similar steps as show here: 
 
By applying Ieff = Veff /

 
Z    to     S = Veff I*eff   �  S = Veff (Veff / Z)*  

 
S = | Veff |

2
 / Z* = P + jQ 

 
If Z is pure resistive � P = = | Veff |

2
 / R 

if Z is pure reactive � Q = = | Veff |
2
 / X   “note X is positive for inductor and negative for capacitor” 
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� Example – Complex power Calculation  
The following circuit is an electrical power and transmission model.  For the following circuit find: 
 
a)  The RMS Phasor VL and IL. 
b)  The Average Power and magnetizing Reactive Power delivered by the source to the load. 
c)  Draw the Power Triangle shows Apparent, Average and Reactive Power delivered to the load. 
Note: reactive power is magnetizing so magnetizing Reactive Power is the same as Reactive Power. 
 

 
Solution: 

a)  RMS Phasor VL and IL 
  Calculate Load equivalent Impedance � ZLeq = 1/(1/(40+j20) + 1/(-j30)) = 21.2 - j24.7  
  Voltage source is already in RMS value � V = 200 | 0

o
  V (rms) 

 
  IL = V / Zt = (200) / (21.2 – j24.7 + 2 + j10)) = 6.2 + j3.9 = 7.2 | 32.4

o
  A (rms) 

  VL = IL ZL = (6.2 + j3.9) (21.2 – j24.7) = 223.8 – j70.5 = 238.42| -17.2
o
  V (rms) 

 
b) P & Q delivered to the load 
  S = VL I

*
L = (223.8 – j70.5)(6.2 - j3.9) = 16662.5 + j435  VA  

  Average Power = P = 16662.5 W 
  Magnetizing Reactive Power = Q = 435 VAR 
 
c) Power Rectangle 

  Power Factor Angle = 
o

P

Q
5.1

5.16662

435
tantan 11 === −−θ  

  Apparent Power = 
22|| QPS += = 16667.7 VA 

 
 
 

  

Q =435 VAR 

P= 16662.5 W 
 

θ=1.5
o
 

|S|= 16667.7 VA 

+ 
- 

200 |0
o 

V (rms) 

2 Ω j10 Ω 

40 Ω 

j20 Ω 

Source 
Line 

Load 

+ 
 
 
 

VL 
 
 
 
- 

IL 

-j30 Ω 
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� Example – Complex Power 
For the following device: 

 
find: 

(a) Real Power 
(b) Reactive Power 
(c) Power Factor 
(d) Instantaneous Power 
(e) Complex power in all three forms (Rect., Polar & Angular) 

 
� Solution: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
+ 
   V 
- 

i 
i(t) = 25 Cos(Wt+10

o
) 

v(t) = 100 Cos(Wt+55
o
) 
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10.4. Maximum (Average or Real) Power Transfer 

As it was discussed earlier, Average Power is the portion of power that can be converted to non-electrical 
power such as kinetic or thermal energy.  Therefore the goal of energy consumer and generators is to 
deliver the maximum power to the load. 
 
In this section, the requirement for maximum is explored for an AC circuit.  The process is similar to the 
DC and resistive circuit with the difference that impedance (Z), current (I) and Voltage (v) may be complex 
numbers instead of real numbers. 
 
A model for power generation and consumption is shown below.  Transmission line impedance can be 
modeled as part of source impedance, load impedance or separately.   

 
The key finding here is that for maximum average power to transfer in a Steady-State Sinusoidal 
condition, load impedance must be equal to the conjugate of Thevenin impedance (ZL = Zth*). 
 
Now that the answer is known, let’s take a look at the proof: 

KVL  �  
)()( LthLth

th

XXjRR

V
I

+++
=  

P=|I|
2
RL = 22

2

)()(

||

LthLth

Lth

XXRR

RV

+++
 

In order to find the maximum, take a derivative of P in-term of RL and XL.  Since load is the only variable 
in this situation. 

 
thL

L

XX
X

P
−=⇒=

∂

∂
0  

 
thLthLthL

L

RRXXRR
R

P
=⇒++=⇒=

∂

∂ 22 )(0  

 

Combining the above two conditions we have *Lth ZZ =⇒  

 
The next question to explore is if the condition (ZL = Zth*).exists then what is the maximum average power 
transferred?  To answer this question substitute (RL=Rth and XL = -Xth) in the earlier Average Power 
equation: 

P=|I|
2
RL = 22

2

)()(

||

LthLth

Lth

XXRR

RV

+++
 

+ 
- 

VTh 

Zth = Rth + jXth 

ZL = RL + jXL I 

Maximum Average Power, P, is 
transferred when 
 
  ZL = Zth* 
 
”*” is Conjugate �(a + jb)*  =  (a – jb) 

Thevenin Equivalent of Generator 

Note: Vth and I are rms value 

Load  Equivalent 
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There are times that the designer does not have full control over the load so we need to explore 
approaches to maximizing power transfer under restrictive load conditions.  Here are three possible sets 
of restrictions and associated approaches: 
 

� RL and XL may be restricted to a limited range so that you cannot achieve maximum power 

transfer condition 
*

Lth ZZ =  

In this case, the designed is expected get as close as possible to maximum Average Power by  
adjusting: 

(1) Adjust XL so that it is as close to (-Xth) as possible 

(2) Adjust RL to that it is as close to 
22 )( thLth XXR ++ as possible. 

 
� Magnitude of ZL can be varied but its phase angle cannot 

In this case, the greatest Average Power is transferred to the load when the magnitude of ZL is 
set equal to magnitude of Zth.  � |ZL| = |Zth| 
 

� Purely Resistive Load 
In this case maximum Average Power is transferred when RL = Rth 
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� Example - Maximum Average (Real) Power  
The source current in the following circuit is ig = 3cos(5000t) A. 

 
a) What load impedance at terminals a and b enable maximum Power Transfer? 
b) What is the Average Power transferred to the impedance from part a? 
c) Assume that the load is restricted to pure resistance.   
    What size load resistor results in the maximum average power transferred? 
d) What is the Average Power Transferred to the load for part C? 
 
 
Solution: 
Part a) Load impedance for Maximum Power Transfer? 
 
  Start by finding the Impedance of the Thevenin Equivalent  at w=5000 rad/s 
   Redraw the circuit in Phasor domain and deactivate the current source Ig (=0, open) 

 
   Zth = 4 + (20 || (-j40)) + j18 = 20 + j10 
 

  In order for the maximum power to transfer we have to have: *Lth ZZ =  

  Therefore � ZL = Z
*
th = (20 + j10)* = 20 – j10 

 
Part b) What is the average power transferred to the impedance from first part? 
  Now we have to find Vth = Vab-open 

 
  Vth = ig (20 || -j40) = 3 (16 - 8j) = 53.7|26.6

o 
V 

ig= 3|0
o
 20 Ω 

a 

b 
4 Ω 

+ 
 

Vth 
 
- 

I=0 
-j/wc = 
-j40 Ω 

jwL = j18 Ω 

-j/wc = 
-j40 Ω 20 Ω 

a 

b 
4 Ω 

Zth = Zeq 

jwL = j18 Ω 

ig 
5 uF 20 Ω 

a 

b 
4 Ω 

3.6 mH 

ZL 
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  Another option would be to use Pmax = |Vth|
2
/(4RL) to solve the problem. 

 
Part c)  Assume that the load is restricted to pure resistance,  Find RL? 
  The two conditions for maximum power transfer are: 

  
thL

L

XX
X

P
−=⇒=

∂

∂
0    we have no control over this since XL =0 given. 

  
22 )(0 thLthL

L

XXRR
R

P
++=⇒=

∂

∂
   we have Zth = 20 + j10 

  Ω=++= 36.22)100(20 22

LR  Maximizes the average power transfer to load 

 
Part d) What is the Average Power Transferred with RL from part c? 

  

WRIP

I
I

jZZ

V
I

Leff

m
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o
o
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m
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2
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- 

Zth 

ZL 
Vth 
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10.5. Summary 

 
� Instantaneous Power 
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� Power Factor 

Power Factor Angle = (θv – θi) 
Power Factor = pf = cos(θv – θi) 
Reactive Factor = rf = sin(θv – θi) 
 

� RMS or Effective Value 
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� Average and Reactive Power 

P = average power = )cos()cos(
22

)cos(
2

iveffeffiv
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mm IV
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Q = reactive power = )sin()sin(
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� Complex Power 
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eff
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eff
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effeffiveffeff eIeVeIeVeIVIVjQPS
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  Power Factor Angle = 

o

P

Q1tan −=θ  

  Apparent Power = 
22|| QPS +=  

 
� Complex Power Derivations 

S = Veff I*eff = Z Ieff I*eff =  | Veff |
2
 / Z* 

Q = Reactive Power, VAR 

P= Real Power, W 
 

θ=Phase Angle 

|S| = Apparent Power, VA 
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� Maximum Power 

 
 
  

+ 
- 

VTh 

Zth = Rth + jXth 

ZL = RL + jXL I 

Maximum Average Power, P, is 
transferred when 
 
  ZL = Zth* 
 
”*” is Conjugate �(a + jb)*  =  (a – jb) 

Load  Equivalent 
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10.6. Additional Resources 

 
� Nilsson, J.  Electrical Circuits. (2004)  Pearson. 

Chapter 10. 
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10.7. Problems 

 
Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 11.  Three-Phase Circuits 

 
Key Concepts and Overview 
 
� Introduction 

� Balanced Three-Phase Voltages  

� Three-Phase Voltage Sources  

� Analysis of the Wye-Wye (Y���� Y) and Wye-Delta (Y����∆) Circuits  

� Balanced Three-Phase Circuit Power Analysis 

� Additional Resources 
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11.1 Introduction 

Three-phase electric power is commonly used in larger electricity generation, transmission and 
distribution operations. Three-phase is a more economical way to transmit power since it uses less 
transmission line material than other systems at a given voltage.  Although most households in US use 
single-phase power, generally transmission of power is done using three-phase power. 
 
Additionally, three-phase power is used in industry where there is a need for large-load motors that 
require near constant torque.  The instant power of each phase peaks at a different time results in a more 
constant power delivery which results in constant torque and reduces vibration in machinery. 
 
Full coverage of three-phase circuit is the focus of Electrical Engineers specializing in Power and is 
beyond the scope of this text. In this chapter, we will focus on the balance three-phase power in steady-
state sinusoidal condition which provides an excellent introduction to three-phase power systems.  
 
In a three-phase system, three wires carry the three alternating currents and it may or may not have a 
neutral wire.  In typical transmission systems there are step-up and step-down transformers in order to 
increase and decrease the voltage levels.  High voltage transmission lines outside of populated areas 
may carry as high as one million volts and have to be stepped-down in multiple stages to 110 volts used 
in typical US House Hold.  In this chapter, we will be working with three-phase system models that directly 
connect between the generation (Source) and consumption (Load) facilities as shown below: 

 

Three-Phase  
Voltage Source 

Three-Phase 
Load 

Three-Phase Transmission Lines (3 or 4) 
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11.2. Balanced Three-Phase Voltages  

The first step is to define balanced three-phase Voltages.  Balanced three-phase voltages refer to three 
sinusoidal voltages with the same amplitude and same frequency that are exactly 120

o
 out of phase with 

each other.  a, b and c are used to name the phases as listed here: 
 

• a-phase voltage 
• b-phase voltage 
• c-phase voltage 

 
The phase voltage sequencing is determined by the system designer.  The two common sequences are 
abc (Positive) phase sequence and acb (Negative) phase sequence as shown below: 
 

 
The balanced three-phase voltages have three important characteristics which are listed below: 
 

1. Sum of phase voltages is zero �   Va + Vb + Vc = 0 
2. Sum of instantaneous voltages is zero � va + vb + vc = 0  
3. Once you know one of the voltages in a balanced three-phase voltage, you know them all 

since they have identical frequency and amplitude.  The only difference is that each voltage is 
out of with the other by 120

o
. 

 

Va 

Vc 

Vb 

abc (or Positive) Phase Sequence 
 
Va = Vm |0

o
 

Vb = Vm |-120
o
    Lags a by 120

o 

Vc = Vm |+120
o
    Leads a by 120

o
 

Va 

Vb 

Vc 

acb (or Negative) Phase Sequence 
 
Va = Vm |0

o
 

Vb = Vm |+120
o
    Leads a by 120

o 

Vc = Vm |-120
o
     Lags a by 120

o
 

Notes:  Counter Clockwise is the positive direction to read angles 

+120
o 

-120
o 

+120
o 

-120
o 
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11.3. Three-Phase Voltage Sources  

Three Phase Voltage Source or generator configuration is typically made up of a three set of winding 
equally space around a permanent magnet.  As the magnet rotates, each winding generates one of the 
phase voltages.  As discussed earlier in the case of balanced three-phase system, voltages will have the 
same magnetite but 120

o
 phase difference. 

 
The three windings may be interconnected either in a Wye(Y) or Delta(∆) configuration as shown below: 
 

 
 
The above diagram assumed that the generator windings are ideal with no Impedance.  Although 
designers make every effort to minimize the winding impedance, sources will have some amount of 
impedance inherent in their construction which will effect the system operation.  Therefore, the more 
accurate model of a three-phase generator is to include the impedence for each phase.  Rw and Xw 
represent the winding resistance and reactance respectively.  Since this is a balanced system, all three 
windings have the same impedance.  The following diagram shows the balanced three-phase source 
model with the impedance: 
 

- 
+ 

- 
+ 

+ 
- 

n (neutral terminal) 

a 

b 

c 

Va 

Vb Vc 

- 
+ 

+ 
- 

-    + b 

Vb 

Va 

Vc 

c 

a 

Y-Connected Source (ideal) 

“n” terminal is referred to as the neutral terminal 
and may not have an external connection. 

∆-Connected Source (ideal) 
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Although, the three-phase power generated may be converted to other configurations such as 2-phase 
and single phase, we will focus on its use on three-phase load.  Three-phase load similar to three-phase 
source may be either configured as a Wye(Y) or Delta(∆).  Here are the typical load configurations: 
 

 
 
Since there are two source configurations and similarly two configuration of load, we have 4 possible way 

of connecting load and source (Y����Y, Y����∆, ∆����Y, ∆����∆).  In the remainder of this section, two of the 
four possible configurations are discussed. 
 

N (neutral terminal) 

A 

B 

C 

B 

C 

A 

Y-Connected Load 

“n” terminal is referred to as the neutral terminal 
and may not have an external connection. 

∆-Connected Load 

ZA=RA + jXA 

ZC=RC + jXC ZB=RB + jXB 

Z∆=R∆ + jX∆ Z∆=R∆ + jX∆ 

Z∆=R∆ + jX∆ 

- 
+ 

- 
+ 

+ 
- 

n (neutral terminal) 

a 

b 

c 

Va 

Vb Vc 

- 
+ 

+ 
- 

-    + b 
Vb 

Va 

Vc 

c 

a 

Y-Connected Source ∆-Connected Source 

Zw=Rw + jXw 

Zw=Rw + jXw Zw=Rw + jXw 

Zw=Rw + jXw 

Zw=Rw + jXw 

Zw=Rw + jXw 



Fundamentals of Electrical Circuits, V3.6 Page 236 

� Analysis of Y����Y Connection 
Here, we will analyze the circuit resulting from connecting a Y-configured source to a Y-configured 
load.  In the Y-Y circuit, in addition to the three transmission lines, it includes a neutral (4

th
 connection 

transmission line).  Furthermore, the transmission lines are modeled by their impedances (Zta, Ztb, Ztc, 
Ztn).  Below is the resulting circuit: 

 
A single node voltage equation can be used to describe the circuit. 

  0''' =
++

−
+

++

−
+

++

−
+

gctcLc

ncN

gbtbLb

nbN

gataLa

naN

nt

N

ZZZ

VV

ZZZ

VV

ZZZ

VV

Z

V
 

 
We can Simplify this equation by using the conditions for a balanced three phase circuit: 
 

(1) The Voltage sources are balanced  �   Va’n + Vb’n + Vc’n = 0 
(2) Internal impedances of each source are identical  �  Zga = Zgb = Zgc 
(3) Impedances of each transmission are identical  �   Zta = Ztb = Ztc 
(4) Impedances of each load are identical  �   ZLa = ZLb = ZLc 

 
Letting ZΦ = ZLa + Zta + Zga = ZLb + Ztb + Zgb= ZLc + Ztc + Zgc which lead to the node voltage equation to 
be rewritten as: 
 

0
)(3 ''' =

++−
+

φZ

VVVV

Z

V ncnbnaN

tn

N    

 
First condition of balanced 3-phase says Va’n + Vb’n + Vc’n = 0 therefore:   
 

0)
31

(0
3

0

=+⇒=+
φφ ZZ

V
Z

V

Z

V
N

N

tn

N  

 

Given that Impedances is not zero � VN = 0  

Zga 

+ 
- 

Source 

Zgc 

- 
+ 

Zgb + 
- 

Vb’n 

Va’n 

Vc’n 

Zta 

Ztn 

Ztb 

Ztc 

ZLA 

Load 

ZLC 

ZLB 

Transmission Lines 

a 

n 

b 

c 

A 

N 

B 

C 

IaA 

IbB 

IcC 

I0 
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This means there is no difference between source and load neutral �  I0 = 0.  Therefore, in a 
balanced three-phase Y�Y connected circuit, the designer may either remove the neutral conductor 
or replaced it by short when modeling balanced three-phase circuits. 
 
Next step is to write the line currents equation as shown below: 
 

;;;
φφφ Z

VV
I

Z

VV
I

Z

VV
I Ncn

cC

Nbn

bB

Nan

aA

−
=

−
=

−
=  

 
where ZΦ = ZA + Z1a + Zga = ZB + Z1b + Zgb= ZC + Ztc + Zgc 

 

The three currents similar to their respective voltages have the same magnitude and frequency, and 
are 120

o
 out of phase. 

 
Therefore, it is understood that we only need to find voltage and current for one phase and then shift 
them by 120

o
 to find the voltage and current for other phases.  In other word, we can solve a single 

phase equivalent circuit and extend the result to other phases. 
 
Here is a single-phase equivalent circuit for the Y�Y circuit: 
 

 
The above circuit may be used to find IaA by applying KVL.  Now that we have IaA, we can use the 
following equivalent diagram of loads to calculate load voltages: 
 

 
 

ZLA 

ZLC 

ZLB 

+        VBN      - 
B 

A 

C 

N 

+ 
 

VAN 
 
- 

- 
 

VCN 
 

+ 

+ 
 

VAB 
 
- 

+ 
 

VBC 
 
- 

+ 
 
 
 
 
 

VAC 
 
 
 
 
 
- 

+ 
- 

Zga Zta 

ZLA 
Va’n 

n N 

a’ a A 

IaA 

Note: the neutral current here has only one component so it is not equal to three-
phase I0 = IaA + IbB + IcC 
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Based on IaA from single phase circuit, we calculate magnitude of Line-to-Neutral Voltages  
(VΦ = IaA  ZA) for abc (positive) configuration, Phase voltages may be written as: 
  
  VAN = VΦ |0

o 

  VBN = VΦ |-120
o 

  VCN = VΦ |+120
o 

 
Line-to-Line voltages can be found using the KVL as shown below: 

  VAB = VAN - VBN = VΦ |0
o 
 - VΦ |-120

o
 = VΦ|30

c
 = VAN|30

o
 

  VBC = VBN – VCN = VΦ |-120
o 

 - VΦ |+120
o

 = 3 VΦ|-90
o
 = VBN|30

o
 

  VCA = VCN – VAN= VΦ |120
o 
 - VΦ |0

o
 = 3 VΦ|+150

o
 = VCN|30

o 

 

Phasor diagram of Line-to-line and line-to-neutral voltages for abc or Positive Sequence: 
 

 
One could also go through the same process too draw the phase diagram for acb or negative 
sequence.  The only difference would that the line-to-line voltage would lag the line-to-neutral voltage 
as shown below: 

 
Finally, here are some of the terminologies which are common to this field: 

• Line Voltage refers to voltage across a pair of line or line-to-line voltage (ie. VBC) 
• Phase Voltage refers to voltage across a single phase or line-to-neutral voltage ((ie. VBN) 

3 3

3

3

VBC  

VAB 
VCA 

30
o
 

30
o
 

30
o
 

VCN 

VAN 

acb (or Negative) Sequence 
Note: Angle is positive in the counter 
clockwise directions 

VBN 

VCA 
VAB 

VBC 

30
o
 

30
o
 

30
o
 

VBN 

VAN 

VCN 
abc (or Positive) Sequence 
Note: Angle is positive in the counter 
clockwise directions 
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• Line current refers to the current in a single line 
• Phase current refers to current in a single phase 
• Since three-phase is used for power, effective or rms value is commonly used.  So the 

statement “transmission line is rated for 500 kV”, means that the nominal value of the rms 
line-to-line voltage is 500,000 V. 

• The Greek letter Φ is used to refer to per-phase quantities:  IΦ (Current/ Phase), VΦ (Voltage/ 
Phase), ZΦ (Impedance/ Phase), PΦ (Real or Average Power/ Phase), QΦ (Reactive power/ 
Phase) 

• ∆ and Y Connection Comparison 

(1) Phase and Line voltage are the same in ∆ Connection 
(2) Phase and line current are the same in Y connection. 

 
� Example – Y����Y Balanced Three-phase Circuit Analysis 

The phase voltage at the terminal of a balanced three-phase Y connected load is 2400 V.  The 
load has an impedance of (16 + J12) Ω/Φ and is fed by a line having an impedance of 0.1+J0.8 
Ω/Φ. The Y-connected source at the sending end of the line has a phase sequence of acb and an 
internal impedance of (0.02 +J0.16) Ω/Φ.  Use the a-phase voltage at the load as the reference to 
calculate: 
 
  a) the line currents IaA, IbB and IcC. 
  b) the line voltages at the source, Vab, Vbc and Vca 
  c) the internal phase to neutral voltages at the source, Va’n, Vb’n and Vc’n. 
 
Solution: 
a) Line currents? 

Analyze the single phase circuit for a-phase 

KVL around the loop �   A
j

I o

oaA 87.36|120
87.36|20

2400

)1216(

2400
−==

+
=  

 
Using acb or negative sequence to write the line currents therefore: 
 

AII
oo

maA 87.36|120| −== θ  

AII
oo

mbB 13.83|120120| +=+= θ  

AII
oo

mcC 87.156|120120| −=+−= θ  

 

+ 
- 

Zga = 0.02 +J0.16 Ω Z1a = 0.1+J0.8 Ω 

ZA= 16+J12 Ω Va’n 

n N 

a’ a A 

IaA 
+ 
 

2400|0
o
 V 

 
- 
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b) Line Voltages? 

VVca

VVbc

sequenceacbbyShiftconditionscircuitphasedthreeBlanacethegU

VVab

VjZIV

VoV

oo

oo

o

ooo

ooo

man

o

AN

38.148|02.427538.28120|02.4275

62.91|02.427538.28120|02.4275

)120(sin

38.28|02.4275)62.1|18.2468)(30|3(

62.1|18.2468)8.121.16()87.36|120())(|(

|2400

−=−−=

=−=

−−

−=−=

=+−==

=

θ

 

c) Internal Voltages 

VV

VV

sequenceacbbyShiftconditionscircuitphasedthreeBlanacethegU

VjZIV

oo

nc

oo

nb

o

ooo

mna

07.118|05.248293.1120|05.2482

93.121|05.248293.1120|05.2482

)120(sin

93.1|05.2482)96.1212.16()87.36|120())(|(

'

'

'

−=+−=

=+=

−−

=+−== θ

 

� Analysis of Y����∆∆∆∆ Connection 

In this section, we will analyze the circuits resulting from connecting a Y-configured source to a ∆∆∆∆-

configured load.  The simplest approach to analysis is to use the ∆∆∆∆����Y impedance network 

transformation from the earlier chapter to convert the ∆∆∆∆ load to Y Load as shown below:  
 

 

Note that in a Balanced three phase ∆∆∆∆ load, all loads are equal which means its Y equivalent 
will also have equal loads. 
 
Now that the load is in Y configuration, we can apply the learning from Y����Y  analysis 
section as shown below: 
 
Step 1) Using the above transformation we can now use the same techniques as Y-Y circuit by 

replacing ZΔ with ZY.   After the conversion, the following single phase equivalent circuit may be 
used for analysis. 

ZΔ 

ZY 
ZY 

ZY 

ZΔ 

ZΔ 

Delta-� Y Transformation 
ZΔ = 3ZY   or   ZY = ZΔ/3 
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Step 2) The following circuit can be used to establish relationship between line currents and  phase 
current in a balanced Δ load. 

 
(1) Phase Current (abc or positive sequence) 

IAB = IΦ|0
o
   ;  IBC = IΦ|-120

o
   ; ICA = IΦ|120

o
      

(Note:  IAB is arbitrary selected to be the reference  and IΦ represents the magnetite of line 
current) 
 

(2) Line Current (abc or positive sequence) 

IaA =  IAB – ICA = IΦ|0
o
  -  IΦ|120

o
 = 3 IΦ|-30

o
  = IAB|-30

o
 

IbB =  IBC – IAB = IΦ|-120
o
  -  IΦ|0

o
 = 3 IΦ|-150

o
 = IBC|-30

o 

IcC =  ICA – IBC= IΦ|120
o
  -  IΦ|-120

o
 = 3 IΦ|90

o
 = ICA|-30

o 

 
Phasor diagram of Line and phase currents 
 

3

3

3

ZΔ ZΔ 

ZΔ 
C 

A 

B 

IcC 

IbB 

IaA 

IAB 

IBC 

ICA 

+ 
- 

Zga Z1a 

ZA 
Va’n 

n N 

a’ a A 

IaA 
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One could also go through the process for acb (or negative) three phase system – the only 
difference is that the line current leads the phase current by 30

o
. 

 
� Example 1 – Y�∆ connected circuit 

The phase current ICA in a balance three-phase Δ-connected load is 12 |-25
o
 A.  If the phase 

sequence is positive, what is the value of IcC? 
 
Solution: 

  Line Current = IcC =   |-30
o
 ICA =  3 (12)|-25 - 30

o
 =  20.8 |-55

o 
A 

 
� Example 2 -- Y�∆ connected circuit 

The line voltage VAB at the terminals of a balanced three-phase Δ-connected load is 3210 |0
o
 V.  

The line current IaA is 75|-15
o
 A.  For this circuit 

 
  a) calculate the per-phase impedance of the load using positive phase sequence. 
  b) Repeat part (a) using negative phase sequence. 
 
Solution: 
 
a)  Positive Sequence - ZL 

IaA =   |-30
o
 IAB �  IAB = (IaA |30

o
 ) / 3  = (75|15

o 
) / 3  = 43.3 |15

o 
 A 

ZΔL = (VAB / IAB) = (3210 |0
o
)/( 43.3 |15

o 
 ) = 74.1 |-15

o 
 Ω 

 
b) Negative Sequence - ZL 

IaA =   |30
o
 IAB �  IAB = (IaA |-30

o
 ) / 3  = (75 |-45

o 
) / 3  = 43.3 |-45

o 
 A 

3

3

3

IbB 
IaA 

IcC 

30
o
 

30
o
 

30
o
 

ICA 

IAB 

IBC 
acb (or Negative) Sequence 
 
Note: Angle is positive in the counter clockwise 
directions 

IcC 

IaA IbB 

30
o
 

30
o
 

30
o
 

IBC 

IAB 

abc (or Positive) Sequence 
 
Note: Angle is positive in the counter clockwise 
directions ICA 
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ZΔL = (VAB / IAB) = (3210 |0
o
)/( 43.3 |-45

o 
 ) = 74.1 |45

o 
 Ω 

 
� Summary of Y & Δ Loads  

� Y Load 
� Phase Voltage  �  VAN, VBN, VCN 
� Line Voltage �  VAB, VAC, VBC 
� Phase Currents are the same as Line Currents � IaA, IbB, IcC 

 
� Δ Load 

� Line voltage  and Phase Voltage are the same � VAB, VAC, VBC 
� Phase Current  � IAB, IBC, ICA 
� Line Current  �  IaA, IbB, IcC 

 

ZΔ ZΔ 

ZΔ 
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11.4. Balance Three-Phase Circuit Power Analysis 

Power is an important parameter in circuit analysis since power represents circuit’s ability to effect or 
sense the physical environment and other devices.  Additionally, power is a integrative measure of 
current and voltage, the two main characteristics of any circuit.  For these reasons, power calculation and 
analysis will be an important part of any type of circuit analysis and design. 
 
At any point-of-time, circuit power is represented by instantaneous power, p(t) or simply p.  As discussed 
earlier Power delivered by a balanced three-phase circuit is constant with major benefit being the 
constant torque developed at the shaft of the three-phase motor is constant which leads to less vibration 
in machinery powered by three phase motors. 
 
The following few paragraphs show an approach to prove that instantaneous power is constant in three-
phase balanced circuits.  Let’s start by calculating per phase as shown below: 
 
  pA = vAN iaA = Vm Im cos(wt)Cos(wt - θΦ)  
  pB = vBN ibB = Vm Im cos(wt – 120

o
) cos(wt - θΦ – 120

o
) 

  pC = vCN icC = Vm Im cos(wt + 120
o
) cos(wt - θΦ + 120

o
) 

 
  Where: 
   *  vAN is voltage between a phase and neutral line 
   *  θΦ  is the power phase angle (θvA – θiA); 
   *  Assume positive phase sequence (abc) 
   *  Vm and Im represent the maximum amplitude of the phase voltage of line current. 

   *  Vm = 2  VΦ  and Im = 2  IΦ  relating maximum to the effective or rms value per phase.  
 
The Total Instantaneous Power = pT =pA + pB + pC = 1.5 Vm Im cos(θΦ) 
 
Conclusion: Total Instantaneous Power (pT) is constant with respect to time (t).” 
 
In the remainder of this section, we will be discussing average, reactive and complex power in a balanced 
three-phase circuit.  We will start with a Y-load power analysis and follow it with a discussion of Δ-Load 
power.   
 
� Power Calculation in a Three-Phase Balanced Y–load 

Below is diagram of a typical  Y-load with voltages and currents. 

 
 

ZA 

ZC 

ZB 

+        VBN      - 

B 

A 

C 

N 

+ 
 

VAN 
 
- 

- 
 

VCN 
 

+ IcC 

IbB 

IaA 

Notes 
� VAB, VBC, VAC are 

Line Voltages. 

� VAN, VBn, VCN are  
Phase Voltages. 

� Line and Phase Currents are 
the same in Y Connection. 
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Apply the Average Power equations {P = |V| |I| cos(θv  - θi)} to calculate Average Power for each of 
the three phases: 
  
  PA = |VAN| |IaA| cos(θvA  - θiA) 
  PB = |VBN| |IbB| cos(θvB  - θiB) 
  PC = |VCN| |IcC| cos(θvC – θiC) 
  Note: all Voltage and Current are written in term of their  rms or effective values. 
 
The following conditions are true since the analysis is being done on a three-phase balanced circuit: 
 
  VΦ = |VAN| = |VBN|  = |VCN| 
  IΦ = |IaA| = |IbB| = IcC| 
  θΦ = θvA  - θiA = θvB  - θiB = θvC  - θiC 

 
Therefore, per phase average power can be rewritten as: 
 
  Average Power per phase = PA = PB = PC = PΦ = VΦ IΦ cos(θΦ) 
 
Total Average Power delivered to all three phases can be written as: 
 
  Total Average Power = PT = PA + PB + PC = 3PΦ = 3 VΦ IΦ cos(θΦ) 
 
Total Average Power can be written in term of line voltage and current:  
 

  Total Average Power = PT = 3(VL / ) IL cos(θΦ) = 3  VL  IL cos(θΦ)   Where 

   *  VL and IL are the rms magnitudes of the line voltage and current. 
   *  θΦ is the phase angle difference between phase voltage and phase current 
 
Using similar process, Reactive Power (Q) in a three-phase balance Y-load can be calculated by the 
following equation: 
 
  Reactive Power per phase = QΦ =VΦ IΦ sin(θΦ) 

  Total Reactive Power = QT = 3QΦ =  VL  IL sin(θΦ)  Where 

  *  VL and IL are the rms magnitudes of the line voltage and current. 
   *  θΦ is the phase angle difference between phase voltage and phase current 
 
Complex Power (S = V I*) can be expressed in-term of load using the equations derived earlier for 
Reactive and Average Power: 
 
  Complex power per phase = SΦ = VAN IaA* = VBN IbB* = VCN IcC* = VΦ IΦ* = PΦ + jQΦ 

  Total Complex power = ST = 3SΦ = 3  VL IL | θΦ 

 
� Power Calculation in a Three-Phase Balanced Δ–load 

Below is diagram of a typical Δ-load with phase voltages and line currents. 
 

3

3
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Apply the Average Power equations {P = |V| |I| cos(θv  - θi)} to calculate Average Power for each of 
the three phases of a Three-Phase Balanced Δ–Load: 
 
  PA = |VAB| ||AB| cos(θvAB  - θiAB) 
  PB = |VBC| |IBC| cos(θvBC  - θiBC) 
  PC = |VCA| |ICA| cos(θvCA – θiCA) 
  Note: all Voltage and Current are written in term of the rms values. 
 
The following conditions are true since the analysis is being done on a three-phase balanced circuit: 
  VΦ = |VAB| = |VBC|  = |VCA| 
  IΦ = |IAB| = |IBC| = |ICA| 
  θΦ = θvAB  - θiAB = θvBC  - θiBC = θvCA  - θiCA 

 
Which means Average Power per phase = PA = PB = PC = PΦ =VΦ IΦ cos(θΦ) 
 
Sum of powers for all phases or Total Average Power = PT = 3PΦ = 3VΦ IΦ cos(θΦ) 
 
Total Average Power can be written in term of Load Current and Voltage: 
 

Total Average Power = PT = 3(IL/ 3 ) VL cos(θΦ) = 3  VL  IL cos(θΦ)   Where 

   *  VL and IL are the rms magnitudes of the line voltage and current. 
   *  θΦ is the phase angle difference between phase voltage and phase current 
 
Using similar process, Reactive Power (Q) in a three-phase balance Δ-load can be calculated by the 
following equation: 
 
. Reactive Power per phase = QΦ =VΦ IΦ sin(θΦ) 

  Total Reactive Power = QT = 3QΦ = 3  VL  IL sin(θΦ) Where 

   *  VL and IL are the rms magnitudes of the line voltage and current. 
   *  θΦ is the phase angle difference between phase voltage and phase current 
 
Complex Power (S = V I*) can be expressed in-term of load using the equations derived earlier for 
Reactive and Average Power: 
 
  Complex power per phase = SΦ = VAN IaA* = VBN IbB* = VCN IcC* = VΦ IΦ* = PΦ + jQΦ 

ZΔ 

ZΔ 

A 

C 

B 

+ 
 

VAB 
 
- 

+ 
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Line Currents. 
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IbB 
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  Total Complex power = ST = 3SΦ = 3  VL IL | θΦ 

 
� Example - Power Calculation in a Balanced Three-phase Circuit 

The complex power associated with each phase of a balanced load is 144 + j192 kVA.  The line 
voltage at terminals of the load is 2450 V. For this abc sequence circuit: 

(a) What is the magnitude of the line current feeding the Y connected load? 
(b) The load is delta connected and the impedance of each phase consists of a 

resistance in parallel with a reactance. Calculate R and X. 
(c) The load is Wye connected, and the impedance of each phase consists of a 

resistance in series with a reactance. Calculate R and X. 
Solution: 
 
a) Magnitude of Line Current? 

VAB = VAN |30
o
   �    VAN  = (VAB |-30

o
 ) /   = (2450 |-30

o
 ) /  =   1414.51 |-30

o
  V 

 
SΦ = VAN IaA*  �  IaA* = SΦ / VAN  
IaA* = 1000 (144 + j192) / (1414.51 |-30

o
) = 1000(240|53.13

o
) / (1414.51 |-30

o
) = 169.67|83.13

o
 

|IaA| = 169.67 Magnitude of the line current feeding the load 
 

b)  R & X for Δ-Connected Load 
S= V

2
/Z*  � Z* = V

2
/S = (2450)

2
/(144000 + j192000) =  

 
c) R & X for Y-Connected Load 

Z Φ = VAN / IaA =  1414.51 |-30
o
  / 169.67| - 83.13

o
 = 8.34 | 53.13

o
 = 5 + j 6.67 Ω 

   �  R = 5 Ω   &  X = 6.67 Ω 
 

3 3 3
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11.5. Summary 

 
� Balanced 3-phase sequences 

 
� 3-Phase Y and ∆ Sources 

 

- 
+ 

- 
+ 

+ 
- 

n (neutral terminal) 

a 

b 

c 

Va 

Vb Vc 
- 
+ 

+ 
- 

-    + b 

Vb 

Va 

Vc 

c 

a 

Y-Connected Source ∆-Connected Source 

Zw=Rw + jXw 

Zw=Rw + jXw Zw=Rw + jXw 

Zw=Rw + jXw 

Zw=Rw + jXw 

Zw=Rw + jXw 

Va 

Vc 

Vb 

abc (or Positive) Phase Sequence 
 
Va = Vm |0

o
 

Vb = Vm |-120
o
    Lags a by 120

o 

Vc = Vm |+120
o
    Leads a by 120

o
 

Va 

Vb 

Vc 

acb (or Negative) Phase Sequence 
 
Va = Vm |0

o
 

Vb = Vm |+120
o
    Leads a by 120

o 

Vc = Vm |-120
o
     Lags a by 120

o
 

Notes:  Counter Clockwise is the positive direction to read angles 

+120
o 

-120
o 

+120
o 

-120
o 
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� Y�Y Connection 

 
� Single Phase Analysis 

 
� Y-Connected Load 

  VAB = VAN - VBN = VΦ |0
o 
 - VΦ |-120

o
 = VΦ|30

c
 = VAN|30

o
 

  VBC = VBN – VCN = VΦ |-120
o 

 - VΦ |+120
o

 = 3 VΦ|-90
o
 = VBN|30

o
 

  VCA = VCN – VAN= VΦ |120
o 
 - VΦ |0

o
 = 3 VΦ|+150

o
 = VCN|30

o 

 

3 3

3

3

+ 
- 

Zga Z1a 

ZA 
Va’n 

n N 

a’ a A 

IaA 

Zga 

+ 
- 

Source 

Zgc 

- 
+ 

Zgb + 
- 

Vb’n 

Va’n 

Vc’n 

Zta 

Ztn 

Ztb 

Ztc 

ZLa 

Load 

ZLc 

ZLb 

Transmission Lines 

a 

n 

b 

c 

A 

N 

B 

C 

IaA 

IbB 

IcC 

I0 
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� Y����∆∆∆∆ Connection 

 
 

 
 

ZΔ 

ZY 
ZY 

ZY 

ZΔ 

ZΔ 

Delta-� Y Transformation 
ZΔ = 3ZY   or   ZY = ZΔ/3 
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11.6. Additional Resources 

 
� Nilsson, J.  Electrical Circuits. (2004)  Pearson. 

Chapter 11. Another academic approach to the topic. 
 

� en.Wikipedia.org,  Search for “Three-phase electric Power” 
An industrial view with animated graphics of the three-phase electric power operations. 
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11.7. Problems 

 
Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 12.  Frequency Selective RLC Circuits (Filters) 

 
Key Concepts and Overview 
 
� Frequency Selective Circuits (Filters) 

� First-order Low-Pass Filters 

� First order High-Pass Filters  

� Band Pass Filters 

� Band Reject Filters  

� Bode Plots 

� Additional Resources 
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12.1. Frequency Selective Circuits (Filters) 

Filters or frequency-selective circuits are used to amplify or attenuate signals based on the signal’s 
frequency.  Filters are used in all types of devices such as radios, televisions, audio/visual systems, 
medical diagnostics and cell phones. 
 
One way to categorize filters is based on the elements used in their construction.  Active Filters are 
designed using active elements such as Operational Amplifiers and are covered in the next chapter.  This 
chapter focuses on Passive Filters which are designed only using passive circuit elements (R, L, and C). 
 
As discussed earlier, any system can be defined by its input x(t), output y(t) and impulse function h(t). x(t) 
and y(t) represent the signal and may be represent either current or voltage.  Basically, Impulse function 
relates the input to the output function in time domain as shown below: 
 

 
By leveraging the learning from the Phasor or frequency domain and allowing for s=jw, the system 
relationship may be re-drawn in Phasor or frequency domain as shown below: 
 
 

 
 
This system definition is also referred to as the s-domain.  The key benefit of using the frequency domain 
is the introduction of transfer function H(s) which relates the input to output with a simple algebra: 
 

  System Transfer Function H(s) =  
Input

Output

sX

sY
=

)(

)(
 or )()()( sXsHsY =   where s=jw 

 
In other word: 
 

 System Transfer Function H(jw) =  
)(

)(

jwX

jwY
 or )()()( jwXjwHjwY =  

 
Transfer function, H(jw), describes the relationship between input and output at a given frequency.  H(jw) 
serves a very important role in the discussion on filters design and circuit performance.  For a complete 
understanding of the system and its transfer function with respect to frequency, we need to utilize both 
the magnitude of H(jw) represented by |H(jw)| and phase of  H(jw) represented by θ(jw).  These two 
parameters completely describe the relationship between system input, X(jw) and output, Y(jw). 
 
Filters are functionally categorized based on transfer function magnitude |H(jw)| vs. frequency w, and 

transfer function phase θ(jw) vs. frequency w.   The following diagrams show the transfer function 
magnitude and phase graphs for ideal low pass, high pass, band reject and band pass filters.  It is 
important to remember that real filter’s transfer function changes over time but here we will assume ideal 

Filter 
H(s)=Y(s)/X(s) 

X(s) 
Input Signal 

Y(s) 
Output or Frequency Response 

H(s) is the system transfer function response. 

Filter 
h(t) 

x(t) 
Input Signal y(t) 

Output or Response Signal 

h(t) is referred to as the system impulse function response. 
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filter where the transfer function changes instantaneously. 
 
� Ideal Low Pass Filter 

Low pass filter allows for signals with frequency from 0 to cut off frequency wc to pass through while 
blocking signals above cut off frequency wc.   
 

 
� Ideal High Pass Filter 

High pass filter blocks signals with frequency from 0 to cut off frequency wc and passes through 
signals with frequency above cut off frequency wc.   
 

 
 
 

� Ideal Band Pass Filter 
Band pass filter allows for signals with frequency between frequencies wc1 and wc2 to pass through 
while blocking signals with frequency outside the range. 

w 

1 

φ (jw) 

wc 

Pass band Stop band 

0 

θ(jwc) 

|H(jw)| 

w 

w 

1 

θ jw) 

wc 

Pass band Stop band 

0 

θ (jwc) 

|H(jw)| 

w 
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� Ideal Band Reject Filter  

Band reject filter blocks signals with frequency between frequencies wc1 and wc2 while allowing 
signals with frequency outside the range to pass through. 
 

 
 
As discussed earlier, real filter transfer function does not change instantaneously from one level to 
another, therefore, it becomes important to define a criterion to calculate the cut off frequency (wc).  The 
accepted definition is that the cut off frequency (wc) is the frequency at which half of the maximum power 
is being passed through the filter.  Remember that H(jw) represents the voltage transfer, therefore, the 
power transfer function which is the ratio of power would be square of H(jw) which is the ratio of voltages. 
 

  

max

max

2

2

2

1
|)(|

2
|)(|

2
|)(| max

HjwH

or

P
jwPor

H
jwH

c

cc

=

==

 

 
In the remaining sections of this chapter, typical circuits for each of the filter types will be presented along 
with their transfer functions in-terms of its components (R,L,and C).  The transfer function is derived by 
application of node-voltage or mesh-current along with the transfer function definition as shown below: 

w 

1 

θ  (jw) 

wc1 

Stop band Pass band
  

θ(jwc1) 

θ(jwc2) 

|H(jw)| 
 

wc2 

0 

Pass band 

w 

1 

θ  (jw) 

wc1 

Pass band Stop band 

θ(jwc2) 

θ(jwc1) 

|H(jw)| 
 

wc2 

0 

Stop band 

w 
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)(

)(
|)(|

sV

sV
sH

i

o=  

 
All passive filters are designed using passive components (R, L, and C).  Further, they are analyzed 
without a load.  As it is  true in all passive circuits, load has the potential to significantly change the circuit 
characteristics.  Therefore, it is important to design the filter circuit for a specific range of load. 
 
Each of the following sections cover one type of filter as defined by the range of frequencies which 
signals are stopped and allowed to pass through. 
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12.2. First-order Low-Pass Filters 
A low pass filter can be implemented by using a RC or RL circuit as shown here: 
 
� Low Pass Series RL Circuit 

This section analyzes the low pass series RL design and derives corresponding  transfer function and 
cut off frequency. 
 

c

c

c

c

c

cc

i

o

ws

w
sH

sHtIndependentionimplementa

L

R
w

L

R
w

L

R

jwH

HjwHwat

R

wL
jw

L

R
w

L

R

jwH

L

R
jw

L

R

jwHstep

L

R
s

L

R

sV

sV
sH

derivetoKVLApplystep

+
=

=

+

==

=→

−=

+

=

+

=

+

==

−

)(

:)(

)(

|1|
2

1
|)(|

2

1
|)(|

)(tan)(

)(

|)(|

)()2

)(

)(
)(

:)1

22

max

1

22

θ

 

 

 

 
�  Example 

Design a RL low pass filter with cut off frequency of 2,000 Hz and pass band gain of 1. 
 
Solution: 
 
 
 

  

+ 
- 

R Vo(s) 

sL 

Vi(s) 

Stopband 
Pass band 

1 
0.7 

-90
o
 

0
 o
 

w 

θ (jw) 

wc 

|H(jw)| 
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� Low-Pass Series RC Circuit 
This section analyzes the low pass series RC design and derive corresponding  transfer function and 
cut off frequency. 
 

c

c

c

c

c

cc

i

o

ws

w
sH

sHtindependentionimplementa

RC
w

RC
w

RCjwH

HjwHwat

wRCjw

RC
w

RCjwH

RC
jw

RCjwHstep

RC
s

RC

sV

sV
sH

derivetoKVLApplystep

+
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+

==
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+
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+
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+

==
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� Example 

Design a RC low pass filter with cut off frequency of 80,000 radian/sec and pass band gain of 
1. 
 
Solution: 
 
 
 

 
  

+ 
- 

R 

+ 
Vo(s) 

_ 
Vi(s) 

Stopband 
Pass band 

1 
0.7 

-90
o
 

0
 o
 

1/sC 

wc 
w 

θ (jw) 

|H(jw)| 
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12.3. First order High-Pass Filters  

A high pass filter can be implemented by using a series RC or RL circuit as shown here: 
 
� High-Pass Series RL Circuit 

This section analyzes the high pass series RL design and derives corresponding transfer function and 
cut off frequency. 
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Note: Cut off frequency, wc = R/L = 1/τ where τ = time Constant 

 
� Example 

Using resistors, inductors and a white noise generator (outputs full spectrum of 0 to infinity 
HZ), design a system that will drive away bats (Bats hear 200 kHz +/- 50 kHz).  The system 
should not bother humans (hear 20 kHz max.) and dogs (hear 40 kHz max.) 
 
Solution: 
 
 
 

 
  

+ 
- 

R 

+ 
Vo(s) 

_ 
sL Vi(s) 

Stopband Pass band 

1 
0.7 

0
o
 

90
 o
 

w 

θ (jw) 

wc 

|H(jw)| 
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� High-Pass Series RC 
This section analyzes the high pass series RC design and derives corresponding  transfer function 
and cut off frequency. 
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Note: Cut off frequency, wc = 1/RC = 1/τ where τ = time Constant 
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12.4. Band Pass Filters 

Band pass filters as discussed earlier allow for signals with frequencies in the range between the cut off 
frequencies wc1 and wc2 to pass through.  All other signals will be blocked.  The two cut off frequencies 

wc1 and wc2 occur when |H(jwc)|= max)
2

1
( H . 

 
Furthermore, we need to define resonant or center frequency (w0) which is the frequency where circuit’s 
transfer function (H(jwc)) is purely real. Mathematically w0 is the geometric center of the pass band  

210 cc www = . 

 
Defined below are two other parameters which characterize the quality of filter: 
 

� The bandwidth, β  = wc2 – wc1 

Bandwidth defines a range of frequencies that signal passes through the filter. 
 

� Quality factor, Q 

Quality factor is defined as the ratio of center frequency to Bandwidth (Q= w0 / β ).  Quality factor 

(Q) is a measure of filter quality since Q normalizes the bandwidth with respect to its pass band 
frequency. 
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� Band Pass Filter using series RLC circuit 
This section analyzes the band pass filter using series RLC design and derives corresponding  
transfer function, cut off frequencies, Bandwidth and quality factor. 
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� Band Pass Filter using parallel RLC circuit 
This section analyzes the band pass filter using parallel RLC design and derives corresponding  
transfer function, center frequency, cut off frequencies, Bandwidth and quality factor. 
 

 
Apply KVL  to derive: 
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� Example 

Design a filter that has pass band from 100 to 400 rad./sec. 
 
Solution: 
 
 
 
 
 
 

� Example 
Design a filter that detects whistling. 
 
Solution: 
 
 
 
 
 
 

� Example 
Design a filter that shuts off lights when there is no sound ranging from 10 Hz to 20 kHz 
present.  
 
Solution: 
 
 
 
 
 
 

� Example 
Design a band pass filter with: 
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  W0 = 200,000 rad/sec 
  B = 500 rad/sec 
 
Solution: 
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12.5. Band Reject Filters 

Band reject, like band pass filter, is characterized by five parameters:  2 cut off frequencies, center 

frequency, bandwidth and quality factor. Again only 2 of the 5 parameters (Wc1, Wc2, W0, β and Q) can be 
specified independently and the rest can be derived. 
 
� Band Reject Filter Using Series RLC  

This section analyze the band reject filter using series RLC design and derives corresponding transfer 
function, center frequency, cut off frequencies, Bandwidth and quality factor. 
 

Apply KVL to derive: 
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� Band Reject Filter Using Parallel RLC 
This section analyzes the band reject filter using parallel RLC design and deriving the corresponding  
transfer function, cut off frequencies, Bandwidth and quality factor. 
 

 
Apply KVL to derive:  
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� Example 

Design a band reject filter with: 
  W0 = 200,000 rad/sec 
  B = 500 rad/sec 
 
Solution: 
 
 
 
 
 
 

 

 
 

  

+ 
- 

R 

sL Vi(s) 1/sC 

+    V0(s)    - 
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12.6. Bode Plots 

A Bode plot, named after Hendrik Wade Bode, is a logarithmic plot of either magnitude or phase of the 
transfer function (H(jw)) versus frequency(w).  It is intended to approximate the characteristic of a given 
filter circuit without the need to calculate every point and plot it.  This is a useful tool for engineers to 
estimate filter behavior during the design phase. For an exact plot of the circuit transfer function, designer 
may use a modeling tool such as Mat lab. 
 
Before starting with Bode plot, we need to do a brief review of common log definitions and operations.  
Log is defined by the following relationship: 
 

  
x

b baxaLog =⇒=   where 

   “a”  is the value being logged 
   “b” is the log base.  In the following special cases, base is not shown: 
    “base 10” is written as log(a) = x  � a= 10

x 

    “base e” is called natural log and is written as ln(a) = x � a= e
x
 

 
Below are some of the most common log operations: 
  Log(ab) = Log(a) + Log (b) 
  Log(a/b) = Log(a) - Log (b) 
  Log(a

n
) = n (Log(a)) 

 
Here are three  trivial log calculations to remember: 

  11010 =Log  

  0110 =Log  

  InvalidLog ≤010  

 
The remainder of this section describes the process of drawing a magnitude Bode plots based on the 
circuit transfer function {H(s) = Vo(s)/Vi(s)}.   
 
Bode plot’s horizontal axis represent frequency (w radians/second) in logarithmic scale.   The vertical axis 
of Bode plot is the value of AdB which is {AdB = 20 log |H(s)|}.  Here is a typical Bode plot axis and labels: 

 
 
Now, let’s explore the relationship between H(s) and AdB on the Bode Plot.  A typical transfer function may 
have the following form: 

0.1 

w, Radian/Sec. 
Frequency in log scale 

AdB = 20Log{|H(s)|} 

1 10 100 

Note: “w≤0” is an invalid w value since log (0) does not exit. 

20 dB 

10 dB 

0 

-10 dB 

-20 dB 
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Next, evaluate the value AdB = 20 log |H(s)| where units are decibels (dB) 
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General form of H(s) is shown below: 
 

  
)...)()((

)...)()((
)(

321

3210

pspspss

zszszsK
sH

+++

+++
=  

 
Leveraging the log operations (log a/b = Log a – log b) as done in the earlier example, we can turn all 
these multiplications and divisions to additions and subtractions as shown below: 
 
  ...|/1|2020...|/1|2020 11010110010 −+−−+++= pjwLogwLogzjwLogKLogAdB

 

 
Each term adds to or subtracts from the slop of Bode plot as shown below: 
 

• 
0100 20 KLogK ⇒  

This is a horizontal line on Bode plot representing constant value. 
 

• wLogs 1020/1 ⇒  

This term is a straight line with a slope of -20 dB/decade that intersects the 0 dB axis at w=1. 
Note: A decade is 1-to-10 change in frequency.  For example w=100 to w=1000 is a decade. 
 

• |/1|20)( 1101 zjwLogzs +⇒+  

This term is a straight line with a slope of 20 dB/decade that intersects the 0 dB axis at w=z1. 
 

• |/1|20)/(1 1101 pjwLogps +−⇒+  

This term is a straight line with a slope of -20 dB/decade that intersects the 0 dB axis at w=p1. 
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� Example – Bode plot 

Graph the Bode plot for 
)5(
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� Example 
if the input to the circuit represented by the above Bode plot is v(t)=10Sin(10wt) volts, what is 
the output at w=100 rad/sec in volts. 
  
Solution: 
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A better approximation may be achieved by a 3 dB at the cut-off frequencies as shown below: 
 

 

As discussed earlier 
2

1
log103 ≈dB  improves the graph’s approximation of the real filter transfer function.  

This is due to the fact the 3dB represent the point where power is one half of maximum power at cut-off 
frequency.  
 
� Example – Bode plot 

Graph the Bode plot for 
3

9

)1000(

10
)(

s
sH

+
=   

 
Solution: 
   ”Student Exercise” 
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� Example – Bode plot 

Graph the Bode plot for 
)000,10)(000,5(
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Solution: 
   ”Student Exercise” 
 
 
 
 
 
 
 
 
 
 
 
 

� Example – Bode plot 

For the transfer function, 
)1000)(10(

)100(10
)(

3

++

+
=

sss

s
sH   

a) draw Bode Plot. 
b) find output voltage magnitude if the input in vi(t) = 25 Cos(100t – Π/2). 
c) find output voltage magnitude if the input in vi(t) = 25 Sin(10,000t + Π/3). 
 
 
Solution: 
  “Student Exercise” 
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� Example – Bode plot 
For the following filter circuit use a bode plot to graph and describe its response (functionality): 
 
 
 

  
Solution: 
   ”Student Exercise” 
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+ 
 
Vo(t) 
 
- 

5 kΩ 5 kΩ 10 nF 5 mH 

25 nF 10 
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12.7.  Summary 

 
� Transfer Function and Cut-off Frequency 

 

� RL Circuit, 
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� RC Circuit,  
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Cut-off frequency, Wc, satisfies the following equation:  
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� RLC Series Circuit, 

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� RLC Parallel Circuit, 
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� Quality Factor 

β
0w

Q =  

 

� Filter equations 

 

� Bode Plot 

Graphical representation of transfer function, H(S), using logarithmic frequency scale. 
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12.8. Additional Resources 

 
� Nilsson, J.  Electrical Circuits. (2004)  Pearson. 

Chapter 14. 
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12.9.  Problems 

 
Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 13.  Active Filters 

 
Key Concepts and Overview 
 
� Active vs. Passive Filter 

� First-order Active Low Pass Filters 

� First-order Active High Pass Filters 

� Scaling Filter Elements and Parameters 

� Active Band Pass Filters 

� Active Band Reject Filters 

� Higher Order Active Filter 

� Specialized Filter Designs 

� Additional Resources 
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13.1. Active vs. Passive Filter  

This chapter covers design and analysis of active filters.  Many of the concepts introduced in the previous 
chapter apply directly to active filters.  All four basic filter types (low pass, high pass, band pass and band 
reject) can be designed using Op Amps, resistors and capacitors.  The use of Op Amp, an active 
component, is the reason for naming this type of filter active. 
 
Active filters have three distinct advantages over their equivalent passive filter designs: 
 

1) All active filters can be designed without inductors.  This is an advantage since inductors are 
large, heavy, highly variable and costly to produce.  Additionally, Inductors produce an 
undesirable electromagnetic field effect in the circuit. 

2) Active filters can be designed with gains larger than one which is the maximum gain possible 
with passive filter.  In other words, active filters allow signal amplification. 

3) Active filters’ cut off frequency and magnitude of transfer function do not change with the 
addition of load impedance, unlike a passive filter. 

 
In general, an active filter is preferred, due to the advantages listed above, as long as the power required 
for the Op Amp DC Bias is available. 
 
The remainder of this chapter is dedicated to the analysis and design of Active filters for each of the major 
filter types (low pass, high pass, band pass and band reject).  Unless specified otherwise, we will be 
using ideal Op Amp model which means Op Amp input currents Ip = In = 0, input voltages Vp = Vn and 
open loop gain A = ∞. 
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13.2. First-Order Active Low Pass Filters 
This section introduces a first-order active low pass filter design with a Bode plot of its transfer function 
and definition of its prototype design. 
 

CR
w

R

R
Kwhere

ws

w
KsH

CsRR

R

Vi

Vo
sH

VnVp

sC

VoVn

R

VoVn

R

ViVn

EquationKCLwriteVnAt

Vi

Vo
sH

c

c

c

21

2

21

2

21

1
)(

1

1
)(

0

0
/1

?)(

==
+

−=

+
−==

==

=
−

+
−

+
−

==

 

 
Note: Gain and Cut off frequency can be set 
independently; and the gain may be >1. 

 
 

 
� Prototype low pass Op Amp filter 

In general prototype filter is a filter where the gain K=1 and cut off frequency wc=1.  Therefore, a 

 

AdB =20 log |H(s)| 
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prototype low pass filter may be defined by: 
 
  H(s) = (-1)/(s+1) 
  R1=R2=1 ohm and C=1 F. 
 
 

� Example 
Design an active low pass filter with a gain of 230 and cut off frequency of 2000 Hz. 
 
Solution: 
 
 
 
 
 
 
 
 

� Example 

Design an active filter with transfer function: 
5000
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)(
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+
−=

s
sH . 

 
Solution: 
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13.3. First-Order Active High Pass Filters 

This section introduces a first-order active high pass filter design, Bode plot of its transfer function and 
definition of its prototype design. 
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� Prototype High Pass Op Amp Filter 

As discussed earlier, prototype filter has a gain K=1 and cut off frequency wc=1.  A prototype high 
pass filter may be defined by: 

 w, rad/s wc 2wc wc/2 
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  H(s) = (-s)/(s+1) 
  R1=R2=1 ohm and C=1 F. 
 
 

� Example – Active High Pass Filter Design 
Compute the values of R2 and C that yields a high-pass filter with a pass band gain of 1  if R1 is 1 Ω. 
 
Solution: 
Gain=K=R2/R1 = 1  � R2 = 1 Ω 
Cut Off Frequency = wc= 1/(R1 C)  �  C = 1 F 
 
Note:  This is the prototype of high pass filter (unity) where C=1F, R1 = R2 = 1 Ω 

 
All the other filter types such as band pass and band reject may be designed using a combination of low 
and high pass filter. Next section introduces scaling process before discussing other types of filters. 
 
 
� Example 

Design an active low pass filter using 10,000 Ω resistors with a cut off of 50 krad/s.  Start with a 
prototype filter.  
 
Solution: 
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13.4. Scaling Filter Elements and Parameters 

This section introduces the concept of filter design scaling with respect to cut off frequency and 
magnitude of transfer function. The scaling process applies to both active and passive filters. By the 
definition component scaling factor Kg and frequency scaling factor Kf are positive. These parameters 
scale the value of capacitors, inductors, resistors and frequencies. 
 
In the following analysis the prime is used to identify scaled parameters (R’, L’, C’, w’) and the original 
parameters are shown as not primed (R, L, C, w).  Active and passive design differ only in the fact that 
passive filter gain is less than 1 (due to loss) and active filter gain is equal to the ratio of feedback 
impedance and source impendence control the gain. 
 
The following steps outline the process of scaling factor application: 
 

� Select the cut off frequency, wc for low/high pass or center frequency, wo for band pass/band 
reject filters at 1 rad/s 
 

� Select gain, K= 1 
 

� Select C=1 F 
 

� Calculate the value of resistors needed to the reach the desired pass band gain at 1 rad/s cut-off 
or center frequency. 
 

� Use the scaling steps below to compute component values that provide the desired cut off or 
center frequency & gain.  Note that original component values are without prime (R, L, C, wo).  
and scaled component values are shown with prime (R’, L’, C’, w’). 
 
• Component Value Scaling 

Kc is the component value scaling factor which allows changes in value of component without 
impacting the frequency or the filter transfer function. 
 
  R’ = KcR,      L’ = KcL,     C’ = C/Kc  � Kc = R’/R = L’/L = C/C’   
 

• Frequency Scaling 
Kf is frequency scaling factor (Kf = wc’/wc) for low or high pass and (Kf=wo’/wo) for band reject 
or band pass filters.  By adjusting based on as shown below, the cut off frequency is adjusted 
to the desired value.  
 
  R’ = R,      L’ = L/Kf,     C’ = C/Kf  � Kf = L/L’ = C’/C   
 

• Simultaneous Frequency and component value scaling  
R’ = KcR,      L’ = (Kc/Kf)L,     C’ = C/(KcKf) 
 

 
� Example – Scaling 

What scale factors will transform the prototype high-pass filter into a high-pass filter with a 0.5 uF 
capacitor and a cutoff frequency of 10 Khz. 
 
Solutions: 
  We know for the prototype high-pass filter Wc = 1 rad/sec and C = 1F  
   
  Frequency Scale Factor � Kf = wo’/ wo = 20,000 π / 1  = 62,831.85 

 

  
Component Value Scale Factor � Kc = C/(KfC’)= 1/ (62,831.85 x 0.5 10

-6
) = 31.831 
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13.5. Active Band Pass Filter (Multi-stage Cascading Filter) 

As discussed earlier active band pass filter can be designed using multiple low pass and high pass filters.  
The gain may be controlled using an amplifier stage.  Below is example of a prototype (Unity) band pass 
filter block diagram, circuit and Bode plot of the magnitude of transfer function: 
 

 

 
The transfer function of the above active band pass filter may be calculated by multiply transfer 
function of each of the stages as shown below: 
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The Bode plot and transfer function show that the cut-off frequency, Wc1, is equal to the high pass filter 
stage cut off frequency while the cut-off frequency, Wc2, is equal to the low pass filter cut off frequency. 
 
The above process of treating each stage independently is only valid if the Wc2 is much larger than Wc1 

(Wc2  >> Wc1) which means that Wc2 is at least twice the value of Wc1  (Wc2  >= Wc1).  Using the assumption 
that Wc2  >> Wc1  the transfer function for H(s) may be rewritten as: 
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� Example – Active Band pass Filter Design 

Design a filter that can pass signals between 250,000 to 500,000 Hz with a gain of 3.  The Circuit can 
only use 10 pF capacitors. 
 
Solution: 

Given: fc1 = 250 kHz, fc2 = 500 kHz, K=3, C=10 pF and all resistors. 
Find:  Filter Design 
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13.6. Active Band Reject Filter (Multi-stage cascading filter) 

As discussed earlier active band reject filter can be designed using multiple low pass and high pass 
filters.  The gain may be controlled using an amplifier stage.  Below is an example of a prototype (Unity) 
band pass filter block diagram, circuit, and Bode plot of the magnitude of transfer function: 
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The bode plot and transfer function shows that the cut-off frequency, Wc1, is equal to the low pass filter 
stage cut off frequency, while the cut-off frequency, Wc2, is equal to the high pass filter cut off frequency. 
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The above process of treating each stage independently is only valid if the Wc2  is much larger than Wc1  
(Wc2  >> Wc1) which means that Wc2  is at least twice the value of Wc1  (Wc2  >= Wc1).  Using the 
assumption that Wc2  >> Wc1  the transfer function for H(s) may be rewritten as: 
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� Example – Active Band Reject Filter Design 

Design a filter that only passes through signals with frequencies below 10
6 
rad/sec and signals with 

frequencies above 10
8 
rad/sec.  The only resistors available are 10 kΩ resistors but you can use 

various capacitors in the design. 
 
Solution: 
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Given:  wc1 = 10
6
 rad/sec, wc2 = 10

8
 rad/sec, R=10 kΩ 

Find: Band reject filter design. 
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13.7. Higher Order Active filter 

So far we have designed filters with transfer function delivering a “ -20 dB/decade” slope transition 
between pass band and stop band of filters which we have referred to as 1

st
 order.  For the majority of 

applications a much faster transition is expected between the pass and stop band.  One way to meet this 
need is to cascade multiple 1

st
 order filters to increase the transition period slop. In general, an n-stage 

cascade filter with n identical low-pass filters will transition from pass band to stop band with a slope 
equal to “(-20)(n) dB/decade” 
 
For example a three stage Low Pass filter: 
 

 
 
 

 
Mathematics and the above Bode plot for the nth order low pass demonstrate the effects of using multiple 
stages of the same type filters is to create steeper transition.  The only issue is that the cut-off frequency 
moves back closer to w=0 every time n increases as shown below: 
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For an n stage low pass filter, transfer function is derived below: 
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The cut-off frequency of a third order prototype unity low pass filter is: 
 

  sec/51.0123
3 radwc =−=  

 
This assumes that each stage has a cut off frequency of 1 rad/sec.  If the cut off frequency of each 
stage is Wc1, the n order cut off frequency would be: 
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� Example 
Design a 4

th
 order low pass filter with cut off frequency of 12400 rad/sec.  

 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fundamentals of Electrical Circuits, V3.6 Page 295 

� Example 
Design a low pass filter with cut off frequency of 20,000 Hz and drop off in gain of 220 dB/decade 
using active low pass filters. 
 
  a) How many stages are needed? 
  b) find Wc, R and C for one low pass filter stage. 
 
Solution: 
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13.8. Specialized Filter Designs 

In this chapter, we have presented generic filters for each of the four categories (low pass, high pass, 
band pass and band reject).  There are numerous specialized filter designs, in use with each providing a 
unique advantage in a given application.  Here are some examples with brief description: 
 
� Butterworth Filter Design 

The Butterworth filter design provides maximum pass band flatness which means it is optimal for 
applications requiring uniform gain across a range of frequencies in the pass band. 
 

� Tschebyscheff Filter Design 
Tschebyscheff filter design provides higher gain roll off but has more ripples in the pass band. 
 

� Notch Filter Design 
A notch filter is a band reject filter with a high Q factor (narrow stop band).  It is commonly used in 
audio applications to reduce effect of feedback. 
 

� Bessel Filter Design 
Bessel filter design provides linear phase response (near constant group delay), which means the 
signal shape is preserved in the pass band. 

 
As mentioned earlier, there are numerous specialized filter designs based on the application 
requirements. It is important to research available designs when selecting filter design for your 
application. 
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13.9. Summary 

� Active First Order Low Pass Filter  

 
 

� Active First Order High Pass Filter  
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� Scaling 

Gain scaling � R’ = KgR,      L’ = KgL,     C’ = C/Kg 

Frequency Scaling �R’ = R,      L’ = L/Kf,     C’ = C/Kf 

 

� Band Pass Filter 

 
� Band Reject Filter 

 

 

� n
th
 Order Low Pass Filter Cut Off Frequence 
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13.10. Additional Resources 

 
� Nilsson, J.  Electrical Circuits. (2004)  Pearson. 

Chapter 15. 
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13.11. Problems 

 
Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 14.  Two-Port Circuit or Network 

 
Key Concepts and Overview 
 
� Introduction 

� Two-Port Circuit Models 

� Two-Port Circuit Analysis 

� Interconnecting Multiple Two-Port Circuits 

� Additional Resources 
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14.1. Introduction  

As discussed in earlier chapters, it is beneficial to use models in simplifying design and analysis 
processes.  The Two-port Network model makes it possible to use of 4 parameters to define a passive 
electrical circuit. The Two-port Network model may also be referred to as Two-Port Circuit model or Four-
Terminal circuit.  This model is used in Analysis of filters, transistors and other electrical devices. 
 
A Two-port circuit is an electrical device with two pairs of terminals. Each pair of terminals is referred to as 
a port which is defined by its voltage and current.  Typically the two ports are input and output of the 
circuit.  Below is a system diagram of Two-port circuit using passive convention: 
 

 
The following restrictions apply to all Two-port Circuit analysis in this chapter: 
 

• Circuit cannot include any stored energy. 
• Circuit should not contain any independent sources. Although, dependent source are 

allowed. 
• The current in and out of each port must be equal.  In other words, current entering terminal 

“a” must be equal to current exiting terminal “b” while current entering terminal “c” must equal 
current exiting terminal “d”. 

• External connections are only made at the two ports. 
 

Two-port Circuit is modeled based on the ports’ current and voltage variables (i1, v1,  i2,  v2) and make no 
use of the internal current and voltages in its external definition.  Furthermore, Two-port Circuit analysis is 
performed in s-domain since it provides a more general analysis environment: 
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14.2. Two-Port Network Models 
There are multiple approaches to selecting, calculating and measuring the value of two-port network 
parameters.   The most common parameter types used to model two-port network are listed below: 
 
. (1)  Impedance Parameters (z-Parameters) 
  (2)  Admittance Parameters (y-Parameters) 
. (3)  Hybrid Parameters (h-Parameters) 
  (4)  Inverse Hybrid Parameters (g-Parameters) 
  (5)  Transmission Parameters (ABCD-Parameters) 
 
These parameters may be calculated if the internal circuitry is exposed for analysis otherwise they may 
derived from measurement of ports’ currents and voltages.  Any of these parameter sets may be 
converted to any other by algebraic operations. 
 
In the following sections, Two-port Network models will be introduced utilizing of the five parameter sets: 
 
� Impedance Parameters (Z Parameters) 

The circuit is defined by the following two equations: 
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The z parameter definitions above simply state that z11 and z21 are measured or calculated with I2=0 
(or port 2 is open).  While, z22 and z12 are measured or calculated with I1=0 (or port 1 is open). 
 
When working with 2 port network, you are either given access to circuit drawing (White box) or just 
given access to the external two port (Black box). 
 
� White box problem example 

You are given a circuit diagram such as the one shown below and asked to write the Z 
paramaters.  

 
 
To solve this type of problem, apply circuit analysis techniques such as KCL/KVL and z 
parameter definitions to calculate each parameter: 
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I1 = 0 �  Z12 = V1/I2 = 20 KΩ  
               Z22 = V2/I2 = 25 KΩ 
 
I2 = 0 �  Z11 = V1/I1 = 30 KΩ  
               Z21 = V2/I1 = 20 KΩ 
 

Ω
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




= KZ

2520

2030
 

 
� Black box problem example 

In this Black box type problem, you are only given the data that can be obtained using multimeter 
and access to external port such as the following table: 
 
 

I1 V1 I2 V2 

0 1 V 2 A 3 V 
1 A 2 V 0 4 V 

 
To solve this type of problem, apply the data in the table to the Z parameter definition to calculate 
each parameters: 
 
I1 = 0 �  Z12 = V1/I2 = 0.5 Ω  
               Z22 = V2/I2 = 1.5 Ω 
 
I2 = 0 �  Z11 = V1/I1 = 2 Ω  
               Z21 = V2/I1 = 4 Ω 
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� Example – z-parameters 

Redraw this circuit as two-parameter network and calculate the corresponding z-parameters. 

 
Solution: 

Start with  I2 = 0 to find Z11 = V1/I1 and Z21 = V2/I1 a which is the same as the equivalent 
resistance of the following circuit: 
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Write KCL  equations for V1 and V2: 
  -I1 + V1/10,000 + (V1- V2)/5,000  = 0  
 -I2 + V2/10,000 + V2/20,000 + (V2- V1)/5,000  = 0 
 
Rewrite equations: 
 -10,000I1 + 3V1 - 2V2  = 0  
 7V2 - 4V1 = 0    �   V2 = (4/7)V1  
 
Substitute V2 into the First equation �-10,000I1 + (16/7)V1  = 0 � Z11 = V1/I1 = 5384.6 Ω 
Substitute V2 � Z21 = (4/7)V1 /I1 = 3076.9 Ω 
 
Next, Set I1 = 0 to find Z12 = V1/I2 and Z22 = V2/I2 a which is the same as the equivalent 
resistance of the following circuit: 

 
Write KCL  equations for V1 and V2: 
  -I1 + V1/10,000 + (V1- V3)/5,000  = 0  
 (V3- V1)/5,000 + V3/10,000 + V3/20,000 + (V3- V2)/4,000   = 0 
 -I2 + (V2- V3)/4,000 = 0 
 
Rewrite equations: 
 3V1 - 2V3  = 0  � V3 = (3/2)V1   
 -4V1 - 5V2 +12V3 = 0    �   V2 = (14/5)V1  
  -4,000I2 + V2 - V3 = 0   �  -4,000I2 + (13/10)V1 = 0   Z12 = V1/I2 = 40,000/13 = 3076.9 Ω 
 
Substitute V1 � Z22 = V2 /I2 = (13/10)V1 /I2 = 8615 Ω 
 
Z-parameter 2 port network may be represented as: 
Z11 =5384 Ω,  Z12 = 3076.9 Ω,  Z21 = 3076.9 Ω,  Z22 = 8615 Ω,   
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� Admittance Parameter (y-Parameters) 

The circuit is defined by the following two equations: 
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The y parameter definitions above state that y11 and y21 are measured or calculated with V2=0 (or port 
2 is shorted).  While, z22 and z12 are measured or calculated with V1=0 (or port 1 is shorted). 
 
� Example – y-parameters 

Find the y-parameters for the following circuit? 

 
Solution: 

 
Step 1.  let V2=0 which means short output to find y11 & y12 
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  I1 = V1 / (20 || 5) � y11 = I1 / V1=  = ¼ S 
 I2 = -V1 / (5) � y21 = I2 / V1=  = 1/5 S 
   
Step 2.  Let V1 = 0 which means the input is short circuited 

 
 I2= V2 / (15 || 5) � y22 = I2 / V2=  = 4/15 S 
 I1 = -V2 / (5) � y12 = I1 / V2=  - 1/5 S 
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� Hybrid Parameters (h-Parameters) 
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� Example – h-parameters 
Find the h-parameters for the following circuit? 

 
Solution: 

Set V2 = 0 to find h11 = V1/I1 and h21 = I2/I1  � 

 
h11 = V1/I1 = Req = 1/(1/10 + 1/7) = 4.1 Ω 
 
We have 10(I1 + I2) = 7 I2 � h21 = I2/I1 = -10/3 
 
Set I1 = 0 to find h12 = V1/V2 and h22 = I2/V2  � 

 
h12 = V1/V2 = 10/17  (voltage divider)  
h22 = I2/V2  =  1/17 S 
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� Inverse Hybrid Parameters (g-Parameters) 
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� Example – g-parameters 

Find the g parameters for the following circuit: 

 
Solution: 

Set I2=0  and find g11=I1/V1 and g21 = V2/V1 

 
Write KVL equations for both side� 
  V2 = -10

6
 I1 

  V1 = 2,000 I1 + V2/1,000  � Replace I1 with equivalent from the above equation 
   V1 = -0.002V2 + 0.001V2  � g21 = V2/V1 = - 0.001 
  Replace V2 in the V2/V1 = - 0.001 equation with V2 = -10

6
 I1  � g11=I1/V1 = 10

-9
 

 
Set V1=0  and find g12 =I1/I2 and g22 = V2/I2 

2 kΩ 

10 kΩ 

+ 

V2 
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I2=0 I1 

+ 

V1 

- 

+ 
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V2/1,000  100 I1 

2 kΩ 

10 kΩ 

+ 

V2 

- 

I2 I1 

+ 

V1 

- 

+ 
- 

V2/1,000  100 I1 
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 Write equations for both side� 
  I2 = V2 /10,000  + 100 I1 
  V2/1000 = - 2,000 I1 � V2 = - 2,000,000 I1  
Replace V2 in first equation � I2 = - 200 I1 + 100 I1 = -100 I1 � g12 =I1/I2 = -0.001 
Replace I1 in the g12 equation � -5x10

-5
V2/I2 = -0.001�  g22 = V2/I2= 2000 Ω 
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� Transmission Parameters (ABCD-Parameters) 

The ABCD-parameters are also known as Chain, Cascade or Transmission parameters.   ABCD-
parameter assumes that the current I2 is running the opposite direction so that it would considered 
positive for the next stage input in cascading two-port networks> 
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� Example – ABCD-parameters 

Find the value of ABCD parameter if the following equations are give for the circuit: 
 
25 I1 + 30 I2 = 4V1 
16 I1 – 40 I2 = 8V2 
 
Solution: 

Set I1=0 and rewrite the equations to find A=V2/V1 and C = - I2/V1   
  30 I2 = 4V1   �  C=-I2/V1 = -4/30 Mhos 
  40 I2 = 8V2  �  replace I2 with value from first eq. � 40*4*V1 / 30 = 8V2  � 16 V1=8V2   
   A=V2/V1 = 2 
 
Set V1=0 and rewrite the initial  equations to find B=V2/I1 and D = - I2/I1   
  25 I1 + 30 I2 = 0  �  25 I1 = - 30 I2  �  D = - I2/I1 = 25/30 = 5/6 
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V2 
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I2 I1 
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  16 I1 – 40 I2 = 8V2 � Replace I2 with its value from first eq. � 16 I1 + 40*(5/6)*I1 = 8V2 
   � 296 I1 = 48V2   � B = V2/I1 = 296/48 Ω 
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14.3. Two-Port Network Analysis 

As mentioned early, any of the  two port parameter sets can be converted to any other by rearranging one 
set of the two simultaneous equations to the form for the desired parameter set equation.  This is  simply 
a exercise in algebra as shown by the example of writing h-parameter equation for a circuit that is 
originally described by the z-parameter equations: 
 

  
212

211

164

525

IIV

IIV

+=

+=
 

 
We know that h-parameter equation must be of the form: 
 

  
2221212

2121111

VhIhI

VhIhV

+=

+=
 

 
Let’s focus on the deriving the first h-parameter equation: 

  Derive I2 equation from second z-parameter equation �  16/)4( 122 IVI −=  

  Plug this value into first z-parameter equation � 16/)4(525 1211 IVIV −+=  

   Simplify to get the first h-parameter eq. � 211 )16/5(5.23 VIV +=  

 
Now we turn our attention to deriving the second h-parameter equation: 

  Simply re-arrange second Z-parameter �  212 )16/1()16/4( VII +=  

 
Therefore the circuit may be represented with the following h-parameter equations: 

 
212

211

06.025.0

31.050.23

VII

VIV

+=

+=
 

 
In special case 2-port networks allow us to simplify analysis.  The two special cases that will be discussed 
here are Reciprocal and Symmetric: 
 
� Reciprocal 2-port Network 

A 2-port network is Reciprocal if placing an ideal voltage source on port 1 and an ideal Ammeter on 
port 2will provide you with the same reading as placing the ideal voltage source on port 2 and an 
ideal Ammeter on port 1. In other words, current (I) will be the same in both cases: 
 

 
 
 

Reciprocal 2-
Port Circuit 

 
Port 1   Port2 

+ 
- I V 

Reciprocal 2-
Port Circuit 

 
Port 1   Port2 

+ 
- 

V 
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For the Reciprocal two-port network,  the following port parameter relationships exist:    
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� Student exercise – What are the relationships between ABCD parameters if the Two-port 

Network is a Reciprocal circuits 
 
 
 
 
 
 
 
 
 

� Symmetric 2-port Network 
A reciprocal 2-port network is also symmetric if its ports may be interchanged without affecting the 
values of current and voltage at each port.  In other words, ratio of voltage and current are the same 
(V1/I1 = V2/I2). 
 
In a symmetric 2-port network, these additional parameter relationships exist: 
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� Student exercise – What are the additional relationships between ABCD parameters when the 

Two-port Network is Symmetric circuit in addition to being a Reciprocal circuits 
 
 
 
 
 
 
 
 
 

 
 
Here are four example of  Symmetric network: 
Note: By definition these examples are also Reciprocal. 
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As seen here, by recognizing Reciprocal and Symmetric network, the parameter calculation is 
significantly simplified. 
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14.4. Connecting Multiple Two-Port Circuits 

Two port parameters may be connected in five different connection patterns such as cascade, series, 
parallel and series-parallel and parallel series.  The following diagrams show each of the connection 
patterns: 

 
 
The parameter equations may be used to derive two port equations for each of the configuration shown 
above. 
 
 

   

A B 

A 

B 

(1) Cascade (2) Series  

(3) Parallel (4) Series-Parallel (3) Parallel-Series 
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14.5. Summary 

 

 

 
Five common 2-port network parameters are listed as system of equations below: 
 
� Impedance Parameters (z-Parameters) 
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� Admittance Parameters (y-Parameters) 
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� Hybrid Parameters (h-Parameters) 
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� Inverse Hybrid Parameters (g-Parameters) 
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� Transmission Parameters (ABCD-Parameters) 
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Design (uses KCL & KVL, also called White Box approach) 

Analyze (uses power supply and measurement 
tools also called Black Box approach)  

Parameters 

 
Circuit/Device 
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14.6. Additional Resources 

 
� Nilsson, J.  Electrical Circuits. (2004)  Pearson. 

Chapter 18. 
 

� S-Parameter is a generalized form of the discussion in the two-port network and it is also the basis for 
high frequency measurement tools.  For more information on the topic refer to: 
 
� Pozar, D. “Microwave Engineering” (2005) Wiley & Sons 

Pages 170-185. 
 

� S-Parameter Application note “AN 154” by Agilent 
http://cp.literature.agilent.com/litweb/pdf/5952-1087.pdf 
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14.7. Problems 

 
Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Chapter 15.  Electromagnetic Coupling 

 
Key Concepts and Overview 
 
� Introduction 

� Mutual Inductance 

� Transformers 

� AC Motors 

� DC Motors 

� Additional Resources 
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15.1. Introduction 

� TBC 
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15.2. Mutual Inductance 

� So far we have talk only about circuit elements that are linked directly.  Now we need to introduce 
the case where the magnetic field generated by energy in one element creates current in a 
second element. 

 
� Here the two circuit are linked by magnetic field 

1) Time Varying current in one circuit induces voltage in a second circuit.  
2) The voltage in second circuit is related to current in the first circuit by the mutual inductance 

(M) 
 

� Mesh current analysis is the best way to analyze circuits containing Mutual Inductance 
1) Step 1:  Pick a reference direction for current through each coil. 
2) Step 2: Sum the voltage around each mesh (KVL) 

Note there are two voltages across each coil (for example in L1) 
(1) Self induced voltage L1di1/dt 

(a) Sign is + where the current enters the inductor 
(2) Mutually induced voltage Mdi2/dt (see the current is from the other coil)  

(a) Sign on mutual inductance depend on the winding direction.  In order to simplify the 
process a dot convention is used. 

(b) When the reference current enters the dotted terminal of a coil then the reference 
polarity of the voltage that it induces in the other coil is positive at its dotted terminal.   
OR  
when the reference direction for a current leaves the dotted terminal of a coil, the 
reference polarity of the voltage that it induced in the other coil is negative at its 
dotted terminal.  
 

� Example – To Be Added 
 
� The procedure for determining the Dot Marking 

1) Physical construction is known– right hand rule and flux has to be in same direction. The six 
steps: 
1) Arbitrarily select  one  terminal (For example D and mark it with a dot) 
2) Assign a current into the dotted terminal (Id)  
3) Use the right hand rule (wrap your hand in the direction of current, then your thumb will 

pointing in the direction of created flux (Magnetic field inside the core, φd") 
4) Arbitrarily select one  terminal on the second coil and assign a current into the dotted 

terminal (Ia)  
5) Use the right hand rule (wrap your hand in the direction of current, then your thumb will 

pointing in the direction of created flux (Magnetic field inside the core, φa") 
6) If both fluxes are in the same direction then place a dot on the terminal that current 

enters.  Otherwise place a dot on the terminal that current leaves. 

Vg L1 + 
- 

M 

L2 

R1 

R2 

*  Magnetically Coupled Coils (M stands for Mutual Inductance) 
*  The curved arrow show which two elements are coupled 

+       - 
V2s  V1m 

 
 

-      +  

I1 I1 
-      + 

V2m V1s 
 
 

+      -  

Mesh Current Analysis: 
 
KCV for Mesh 1 
-vg + i1R1+ (L1di1/dt - Mdi2/dt)=0 
 
KCV for Mesh 2 
i2R2+ (L2di2/dt - Mdi1/dt)=0 
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� Relative marking when Physical construction is not known 

This is done through experimentation using the following steps 
1) Connect DC voltage source, a resistor, a switch in series to one winding 
2) Connect Voltmeter to the other winding 
3) Mark the terminal connect to the positive side of DC voltage source with a dot 
4) If the momentary deflection is upscale, the coil terminal connected to positive terminal of the 

voltmeter should be marked with a dot.  Otherwise, mark the other terminal. 
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15.3. Transformers 

� The Transformer 
� Linear Transformer (two magnetically coupled winding with a single core)use in Communication 

Circuits to: 
• Match impedance 
• Eliminate DC signals 

  
� Ideal Transformer (Two magnetically coupled windings, each around a different core)used in 

Power systems 
 
Observation: When dealing with Mutual inductance, mesh-current method is much less cumbersome 
than Node-voltage method. 
 

 
 
 
� Linear Transformer 

� A Linear transformer is created when two coils are wound on a single core to ensure magnetic 
coupling. 
• Source-side winding is called Primary Winding 

(1) R1 = the resistance of the primary winding 
(2) L1 = the self-inductance of the primary winding 

• Load-side winding is called Secondary Winding 
(1) R2 = the resistance of the secondary winding 
(2) L2 = the self-inductance of the secondary winding 

• M = the mutual inductance = 21LLK  where K is coefficient of coupling. 

• Z11=Primary Self inductance=Zs + R1 + jwL1 
• Z22=Secondary Self inductance = R2 + jwL2 + ZL 

 
� Write the mesh for primary and secondary loop to relate various parameters 

• Vs = (Zs + R1 + JwL1)I1 - jwMI2 = Z11I1 - jwMI2 
• 0 = (ZL + R2 + JwL2)I1 - jwMI2 = Z22I2 - jwMI2 
� Impedance seen by source = Zint = Vs/I1 =  Z11 + w

2
M

2
/Z22 

� Impedance at “ab” port = Zab = Zint – Zs = R1 + jwL1 + w
2
M

2
/( R2 + jwL2 + ZL) 

 
� Note the third term is purely due to the secondary winding being reflected back 

• Reflected impedance = Zr = w
2
M

2
/( R2 + jwL2 + ZL) 

When ZL = RL + jXL  
Then Zr = w

2
M

2
/{( R2 + RL +  j(wL2 + XL)} 

+ 
- 

Zs 

ZL 

R1 R2 

jwL1 jwL2 
I1 

I2 

Source Load 

d 

a 

b 

c 

Vs 

jwM  
 
 
 
 
 
 
 
 
 
 

Frequency domain circuit 
model for a Transformer 

Model 
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Multiply top and bottom by the conjugate and simplify 
Zr = {w

2
M

2 
/ | Z22|

2
} {(R2 + RL) -  j(wL2 + XL)} 

• Notice that Zr is a scalar value multiplied by the conjugate of  Z22 = (R2 + RL) +  j(wL2 + XL) 
 

� Example – To Be Added. 
 
� Ideal Transformer  (Ferro Magnetic core material is closest to ideal transformer due to high 

permanence) 
� Ideal Transformer consists of two magnetically coupled coils & core having the following 

characteristics: 
• N1 turn in primary winding and N2 turns in secondary winding 

• Unity coefficient of coupling (k=1) which means M = 21LL  

• Infinite self  inductance (L1→∞ & L2→∞ ) 

• Negligible coil loss due to parasitic resistance (R1 = R2 =0) 
 

� Applying the ideal characteristic we will arrive at: 

• Voltage �  
2

1

2

1

N

N

V

V
±=  

If the voltage polarities are the same at the dots use minus sign other wise use plus. 

• Current �  
1

2

2

1

N

N

I

I
±=  

If the current flows are both in or out of the dots use minus sign otherwise use plus. 
 
 

Examples: 
 

 
� Using an ideal transformer for Impedance Matching 

� Let a=N2/N1 be the scaling factor 
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V1/V2 = 1/a � V1 = V2/a     &      I1/I2 = a  �  I1 = aI2 
Then Zin = V1/I1 = (1/a

2
)(V2/I2) or 

 
Zin = (1/a

2
)ZL  which means The ideal transformer’s secondary coil reflects the load impedance 

back to  the primary coil, with scaling factor (1/a
2
) 

 
� Example – TBC 
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15.4. DC Motors 

 
� TBC 
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15.5. AC Motors 

 
� TBC 
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15.6. Summary 
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15.7. Additional Resources 

 
� Nilsson, J.  Electrical Circuits. (2004)  Pearson. 

Chapters 6, 7 & 8. 
 

� Matsch, L. Electromagentic & Electromechanical Machines (1977) IEP. 
Chapters 1, 3, 4 & 5 
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15.6. Problems 

 
Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set. 
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Appendix A.  Resistor Band Color Definition 

 
Resistor Value Color Bands 
 

Band Colors Value Bands, 1
st

 & 2
nd

 Multiplier Color Band, 3
rd

  

BLACK 0  x1 
BROWN 1  x10 

RED 2  x100 
ORANGE 3  x1,000 or 1K 
YELLOW 4  x10,000 or 10K 
GREEN 5  x100,000 or 100K 
BLUE 6  x1,000,000 or 1M 

VIOLET 7  x10,000,000 or 10M 
GRAY 8  x100,000,000 or 100M 
WHITE 9  x1000,000,000 or 1G 

    Note: If third band is gold then divide by 10 and if silver divide by 100. 
 
 
Resistor Tolerance Color Bands 
 

Band Colors Tolerance Color Band, 4
th

 

GOLD 5% 
  SILVER 10% 

NONE 20% 
 
 
Example (1.2 KΩ  or 1200 Ω resistor) 
 

 
 
  



Fundamentals of Electrical Circuits, V3.6 Page 332 

Appendix B.  LM 324 OpAmp 

The LM324 series is a low−cost, quad operational amplifier with true differential inputs. They are the most 
commonly used general low power and low frequency Op Amps.  The usage is limited to low frequency 
(less than 10 Hz) since the gain changes as the frequency changes.  For many applications, it may be 
used as long as it is understood that open loop gain at higher frequency will be lower.  One of its major 
advantages is that it only requires a single supply for operation.  LM 324 operate with supply voltage 
ranging as low as 3.0 V or as high as 32 V. 
 
It may also be useful to know that LM 324 DC parameters are as follows: 
 

� Open Loop Gain A = 100,000 
� Output Resistance Ro = 75 Ω 
� Input Resistance Ri = 2 MΩ 

 
For a complete data sheet on LM 324 and other Op Amps, refer to the course website. 
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Appendix C.  Additional Resources & Future Improvements 

� Additional resources are available on the course website http://www.EngrCS.com.  
� Submit all your improvement ideas to www.EngrCS.com 
 


