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Chapter 1. Introduction

Key Concepts and Overview

% Overview of Electrical Engineering
% Problem Solving

% Systems of Units

% Charge, Current & Voltage

% Circuit Model

% Power and Energy

+ Additional Resources
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1.1. Overview of Electrical Engineering

This course builds each new concept on material covered earlier in the course. Therefore, it is important
to master each concept before moving on to the next section. Additionally, the materials presented here

are the foundations that all future electrical engineering education is built on.

Engineers are creative problem solvers who use their knowledge of mathematics and science to solve
problems that add value to society. Specifically, electrical engineering is a profession concerned with

systems that produce, transmit, control and measure electrical signals. Samplings of electrical

engineering fields are presented below:

VVVVVYVVYY

The material covered here is typically taught in second and third year of electrical and computer

Automation & Robotics
Bio/Medical

Communication

Computer

Control

Manufacturing

Power Generation and Distribution
Semiconductor

engineering degree programs. Follow on courses expand on the topics covered here with emphasis on
one of the specialized areas in more depth. Below are a sampling of specialization areas in electrical and
computer engineering:

VVVVVVVVVVVYVYVVVYVYY

Communication

Computers

Electro Magnetic and fields
Electronics and Digital Circuits
Networking

Power and Energy Systems
Robotics

Semiconductors and Devices
Sensors

Control Systems

Bio/Medical

Photonics

Machine Learning

Gaming

Motion Systems

Micro Electro Mechanical (MEM) systems
Nano Technology
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1.2. Problem Solving

An engineer’s major responsibility is to solve problems through the creative application of science and
mathematics knowledge. Therefore, as engineers, it is important to develop strong problem-solving skills.

It is recommended that the following steps be used in solving assigned problems and labs relating to this
material:

Identify the information provided and list them under the title “Given”
Identify the information to be derived and list them under the heading “Find”
Use circuit diagrams and visual models to clarify the problem

Develop possible models and methods to solve the problem

Pick the optimum model or method to solve the problem

Solve the problem

Test the validity of your solution

Nooakowh -~

Even though the above problem-solving steps are listed sequentially, the process of problem solving
is an iterative process. This fact reinforces the need to use a systematic approach that is repeatable
and easily understandable in each subsequent iteration.

% End of Chapter Problems
At the end of each chapter there are a number of problems designed to deepen our understanding of
the material covered. It is very important that students solve all the end of chapter problems.
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1.3. Systems of Units

The International System of Units (SI) is the formal name for the metric system. It is the most widely used
system of units by professionals engaged in engineering, commerce and science.

Measurements may be categorized as either Measured or Derived:

» Sl Measured (or Base) Units
Measured units are also called Sl Base units. The seven measured units are defined by actual
measurement of a specific physical object or phenomenon.

Length, Meter (m)

Mass, Kilogram (kg)

Time, Seconds (s)

Electric Current, Amp (A)
Thermodynamic Temperature, Kelvin (K)
Amount of substance, Mole (mol)
Luminous intensity, Candle (cd)

Jegrsln=

» Sl Derived Units
These units are derived from the Base units which explain why they are called the Sl derived
units:

1) Frequency, Hertz (H) = cycle/s

2) Force, Newton (N) = kg * m/s?

3) Energy, Joule (J) = N*m

4) Power, watt (W) =J/s

5) Electric Charge, Coulomb (C)= A*s

6) Electric Potential or Voltage, Volt (V) = J/C
7) Electric Resistance, Ohm (Q) = V/A

8) Electric Conductance, Siemens (S) = A/V
9) Electric Capacitance, Farad (F) = C/V
10) Magnetic flux, Weber (Wb) = V*s
11) Inductance, Henry (H) = Wb/A

Electrical measurements may result in very small or very large numbers. In order to simplify the
communication of data in such a wide range, powers of 10 are used to avoid long lists of zeros. When
powers of 10 are in multiples of three, it is referred as Engineering Notation (for example 4x10°).
Furthermore, specific powers of ten have been named for improved communication. Below are some of
the most common named powers of 10 used in engineering:

Prefix Symbol Powers of 10
Atto a 107°
Femto f 107
Pico p 1077
Nano n 107
Micro m 10°
Milli m 10°
Kilo K 10°
Mega M 10°
Giga G 10°
Tera T 10 °
Peta P 10 °
Exa E 10"
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Using the prefixes defined within the above table the value 3,000,000 Q may be restated as 3 MQ and
0.004 F may be restated as 4 mF.
< Example of Unit Conversions
If a signal travels in a cable at 80% of the speed of light, what length of cable in inches does it travel
in 1 nSec.
Hint: Speed of light = 3x10° m/s

> Solution

1) Given:
Signal Speed : 80% of Speed of light
Travel time: 1 nSec.
Speed of light: 3x10° m/s
2) Find:
Ic: Length of Cable
3) Method
Use the Sl units and cancellation technique
4) Answer
lc = 3x10%m/s * 80/100 * 1Sec/10° nSec * 100 cm/m * 1 in/2.54 cm = 9.45 inches
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1.4. Charge, Current and Voltage

% Electric Charge
A charge may be either electric, color or magnetic charge. We will be focusing on electric charge
here. Electric charge is the basic property of some subatomic particles. Electrons by convention have
a charge of -1 and, similarly, protons have the opposite Charge of +1. In general, electric charge is
bipolar. Meaning that electrical effects are described as having positive and negative charges.

The Sl unit for electric charge is the Coulomb, which represents approximately 6.24 x 10'®
elementary charges. Elementary Charge is the charge on a single electron or proton. In other word
electric charge exists in discrete quantities (elementary charges) which are integral multiples of the
electric charge, 1.6022x10™'° C.

% Electric Current and Voltage
Electrical effects are attributed to both the separation of charge (Voltage) and charges in motion
(Current).

» Current
Amount of current is measured in Amperes, which at its simplest is the change of charge q over
. d
time and can be expressed asi :d—qwhere:
t
i = current in Amperes
g =charge in Coulombs
t = time in Seconds
» \Voltage

Amount of potenital is measured in Volts, and potential represents the amount of energy required

de
to move electric charge from point a to b. Therefore, potential is expressed asv = d_ where:
q
v = potential in Volts
e = energy in Joules
g = charge in Coulombs

Voltage, V, is the difference in potentials between two points in the circuits.

o,

% Example — Charge & Current
For the following the circuit, calculate the total charge in micro-coulombs entering the upper terminal.

i=0  t<O0; .
i=20e %A t=0 !

» Solution:
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=%, [idt =0+ [20e"ar =
—oo 0

20 s 2204y Coutombs

dt ~5000 o —5000

q =4000uC

% Example - Charge & Current

For the specified charge entering the upper terminal of the circuit below, find the maximum value of
the current entering the terminal if a=0.03679 s™,

g=1/a° - (Ya +1/a%)e™ C

» Solution:
i:% =0-(1/a+0)e™ —(t/a+1/a*)(—a)e™ =te™
t

.. . di di
jismax/min = —=0=>—=
dt dt

i whent=1/a& we have a =0.03679 stT=
imax = te—ar — (1/a)e—a(l/a) — (1/003679)6_1 =104

e —ate™ =(1-at)e™ =0

% Example - Charge & Current

Given the energy equation “e = 200e™'%"!

q”, find the equation for voltage, v.

» Solution:
Sidebar - Useful Derivatives
dee”) .
dt

—d(cos(at)) = —aq sin(at)

dt
M =a cos(at)

dt
d
47 Wgw) (Zg D pwe+ g
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1.5. Circuit Model

An Electrical Circuit is a mathematical model that approximates the behavior of an actual electrical
system. Ideal Circuit Theory is a special case of electromagnetic field theory. The three assumptions that
allow the use of the Ideal Circuit Theory are:

» Electrical effects propagate instantly through the whole system
The systems that are small enough relative to signal wavelength for this assumption to be valid
are called lumped systems. If the wavelength of the signal is more than 10 times the physical
dimension of the system then we have a lumped system. As a reminder, the formula for
calculating wavelength is shown below:

Wavelength A = (speed of light, 3x10®m/s) / (signal frequency, f Hertz)

Student Exercise: [f signal frequency is 20 MHz, what is the maximum size for a circuit that can
be classified as a lumped circuit?

» Net charge of every component in the system is zero
This assumption states that none of the components collect net charges or lose net charges. In
other word, the charge that enters a component, must leave the component.

» No magnetic couplings
No magnetic coupling means that charges can only flow through physically connected
components by a conducting material (typically wires). It follows that, with this assumption,
charges cannot leave the circuit through air.
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< Circuit analysis uses idealized basic circuit elements and ideal circuit model (a mathematical model)
in this text. Earlier the characteristic ideal circuit model was defined and the following three attributes
characterize an idealized basic circuit element:

» It has only two terminals (terminals are the points of connection to other elements).
» It can be fully described in terms of the relationship between current and voltage.
» It cannot be subdivided into other elements.

Electrical engineering typically uses the passive convention which assumes the current enters at the
positive voltage terminal. Two layouts of basic elements are shown below using passive convention:

+ v -
i .
—> Basic O R —;’ @ .
Element + Basic
\Y Element
i —@

You may use a negative sign to reverse the voltage polarity or reverse current direction. For example
the above model may be redrawn as:

- -V +
i .
—> Basic O R —;’ .
Element B Basic
-V Element

e

% Ideal Basic Elements
The rest of this text uses the following four basic ideal elements to model electrical systems. As we
progress through the material, one-by-one the simplifying assumptions will be removed to better
approximate the actual electrical characteristic of a system.

The four elements are listed below:

» Power source

> Resistor
» Capacitor
> Inductor

Each of these elements will be defined in latter chapters.
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1.6. Power and Energy
Power and energy are related in that power is the change of energy over time as shown below:

de
= — where:
dt

P = the power in watts
e = the energy in joules
t = the time is seconds

Power can also be described in terms of current, i, and voltage, v, as shown below:

_de_de,dq_de dq_ ..

Cdt dt dq dq dt
Note: q represent the charge and (de / dq) is equal to voltage.

P=V*I is the most common equation used for deriving power.

% Passive Sign Convention
As mentioned earlier, passive sign convention is the most common circuit analysis convention. It
assumes that current following into the positive terminal results in positive power, otherwise the
power is negative.

T < | |<amm :4-;

— e —r — 1ot

The above diagram shows that a negative sign is the same as changing current direction or swapping
the polarity of voltage.

The following statements are valid for Passive Sign Convention:

1) Positive power (P>0) indicates that the element is consuming power.
2) Negative power (P<0) indicates that the element is generating power.

% Example — Power and passive convention
For the following four elements where 20V voltage drops from terminal 2 to terminal 1 and a current
of 4 A enters terminal 2, specify the value of V, I and power for each of the circuits. Additionally, state
whether the element is absorbing or delivering power:
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i |
+ —@ 1 + — o 1
v a v b
@ 2 ) —@ 2
i i
—> @ | ) +—— ' @ 1
Y, C \' d
+ @ 2 + @ 2
» Solution:
i V=-20V
—>
s 1@ 1 =-4A
v a P =vi=80W (P is positive so it is absorbing power)
) —@ 2
i V=-20V
s — e 1 | = 4A
% b P =v(-i) =-80 W (P is positive so it is delivering power)
_ @ 2
i V=20V
—>
— 1@ | =-4A
v c P = (-v)i =-80 W (P is positive so it is delivering power)
* @ 2
i V=20V
‘_
— [ | = 4A
v d P =vi=80W (P is positive so it is absorbing power)
* @ 2
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< Example — Energy Calculation
For the following circuit calculate the total energy in Joules delivered to the circuit.

i=0  t<O0; .

i=20e°% A t20 |, o
+

=0 i ’

= 3 Z

v=10e"° KV t=0 o

> Solution
P=v*|
P=0 <0

P = (206—5000t ) * (100006—50001) _ 200,0006_10’00(”

P= +”;—W = w= j Pdt = j 200,000e """ dt = ~20e™ "™ |" = 20 Joules
t —oco 0

o,

% Example — Multi-element circuit
A high-voltage direct-current (dc) transmission line between North and South is operating at 800 kV

and carrying 1800 A as depicted in the diagram. Calculate the power in MegaWatts (MW) at the
North end of the line and state the direction of power flow.

1=1.8 KA
—>

North v=800kv South

> Solution:

1) Option 1 — using South as a reference
Using passive sign convention (current to positive terminal) we have
i= +1.8 KA & v=+800 KV where P=v*i=1.8 * 800 = 1440 MW

(sign is positive so the power is being delivered to South which means it is being generated
by North)

2) Option 2 — using North as a reference
using passive sign convention (current to positive terminal) we have
i=-1.8 KA & v=+800 KV where P=v*i=-1.8 * 800 = -1440 MW
(sign is negative so the power is being generated by North and is being consumed by South)
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< Example — Power Unit Variation
How long will a $1 of power operate a 13 W light bulb?
Assuming: Power cost at $0.08 per Kilo-Watt-Hour (KWH).

> Solution:
§1% 1KWH « 1000 W e 1bulb 9615 hours

$0.08 1KW 13w
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1.7. Summary
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1.8. Additional Resources

% Nilsson, J. Electrical Circuits. (2004) Pearson.
Chapter 1.
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1.9. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.
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Chapter 2. Basic laws

Key Concepts and Overview

5

%

Ideal Voltage and Current Sources

RS

» Ohm’s Law

D3

»  Circuit Analysis

D3

» Kirchhoff’s Laws

D3

» Additional Resources
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2.1. Ideal Voltage & Current Sources

Power source is a general term for voltage or current source. The power source is important to the
analysis of electrical circuits since it provides the electrical excitation or energy required to operate the
circuits. The ideal power source also adheres to the three ideal circuit characteristics which are restated
below in terms of current, voltage and power:

1) Current measured on various parts of connecting lines (no branches) is the same. For example,
l4, > and I3 have the same value in the following Circuit.

2) Voltages across two terminals of an element are the same regardless which side of the terminal
the measurement is made. For example, V; and V, have the same value in the following circuit.

V1 V2

3) Sum of all the powers consumed and generated by elements in a circuit equals zero, or stated
another way “Generated power = Consumed power”. For example in the following circuit, the
equation {P1 + P2 + P3 + P4 + P5 =0} is true.

P2

P1 P4

P3 P5

Power sources can be categorized based on the following characteristics:
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Current or Voltage Source
A power source is called a current source if the current output is constant, and a voltage source if
the voltage output is constant.

Dependent or Independent Source

If the source output function does not depends on the rest of circuit, it is called an independent or
uncontrolled source (represented by a circular symbol). When the source output depends on a
parameter in another part of the circuit, it is called a dependent or controlled source (represented
by a diamond symbol).

Using the above two characteristics (dependent/Independent and current/voltage), the power sources
may be classified as one of the following four types:

1)

Dependent Current Source
Ideal Dependent Current Source, |s= u*l; or Is= u*Vy, where |; and V, are parameters in other
parts of the circuit and u is a constant.

ls

_<_+%

Dependent Voltage Source
Ideal Dependent Voltage Source, Vg = u*V, or Vy = u*ly, where |y and V; are parameters in other
parts of the circuit and u is a constant.

Vs

%

Independent Current Source
Ideal Independent Current Source, |s=5 A or I = f(t), but does not depend on the rest of the
circuit.

Independent Voltage Source
Ideal Independent Voltage Source, vs= 3 V or v = f(t), but does not depend on the rest of the
circuit.

Vs

Example- Power Source Types
For the circuit shown here:
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a) What value of vy is required in order for the interconnection to be valid?
b) For the value of vy from part a find the power associated with the 8A independent source.

> Solution:

a) Since this is an ideal Circuit then Vy=I,/4 (using ideal circuit Characteristic #2)
We have |, = -8A (opposite direction) = Vg =-2

b) I:)8A Source = \All
Passive sign convention (current flows to + terminal) > | =8A
Psasource = V@'l =(-2) * (8)=-16 W “generating power since P<0”

< Examples - For the Circuit Shown

15A
o
D)

S u(D)m |

a) What value of p is required in order for the interconnection to be valid?
b) For the value of p calculated in last part, find the power associated with the 25V source.

> Solution

a) ideal Circuit > pV, = -15A (using ideal circuit Characteristic #1)
We have V, =-25V > p=0.6

b)  Pasvoit source = VX * IX
Passive sign convention (current flows to + terminal) and we have Ix =-15A
Pasvolt source = VX * Ix = (-25) * (-15)= 375 “Consumed power since P>0"
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2.2. Ohm’s Law

Ohm’s Law is one of the most fundamental laws of Electrical Circuits. Ohm’s Law applies to both active
and passive devices. An active device is one that is capable of generating power for example a current
or voltage source. On the other hand, a passive device does not generate power, but it may use or store

power. Examples of passive devices include resistors (R), Capacitors (C) and Inductors (L), which will be
characterized later.

For now, let’s focus on resistors and the definition of Ohm’s law.

R/

% Electrical Resistor
Resistor refers to materials that impede (resist) the flow of current or electric charges. Resistance is
a measure of resistivity and is expressed in units of Ohms with symbol Q.

The flow of charges (current) through the resistor converts electrical energy to thermal energy (heat).
Based on the application, the generated heat may be considered desirable or undesirable:

» Undesirable applications include electrical transmission lines and digital devices.
» Desirable applications include heathers, toasters and ovens.

% Resistance in a basic ideal element is defined in terms of current and voltage. This relationship was
discovered by George Simon Ohm.

» Ohms Law many be stated as V = I"R, R=V/l or | = V/R, where:
e Risin Ohms, Q (Resistance of the element)
e Vis Volts, V (Voltage drop across the element)
e lisin Amps, A (Current through the element)

Below is a resistor representation using passive sign convention (recommended for circuit
analysis). Note that current always flows from the + to — terminal through the resistor (passive

component):
R I
4\/; ’
+ \ -

% Conductance is the inverse of resistance (G= 1/R) and is expressed in units of Siemens(S). In older
texts, units may be referred to as mhos with inverted Q symbol. Conductance is a measure of the
ease by which charges follow through the material (lack of resistance).

% Power Formulas
Three ways to relate power with current, voltage and resistance:

> P=V*I
» Use equation I=V/R > P = V?/R
> Use equation V=IR > P =**R
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< Example- for the following circuit Diagram

Vy %R

Find the value of R and the power absorbed by the resistor If Vg =1 KV and Ig = 5 mA.,.

» Solution
e R=Vg/lg = 1000/0.005 = 200 KQ
P, = Ig2 *R= (.005)2*(200,000)= 5W

®,

% Example — For the following circuit, when Ig = 0.5 A and G = 50 mS (Siemens):

—+

lg Vg %G

Find Vg and the power delivered by the current source.

» Solution
e Vg=Ig/G=0.5/0.05=10V
Ps =1y /G =(.5)?°/(0.05)= 5W
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2.3. Circuit Modeling and Analysis

So far, the basic components of a circuit (power source and resistor), the Ideal Circuit Model and Ohms
Law have been introduced. With the knowledge gained so far, we are able to model electrical systems
as circuit models and analyze their electrical properties. Below are two examples of electrical circuits:

o,

% Flash Light as an ideal circuit
A flash light is a an electrical circuit with the following components:

e Alight bulb can be modeled as a resistor that converts electrical energy to thermal energy
that causes radiation in the visible range.
e Batteries as the power source (non-ideal since the voltage and current drops over the life)
e On/Off Switch
I l
1.5v

+

Three AAA

/50 |[Light Bulb
Batteries <

1.5v vV ?

1.5v

OO

Find the value of current and power assuming an ideal circuit:

| =V/R =(1.5+1.5+1.5)/5 = 0.9 A
P=1F*R=(0.9°*(5)=4.05W

Fundamentals of Electrical Circuits, V3.6 Page 28



o,

% A typical person as an ideal electrical circuit
Humans can be modeled as an electrical circuit in order to understand the impact of electricity. Here
is an example of a human modeled in terms of resistance:

Although burns due to high voltage are a
problem, they rarely cause death.

Current effect on the human nervous system
could be severe. For example if the nerves
being affected are those that control the
heart.

Here are current levels and the human
reactions:

Current Physiological Response
3-5mA Barely Perceptible
35-50 mA Extreme Pain

50 - 70 mA Muscle Paralysis
> 500 mA Heart Stoppage

Ri=200 © Ri=200 Q@

This model can be used to understand the level ofcurrent, voltage and power applied during an
electrical shock in case of an accident or as part of a medical treatment.
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2.4. Kirchhoff’s Laws

Solving a circuit problem means finding current, voltage, power and resistance. Kirchhoff's laws are
important to our ability to solve circuit problems. Two variations of Kirchhoff’s law are discussed in this
section:

» Kirchhoff’s Current Law
» Kirchhoff’'s Voltage Law

% Kirchhoff’'s Current Law (KCL) Definitions

e An essential node is a point on the circuit where more than 2 circuit elements connect.

e The algebraic sum of all the currents at any node in a circuit equals zero. Stated another
way, any charge flowing into the node must exit (no storage capacity at the node).

e ltis recommended to assume current flowing out of the node as the positive direction.
Although, you may assume current flowing in as positive, as long as you are consistent!

¢ In any circuit with n node, we set one node as reference (Vref=0v) and write KCL equations
for remaining (n-1) nodes.

e ltis important to note that not all equations generated by Kirchhoff’s laws are independent.

» Example - Kirchhoff’'s Current Law (KCL)
Apply Krichhoff’'s Current law to find the value of I,.

2A (T) $20Q %eoo

v Vref =0

e Solution
(1) Identify the essential nodes and set one as reference (V1, Vref)

(2) Forthe essential node show currents leaving the node (11,12, 1 3)

(3) Write the KCL equation for essential node(s) other than reference node
M1+12+13=0.

(4) Use Ohm’s law and known values to rewrite the equations in terms of node voltage
reducing number of variables):

(

(a) 14 is given as -2A
(b) 1,=V,/60A

() I3=V4/20A

2+V4/20+V4/60 =0> V,=30V

I, =30/60=1/2 A
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» Example - Kirchhoff’s Current Law (KCL)
Find the voltage across 1K resistor using KCL.

2K

aOMe

4K

20K

8K

e Solution:
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» Example - Kirchhoff’s Current Law (KCL)

Find the current across R; using KCL.

v=100v (%)

:

R4
10
R1
M\
1k
R2
50

e Solution (Ans: 50 mA):

R5
40

R3
20
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Kirchhoff’s Voltage Law (KVL) Definitions

A closed path or loop is a path in a circuit through selected basic circuits elements that
returnd to thr original node without passing through any intermediate node more than once.
The algebraic sum of all the voltages around any closed path in a circuit equals zero. If the +
terminal is encountered first, the voltage is positive; otherwise, the voltage is negative.

Pick either clockwise or counter-clockwise as the positive direction. It is important to be
consistent throughout the circuit!

Note that not all the equations generated by Kirchhoff’s laws are not independent. Only
equations for loops that do not include other loops (also called mesh) are independent.

» Example - Kirchhoff’s Voltage Law (KVL)
Apply Krichhoff’s Current law to find |, V1, V2, V3 and the Power Delivered to 24V Source.

Vy=24V ‘l 7 70 Ve

Solution
(1) Identify meshes (loops that do not include other loops) — there is only one mesh.
(2) Assign a direction to the current - Clockwise
(3) Using passive sign convention assign voltage if one is not given. It is important to
remember that:
(a) Voltage drop across a resister (passive device) is in the same direction as the
current.
(b) Voltage drop across a power source (active device) is in the opposite direction as the
current.
(4) Go around the loop and sum up the voltage which is expected to be equal to zero based
on Kirchhoff’s Voltage Law:

'Vg+V2+V3+V1=0

(5) Use Ohms Law to substitute V with R*I equivalent. This will reduce the variables from
many Voltages to one current:

24 +3l+71+21=0 2>1=2A
Note: Voltage drop across resistors (+ to -) is always in the direction of arrow regardless

of what is being asked for. And if you enter the negative terminal then need to add a
negative sign to the voltage value.

Therefore:
Vi=2l=4
V2=3l =6
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V3=7l=14

(6) The only active component is the 24V supply that can deliver power so:

Power = V*I = -(2) * 24V = -48 W (Power Delivered)

Note: It is multiplied by negative since current is entering into the — side of voltage source

» Example - Kirchhoff’s Voltage Law (KVL)

Find la in the following circuit by applying KVL:

50Q

/\/

40Q

%109 20 V

% 100Q

e Solution(Ans. 112 mA):

» Example - Kirchhoff’'s Voltage Law (KVL with Dependent source)

When a circuit includes a dependent source there is a need for an additional equation. This is the
relationship of the dependent source with the circuit parameter it depends on .
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e Find Ip using Krichhoff’'s Voltage Law (KVL) for the following circuit.

: 2l,
+ V2 - E

|pl 1/0\0/

+ + 70V

5A 30Q
v I
B

(1) Identify all the meshes

(2) Identify all the element voltages

(3) Add voltages around each loop (be consistent and pick the same direction for all loops)
Note: need to have as many equations as unknowns.

(4) Insert all the known values in the equations and solve for the unknowns

Solution:
LOOp 1-> 30('1 - |2) + 10('1 - |3) +70=0
Loop2 - I, = 5A
Loop3 > Iz3=21,
Equation for the Dependent Source > |, =1, — |4

Solving the above 4 simultaneous equation with 4 variables, we get [p=2A <«

» Example - Kirchhoff’s Voltage Law (KVL)
Find Ip using Kirchhoff’'s Current Law for the following circuit:

70V
5A

(1) Find all the essential nodes — three nodes labeled V1, V2 & V3.
Note we can call one a reference and set its value to zero. Let’s set V3 as the reference
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and set its value to 0 (V3 =0). As we discussed earlier this assumption will not affect the
results but makes the analysis a lot easier.

(2) Sum the current at each node and set the algebraic sum to zero
As discussed earlier, assume outgoing current is positive. Further we will apply | =V/R to
write current in terms of voltage. For example: I, = (v; — v,)/10.

(3) Remember that as many independent equations are needed as there are unknowns.

(4) Solve for the unknowns

Solution:

From the circuit > | =-5A (ldeal Circuit — Characteristic #1)
V2=70V
Ip = V4/30

Apply KCLto Node Vi 2l + b + 13+ 14=0 > -5+ (V;-70)/10 + 2I,+ (V4)/30 =0
Rewrite the above equation with Ip Substitution > -5 + (V- 70)/10 + 2*(V4)/30 + (V4)/30 =0

Note we have only one equations and one unknown - V; =60
- Ip=V/30=60/30 =2

» Example - Kirchhoff’'s Voltage Law (KVL with sources in branches)
Apply KVL to find the value of current in the 2V voltage source in the following circuit:

1K
A .
4K 8K 2v 2K
5V 7K
+ 3K
<> 1oV 6K 5K

5mA

e Solution:
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» Example - Kirchhoff’'s Voltage Law (KVL with sources in branches)
Apply KCL to find the voltage across 5 mA sources in the following circuit:

'y
4K 8K A 2K
. + - "
5V 7K
+ 3K
i 10V 6K 5K
‘ 5mA

e Solution:
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» Example - Kirchhoff’s Voltage Law (KVL with dependent & independent sources)
For the following circuit:

4K
AL .
20K 80K 2v 40K Sy
AT AN O
0.5A 8K 1K
T 3V 10K 20i,

(a) Apply KVL to find the voltage across 80K resistor.
(b) Apply KCL to find the voltage across 80K resistor.
(¢) Compare the two approaches.

e Solution:
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2.5. Summary

% TBC
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2.6. Additional Resources

% Nilsson, J. Electrical Circuits. (2004) Pearson.
Chapter 2 & 3.
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2.7. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.

Fundamentals of Electrical Circuits, V3.6 Page 41



Chapter 3. Analysis of Resistive Circuits

Key Concepts and Overview

% Series Resistors Configuration
% Parallel Resistors Configuration
% Voltage and Current Divider

% Measurement Instruments

% Delta and Wye Configurations

«» Additional Resources
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3.1. Series Resistors Configuration

When two resistors connect at a single node and have the same current, they are said to be in series.
Combining series resistors simplifies circuit analysis as long as the voltage in individual resistors is not of

interest:

We will start with simple case of two resistors in series and expand to the general case of n resistors in

series.

» Two resistors in series

Is R1
—
L =N
Vs
R2

- —

“Original Circuit”

1) Apply Kirchhoff’s voltage law to the original circuit

-Vs+Is*R1+1s*R2=0
Vs =1Is * (R1 + R2)

Application of Ohms Law to the equivalent circuit

Vs =1Is * Req.

2) From above work, we have the following two equations:

Vs =Is * (R1 + R2)
Vs =1Is* Req

Vs

2 Red

“Equivalent Circuit”

We can Conclude that: Req = R1 + R2 when R1 & R2 are in series.
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» The General Form

Is R1 R2 R3

N/ N N e
Vs 54 Vs Req

Rn R5

_ j/\ \/\ -

“Equivalent Circuit”

“Original Circuit”

1) Apply Kirchhoff’s voltage law to the Original circuit
-Vs+Is*R1+1s*R2+...+Is*Rn=0
Vs=Is*(R1+R2+ ... + Rn)

Application of Ohms Law to the equivalent circuit
Vs =Is * Req.

2) From above work, we have the following two equations:
Vs=Is*(R1+R2+... + Rn)
Vs =Is* Req.

We can conclude that: Req=R1 +R2 + ... + Rn = ZRZ. when R1, R2, ...

i=1
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3.2. Parallel Resistors Configuration

Two resistors are connected in parallel when the two resistors connect at the same node pair. Combining
parallel resistors simplifies circuit analysis as long as the Current in individual resistors is not of interest:

We will start with a simple case of two resistors in parallel and expand to the general case of n resistors in
Parallel.

» Two resistors in parallel

Is Is
EEEE——

b [l
R1 R2
Vs 2 Vs geq

“Original Circuit’ “Equivalent Circuit”

1) Apply Kirchhoff’s current law to the original circuit
-Is + |1 + |2 =0
and
Apply Ohms Law to the Equivalent Circuit
Is = Vs/Req

Therefore
Vs/Req = Vs/R1 + Vs/R2
Divide by Vs

1/Req = 1/R1 + 1/R2 for Parallel Resistors R1 and R2.
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» The More General Form

Is

+
1

|
Ve 2 R1

12

}
2R2

“Original Circuit”

1) Apply Kirchhoff’s current law to the original circuit
s + 11 +12 + 13+ ...

and

+In=0

Apply Ohms Law to the Equivalent Circuit

Is =Vs/Req

Therefore

Vs/Req = Vs/R1 + Vs/R2 + Vs/R3 + Vs/Rn

Divide by Vs

S|
1/Req=1/R1+1/R2+ 1/R3 + ... + 1/Rn = Z?
i=1

Vs %&q

“Equivalent Circuit”

2) Sometime it is easier to think of the above relationship in term of Conductance (G=1/R)
Gegq=G1 +G2+... + Gn
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» Example — For the following circuit
a) Find the value of voltage v
b) Find the power delivered by the current source

L 720 b 60Q
b

==

X

5A Y 300 64 Q 100

SOLUTION:
a) Find the value of voltage v

Simplify the circuit by finding the Equivalent Resistance (Left to right):
Step 1) 6 Qs in series with 10 Q > Req =6 + 10 = 16 Q > circuit is redrawn as:

7.2Q Il

l >
—»/\/

X

5A v 30 Q 64 0 16 Q

Step 2) 16 Q is in parallel with 64 Q with Req = (16 || 64) = 12.8 Q - circuit is redrawn as:

| 720Q

\
5A 300 1280

Step 3) 7.2Q is in series with 12.8Q with Req = (7.2+12.8) = 20Q -> circuit is redrawn as:
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5A Y 2300 2209

Step 4) 30 Q is in parallel with 20 Q with Req = (20 || 30) = 12Q -> circuit is redrawn as:

5A Req =12

"Note that the 4 steps can be combined as: Req = ((10 + 6) || (64)) + 7.2) || (30) = 12 Q"
Using the above circuit > v=Req*1=12"5=60vVv
b) Find the power delivered by the current source
P=V*l=- (5 *60) =- 300 W
Note: Negative sign was added since current enters the source on “—* side of the voltage.
» Example — Hints

Determine the resistor equivalent at point a and b for the following circuit:

7.2 KQ

: o

230}(0 2640 21.65»@

b

= Solution
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» Example — Hints
Determine the percent measurement error if a voltmeter with 10 MQ internal resistance is used to
measure the 10 KQ resistor:

10 KQ

= Solution
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3.3. Voltage and Current Dividers

Voltage and Current Dividers are circuits for developing multiple lower voltage and current levels from a
fixed source by utilizing appropriately sized resistors. Although similar in concept, there are enough
differences between voltage and current dividers that it is beneficial to discuss each individually.

o,

% Voltage-divider Circuit
A voltage divider is a combination of resistors that produces two or more voltages from a single power
supply. The concepts developed in parallel and series resistor simplification apply here also.

» Producing the desired voltage using two resistors
The two cases considered here include one without load (RL = «) and the other with load (RL <
). Load represents the device being powered by the power source.

2 RL, “Load Resistance”
V2 R2

» Without Load
Apply Kirchhoff’'s Voltage Law 2 -Vs +Is*R1 +Is*R2=0 > Is=Vs/(R1 + R2)
Therefore:
1) Vi=Is*R1=Vs*R1/(R1+R2)
2) V2=Is*R2=Vs*R2/(R1+R2)

» With the Load

R2 has to be replaced by Resistor equivalence of parallel combination of R2 and RL
Req = 1/(1/R2 + 1/RL) = (RL * R2)/(RL + R2)

replacing R2 with Req in V2 equation:

V2 = Vs * {(RL * R2)/(RL + R2)}/{R1 + (RL * R2)/(RL + R2)}

» The concept of a voltage divider can be extended to n resistors in series creating n different
voltages. Using:

Vi=Vs* Ri/Req for the voltage across the i" resistor.
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» Example — Voltage Divider
For the following circuit

R1=25KQ

+ +

R2=75KQ 2 RL
V2 Vo

Find the no-load value of Vo in the circuit above. (R ==).
Find Vo when RL is 150 kQ.
How much power is dissipated in the 25 kQ if the load is short circuited (R =0)

a
b
c
d) What Value of R1 delivers the maximum power to the 75KQ resistor?

)
)
)
)

Solution:
a) Find the no-load value of Vo in the circuit above. (R =«).
Vo =200*75/(25 +75) =150 V

b) Find Vo when RL is 150 kQ
R(75 || 150) = 1/((1/75) + 1/150)) = 50 kQ
Vo =200 * 50 /(25 + 50) = 133.33 V

¢) How much power is dissipated in the 25 kQ if the load is short circuited (R .=0)?
R(75]]0)=0 Q
V1 =200 "*25/(25 + 0) =200 V (The whole 200 V is seen by the 25 KQ)
P(25KQ ) = V1%/R = (200)%/25,000= 1.6 W

d) What Value of R1 delivers the maximum power to the 75KQ resistor?
R1 = 0 - deliver max power to 75KQ

P(75KQ) = Vo?/R = (200)%75,000= 0.53 W
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» Example — Voltage Divider
For the following Circuit:

v=20v (%)

%& RL

a) Find value of Ry and R; such that voltage across R is 5v (R, = °°).

b) What are the new values of Ry and R; if you only have access to 1-20 MQ resistors?
¢) What are the new values of R; and R; if you only have access to 1-20 Q resistors?
d)
e)

What is the difference in power required from the voltage source between parts b and c?
How does the answers to part b and ¢ changes if R, = 1 kQ?

f) What are the optimal resistors (Ry and Ry) if R_ = 1 kQ, use minimum power and keep
voltage across R, equal to 5V +/-10%.

Solution:
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% Current-divider Circuit
A current divider is a combination of resistors that produces two or more current levels from a single
power source. The concepts are similar to the ones used in designing/analyzing voltage dividers.

» Producing the desired current using two resistors

l” " ll2
Is 2 R1 Vs 2 R2

1) Apply Kirchhoff’'s current Law and combining resistors >
Vs =1Is *Req =Is * (R1*R2/ (R1 + R2))
which results in two current levels inversely proportional to resistor sizes:
1 =Vs/R1 =(Is *R2)/ (R1 + R2)
I2=Vs/R2 == (Is*R1)/(R1 + R2)

» The concept of a current divider can be extended to n resistors in parallel creating n different
currents.

li=1Is*Req/Ri forthe current through the i" resistor

» Example — For the following circuit
a) Find the value of R that will cause 4 A of current to flow through the 80 Q resistor in the above
circuit.
b) How much Power will R from part a need to dissipate?
¢) How much power will the current source generate for the value of R from part a?

l|2
40Q 2
20 A v, v R

+
+
«—
=

1) Solution:
a) Find the value of R that will cause 4 A of current to flow through the 80 Q resistor in the
above circuit.

(1) V = I, * (40 + 80) = 4 * (120) = 480 V
(2) Apply KCL > 20 + 4 + 1, =0 > l,= 16 A
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3) V=LR > 480=16*R = R =30 Ohms

How much power will R calculated in part (a) need to dissipate?
P=1,"R=16"*30=7680 W

How much power will the current source generate for the value of R calculated in part a?
Vy =V +60*20 =480 + 1,200 =-1,680 V

P (20 source) = -V*1=-1,680"20=-33,600 W (Generated Power)

Note: Negative since current is entering the negative side of the voltage.

» Example — For the following circuit
a) Find Voltage Vo
b) Find current through the 30 Q resistor.

1)

a)

Is
» 40Q 50Q

60 V 200 9 300 2 100

/V Req

Solution:

Find the Voltage Vo
Req1 = (((10+50) || 30) || 20) = 1/(1/60 + 1/30 + 1/20) = 10 Q
Apply voltage divider rules Vi =Vs * Ri/Re g - Vo = (60)(40/(40+10 + 70)) = 20V

Find current through 30 Q.
Is = Vo/40 = 20/40 = 0.5A

Apply Current divider rule Ii = Is * Re g/ Ri note Is to be shared among 20, 30 and (50+10)

ohm resistors. So Ri=30 and Reg2 = (20 || 30 || 60) =1/(1/20 +1/30+ 1/60) = 10
2=1s*Reg2/30=0.5*10/30=0.168 A
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3.4. Measurement Instruments

Three important measurement instruments in electrical engineering are Voltmeters, Ammeters and
Ohmmeters. In the past these instruments were designed using a device called d’Arsonval meter
movement. Modern instruments use analog-to-digital conversion to implement all three functions and are
called Digital MultiMeters (DMMs).

% Voltmeter
Voltmeters are designed to measure voltage across a portion of the circuit and present a very high
resistance (R = ~). This characteristic allows the voltmeter to be placed across a pair of nodes
without impacting the behavior of the circuit since Req = R1 || =« = R1.

So to measure voltage across the 30 Q resistor, place the voltmeter in parallel as shown below:

Voltmeter
Is
=N |
+ Vo - L—/
60 V 200 % 300 2 100
700

< Ammeter

Ammeters are used to measure current through a branch of a circuit and are designed to present a
very low resistance (R = 0). This characteristic allows the Ammeter to be placed between a pair of
nodes without impacting the behavior of the circuit since Req = R1 + 0 = R1.

Ammeter
Is
—— /QQ/ / 50Q
+ Vo -
60 V 20Q % 30Q 10Q
70Q

— N\

% Digital Multi-Meter (DMM)
Digital Multi-Meters, as the name implies are digital. DMMs sample a signal periodically and convert
the reading from analog to digital in order to display it. DMMs typically include Ammeter, Ohmmeter
and Voltmeter functionality. By selecting the appropriate function, the connection to the circuit will be
of the same as describe in the earlier description of Ammeter and Voltmenter usage.

% Pre-digital application -- Analog Meters (also called Volt Ohm Meter, VOM)
These analog instruments relied on d’Arsonval meter movement for visualizing of the data. The
mechanism relied on flow of current to magnetize a dial that would move to show the measure of the
current and voltage.
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Below is a functional diagram of an instrument using d’Arsonval meter movement.

Scale - full deflection at 1mA and 50 mv across the coil.

0 1 2 3 4
X |

Permanent
magnet

Moveable
Magnetic

input

The d’Arsonval meter movement is typically designed to require input of 50 mv and 1mA in order for
the pointer to move to the full-scale position. The d’Arsonval meter movement is typically
represented as:

D’Arsonval Movement
Full Movement: 1 mA, 50 mV, 50 Q

A d’Arsonval meter movement along with a resistor can be used to design analog Ammeter or
Voltmeter as shown below:

Rv &« Q
' A
D’Arsonval D’Arsonval
Movement AmMeter Movement VoltMeter
2 Terminals Terminal

Full M t Ra

ull Movement: \
1 mA, 50 mV, 00 Full Movement:
50 Q ) 50 Q 0

AmMeter Configuration

VoltMeter Configuration
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o,

< Example - For the following circuit

1V % 100Q

a) Find the current in the circuit.
b) What would an Ammeter using the d’'Arsonval meter movement (Ra = 5.5 ohms) read?

» Solution:

a) Find the current in the circuit.
i=V/R =1/100 = 10 mA

b) what would an Ammeter using the d’Arsonval meter movement (Ra = 5.5 ohms) read?

Ra=5.5Q
2 1V 9 100Q

o«

| = (1) /(100 + 5.5)= 9.5 mA

% Another pre-digital Application - The Wheatstone Bridge
The Wheatstone Bridge was used to measure resistance using the following components and
procedure:
1) Components
(1) Resistor to be measured (Rx)
(2) aset of 2 fixed resistors R2 and R1 with R2/R1 ratio from 0.001 to 1000 driven by the
size of resistor being measured.
(3) Variable resistor R3 from 1 to 11,000 Q with a physical dial that shows the value of the
resistor.
(4) Ammeter using D’Arsonval movement
(5) Voltage Source
2) Procedure
(1) Adjust variable resistor until no current flow through Ammeter (Ig=0)
(2) Calculate value of Rx = (R2/R1)*R3
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Vs

» Proof that Rx = (R2/R1)*R3
1) By applying Kirchhoff’s law and the fact that [1=I3 & 12=Ix since R3 is adjusted so that Ig=0
Top Triangle = 11*R1 = 12* R2 (Since Ig =0)
) Bottom Triangle = I3*R3 = Ix*Rx (Since Ig =0)
) Divide both side and remember that and [1=I3 & I12=Ix since R3 is adjusted so that 1g=0
R1/R3 = R2/Rx = Rx = (R2/R1) * R3

2
3
4

» Accuracy
The accuracy of the measurement by the Wheatstone Bridge depends on a number of factors as
outlined below:

1) Resistors with values below 1Q are too small to be measured with standard Wheatstone due
to:
(1) Thermoelectric voltage generated at the junction of dis-similar metal
(2) Thermal heating effects (resistance increases as temperature goes up due to power

consumption I"2*R)

2) Higher value resistors’ measurements are affected by the leakage current. Leakage current
is any current through Ig, even if it is small. This error will be amplified proportionally to the
size of the large resistors being measured.
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3.5. Delta and WYE Configurations

Delta and Wye are two other resistor network configurations that are neither the series nor the parallel
configurations that were discussed earlier. These two configurations, Delta and Wye are shown in the

following diagrams:

» Delta (A) or Pi (1) Configuration
The following diagrams show two ways to represent a Delta configuration:

Rc
a N b Rc
a /\/ b

Rb Ra oR e ? ) ne

c
c
» Woye (Y) and Tee (T) Configuration
The following diagrams shows two ways to represent a Y configuration:
a b
R1 R2
a /y /y b
R2
R1 R3
OR
c
R3
c

From time-to-time, conversion between Delta and Wye leads to circuit simplification. Three equations are
needed in order to convert from one to its equivalent circuit in the other forms,. These equations are
derived from setting the equivalent circuit for each node pairs in one configuration equal to the
corresponding pair in the other configuration as shown below for node pairs ab, bc and ac:
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b= Rc(Ra + Rb)
Ra+ Rb+ Rc

o= Ra(Rb + Rc)
Ra+ Rb+ Rc

o= Rb(Ra + Rc)
Ra+ Rb+ Rc

=Rl+R2
=R2+R3

= Rl1+ R3

By applying algebra to the above equations, each resistance can be found in-term of other resistances
such as:

> Delta-to-Wye Conversion

Rl= RbRc _ RcRa R3= RaRb
Ra+ Rb+ Rc Ra+ Rb+ Rc Ra+ Rb+ Rc

» Wye-to-Delta Conversion

_RIR2+R2R3+RIR3 . RIR2+R2R3+RIR3 . _ RIR2+R2R3+ RIR3
RI R2 R3

Ra
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3.6. Summary

% TBC
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3.7. Additional Resources

% Nilsson, J. Electrical Circuits. (2004) Pearson.
Chapter 3.
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3.8. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.
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Chapter 4. Circuit Analysis/Modeling Techniques

Key Concepts and Overview

% Introduction

% Node-voltage Method (based on KCL)

% Mesh-current Method (based on KVL)

% Node-Voltage and Mesh-Current Comparison
% Source Transformation

% Thévenin & Norton Equivalents

% Delivering Maximum Power

% Superposition Principle

% Sensitivity Analysis

« Additional Resources
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4.1. Introduction

This chapter introduces more generalized analysis techniques such as Mesh-Current, Node-Voltage,
Source Transformation, Thevenin and Norton Equivalent and Super-Position. These techniques can be
applied to circuits with large numbers of elements. Many of these techniques are used in Computer Aided
Design and Analysis tools for circuit analysis. All the methods introduced here rely on the three
fundamental laws of Electrical Circuits which were introduced in earlier chapters:

1) Ohm’s Law
2) Kirchhoff’s Current Law (KCL)
3) Kirchhoff’'s Voltage Law (KVL)
% Basic Circuit Analysis Terms
It is time to introduce the formal definition of key terms that will be used throughout Electrical Circuit
Analysis:

» Node: A point where two or more circuit elements join.
Node
» Essential Node: A node where three or more circuit elements join. In a circuit analysis text, it is

common to refer to essential nodes as simply nodes. This inaccuracy is accepted since we are
only interested in essential nodes in circuit analysis.

Essential Node

.

Path: A trace through adjoining basic elements where no element is traced more than once.
Branch: A path that connects two nodes.

Essential Branch: A path which connects two essential nodes without passing through another
essential node.

Y V V

Essential Node

A, 2V A\, Node

NG /
~—
Essential

? S Branch ? Branch

Essential Node

In course of circuit analysis, it is common to refer to essential branches as simply branches. This
inaccuracy is accepted since generally we are only interested in essential branches in circuit
analysis.

» Loop: A path where the end of the path is at the starting node.
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» Mesh: A loop that does not enclose any other loop.

................. A Loop but
not a Mesh

——— Aloopanda
Mesh

» Planar Circuit: A circuit that can be drawn on a plane with no crossing branches. In order to
apply the circuit analysis techniques introduced in this text, the circuit must be planar and drawn
such that no branch is crossing another branch of the circuit.

% Example — Application of Definition of Term
Apply the above definitions to the following Circuit:

AN——"\/ N

o 7oL ?

This is a Planar Circuit since none of the branches cross each other.
Node = 6

Essential Node = 4

Path > 10

Branch =10

Essential Branch= 8

Loop > 10

Mesh =5
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4.2. Node-Voltage Method (Based on KCL)

Node-Voltage Method is a formalized and systematic approach to the application of KCL to circuit
analysis. This method is applicable to highly complex circuits due to the fact that is a systematic
approach. The following steps describe Node-Voltage Method:

1) Redraw the circuit as a planar circuit
2) Identify essential nodes (n)
3) Select one essential node as reference and mark it with «¥ Ref”
The voltage at the reference node is assumed to be zero. Any of the essential nodes may be
selected as reference since all the voltages being calculated are relative. The reference node is
typically the node with highest number of branches which results in the simplest analysis.
4) Number of independent equations resulting from application of KCL to all nodes except reference
node is (n-1).
5) Define Voltage at every node (V4, Vo, ..., V})
6) Using KCL, write the sum of current in-terms of voltage for every node except reference.
Hints:
a. Assume current going out of a node is positive
b. If a branch contains a resistor, the current through the branch is the voltage difference
across the resistor divided by the resistance.
c. Ifthe branch contains a current source, the current of the current source is also the
branch current.
< Example - Node-Voltage Method Application
For the circuit shown below , find the value of voltage across the 5A current source.

v, 60 120 30
—\ ’\/ ’\/

" (D ot ’ Q'G 20

¥

Ref.
Solution:
Circuit is drawn as planar, essential node voltages are marked with V4, V, and the reference node
(VRet=0)

Write the KCL for each essential nodes (V;, V,) except reference node:
Nodel 2> 1+l +13=0 2> -5+Vi/2+(V;i=V)/(6+12)=0
Node2 > Iy+1ls+1lg=0 > (Vo—V)/(6+12) + (V2)/9 +(V,-20)/3 =0

Simplify and rewrite the equations:
-90 +10V, —-V2 =0
'120—V1 + 9V2 =

Solve the above two simultaneous equations > V;=1045V & Vo, =145V
Therefore Voltage across 5A current source > V; =10.45V
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% Node-Voltage Method Special Cases
This section lists special cases that are encountered when using the Node-Voltage Method for
analyzing the circuits.

» Special Case 1 - Circuits with Dependent Source
When the circuit being analyzed includes a dependent source, the analysis includes an additional
variable which is the current or voltage controlling the dependent source.

The analysis of this type of circuit is similar to the Node-Voltage method described earlier with the
added requirement of writing an equation to relate the branch currents to the dependent source
variable.

For example, the following circuit contains a dependent voltage source that depends on the
variable current Ix:

6Q 3Q

<_V1 — 7V LIV
| Ll |
1 X 4 ls '8
90Q

i

Ref.

In order to find the node voltages and Ix using Node-Voltage Analysis, first apply all the Node-
Voltage Method steps and write the resulting KCL equations:

Node 1 > |1+|2+|3=0 > '5+V1/2+(V1—V2)/6=0
Node 2> li+ls+lg=0 > (Vae Vi)/6 + (Va)/9 +(Vo—41)/3 =0

Simplify and rewrite the equations:
-90 +4V{—-V2=0
'24|x - V1 +1 1V2 =0
The above two equations have three unknowns (V4, V, and the dependent source variable, I,).

The third equation is derived from the circuit > I, =V, /2

Now, there are three equations and three unknowns so it can solved.

4V, -V2 =90
'24|X - V1 +1 1V2 =0
2l,-V:.0

Solving the system of equation > Ix=16.0A, V1 =319V, V2=37.7V
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» Special Case 2 — Circuit with a Branch Containing Only a Voltage Source
When a circuit contains a branch with only a voltage source, Ohms Law (I=V/R) cannot be
applied to find branch current. This means that the KCL equation for the node with such a branch
cannot be written in term of voltage. The good news is that you do not need to write the KCL
equation since the node voltage is already known and is equal to the value of the voltage source.

For Example, in the analysis of the following circuit:

vi 60 30 V2
TN Y —
11 ug 14 lls 6
5A 10 20 20 V

v

There is no need to write a KCL equation for Node 2 since V, = 20. This means the system of
equations is reduced to:

Node 1 > -5+ V1 + (V1 —-v2)/(3 +6) =0 > 45 +10V; —-V2 =0
Node2 2> V,=20V

Which is a much simpler system of equation to solve. > V., =20V, V;=6.5V

» Special Case 3 — Super-Node
When a circuit contains a voltage source between two essential nodes, it is possible to combine
the two essential nodes as one Super-Node. Only one KCL is needed for the Super-Node since
the relation between the two node voltages is simply the value of the voltage source.

The Super-Node concept may be applied for dependent and independent voltage sources
between two essential nodes: The Node-Voltage steps apply to circuits with the additional
requirements to:

(1) Draw a circle around the two nodes and call it a super node; there is no need to place
voltage label on it.

(2) Write the KCL equations as if circle area is one node (Super Node KCL equation)

(3) Write another equation that relates the two node voltages in the Super node

For example in the following circuit, nodes V1 and V2 can be combined into a Super-Node as

shown here:
eI ~~~-_ Super-Node
OV N Ve
n |2\J/ """ T
l 0V lls
SA 10 g 5 60

SUper'NOde KCL = |1 + |2 + |3 + |4 =0 > -5+ V1 +V2/12 + V2/6 =0
The difference between the nodes is the voltage source voltage > V; -V, =10
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Simplify the above two equations:
12V +3V, =60
Vi—=V,=10
Solve the two equations 2 V=6 V; V,=-4V;

< Examples — Application of General Node-Voltage Method
» Example 1 - Use the Node-Voltage Method to find V in the circuit shown.

*

Super-Node

350 (T AT
Na Vb, 30
N — + - ’./i,

+ I 1
| - -
6A X l 8V
(l) 10Q \Y 15Q 50

v
Solution:
Super-Node KCL > 6 + Va/10 + Va/15 + Vb/5 + (Vb — 8)/3 = 0V

Super-Node internal Nodes’ voltage relationship - Va— Vb =4I,
Control source Variable Equation - I, = Va/10

Simplify the 3 equations:
5Va + 16Vb =-100
-4l,+Va-Vb=0
101,-Va=0

Solve the system of 3 equations and 3 unknowns:
k=23 A;Va=23V;Vb=-7V > V=Vb=-7V

» Example 2 - Use the Node-Voltage Method to find V, in the following circuit.

Lo __] ! — Y \\,”’
Iy +
5A
(T) 1SQ Vx 200
v

Solution:
Super-Node KCL > -5+ (Va- Vb)/10 + (Vc - Vb)/5 + Vc/20 = 0

Super-Node internal Nodes’ voltage relationship > Va - Vc = 3l
Control source variable equation 2 I, = (Va - Vb)/10
Node “b” KCL - (Vb —Va)/10 + (Vb —Vc)/5 + Vb/15 =0

Fundamentals of Electrical Circuits, V3.6 Page 70



Simplify the 4 equations:
2Va - 6Vb + 5Vc= 100
Blk+Va-Vc=0
10l,—Va+ Vb=0
-3Va +11Vb-6Vc =0

Solve the system of four equations and four unknowns:

Ik=11A;Va=506V;Vb=39.6V;Vc=472V > Vx=Vc=472V

» Example 3 — Super Node Example
Find Vy using Node Voltage Method:

3.95V
10 Q 30Q 19.95V

-\ A .- ‘

+
lx
6 Ix l vx {200 l409

2V,

<>

50Q

Solution:

5 KQ

Vy
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4.3 Mesh-Current Method (based on KVL)
Mesh-Current Method is a formalized and systematic approach to the application of KVL to circuit

analysis. These techniques can also be applied to complex circuits since they represent a systematic
approach: The following steps describe Mesh-Current Method:

1) Redraw the circuit as a planar circuit.
2) Identify all meshes in the circuit (Mesh is a loop that does not include other loops) and “m” is the

number of meshes.
3) Select mesh currents in the same direction (Clockwise or Counter-Clockwise), be consistent

throughout the circuit!
4) Mesh current exists on the perimeter of a mesh; current in the shared branches is the algebraic

sum of the adjoining mesh currents.
5) Apply KVL to each of the “m” meshes identified and write the resulting “m” independent equations

in term of mesh currents.

% Example - Mesh-Current Method
For the circuit shown below, use the Mesh-Current method to find the Power delivered by 50 V

supply.

N\
6 Q
15Q 30Q
/\/ /\/
10 Q
? 5Q +
" )s0v

Three meshes have been identified. For the identified meshes, we have selected mesh currents |4, I»
& I3 with Counter-Clockwise direction. In this case, the voltages are also shown for their educational
value.

Fundamentals of Electrical Circuits, V3.6 Page 72



- V4+

+ + Ve -
15Q 30Q
+
100 &
V1 (e
I3

N\
60
é'z\
Vs -
—
- +
| 50
v Vs
-

Now write the KVL equations (algebraic sum of voltages around the mesh and set it to zero) in term
of mesh currents for each of the three meshes. It is very important to notice that voltages are marked
such that mesh current flows into the + terminals. It is recommended that the reader independently
write the equations and then compare them with the equations below. Special attention should be

accorded to the signs of the terms in each equation:

Mesh 1 KVL > V1+V2+V3=0910|1+5(|1'|3)+15(|1—|2)=0
Mesh 2 KVL > V4+V5+V6=096|2+15('2-'1)+30(|2—|3)=0
Mesh 3 KVL > Vo + Vg + Vo = 0 > 5(l3 — Iy) + (-50) + 30(Is — I) = 0

Simplify and rewrite the equations:

301, -15l,-5I3=0
'15'1 + 51 |2 - 30'3 =0
'5'1 - 30'2 + 35'3 =50

Solve the equations > | =2.7 A; 1, =3.8 A; I3 =5.1 A;

P=V*l=-(50)(5.1) = - 255 W
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Mesh-Current Method Special Cases
This section lists special cases that are encountered in analysis of circuits using Mesh-Current

Method

» Special Case 1 — Circuits with Dependent Source

When the circuit under analysis includes a dependent source, the analysis requires an additional
variable which is the current or voltage controlling the dependent source.

The analysis step for this type of circuit is similar to Mesh-Current Method described earlier with
the additional requirement to write an equation to relate the element voltage to the dependent
source variable.

For example, the following circuit contains a dependent voltage source:

8V 150
+ - 2V
40 10Q
/\/ /\/
50 Vp -
2Vp ) \V;

+

2Q

Application of Mesh-Current Method is the same as discussed earlier with the addition of a
dependent voltage source’s variable in-terms of mesh currents..

8V 15Q
+ - N/
I
40 0 100
/\/ /\/
SQ +Vp'

Write KVL equations for each mesh in terms of the mesh current:

Mesh 1 KVL > 4('1 - |2) + 10('1 - |3) + 15'1 -25 =0~ 29'1 - 4|2 - 10'3'= 25
Mesh2 KVL - -2Vp-8+5(l—1I3) +4(l,—11) =0 > -2Vp-4l;+91,-5Il3-=8
Mesh 3 KVL - +8 + 2|3 + 10('3— |1) + 5('3— |2) =0-> '10'1 - 5|2+ 17'3'= -8

There are 3 equations but we have 4 unknowns, so we use the definition of a dependent source
to write another equation:
Vp =10 (|1 - |3) > Vp -10l4 +10|3 =0

So here is the resulting system of 4 equations and 4 unknowns:
291, - 41, - 10l3-= 25
'2Vp - 4|1 + 9|2' 5|3 -=
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'10'1 - 5|2+ 17'3 -=-8
Vp -10l4 +10|3 =0

Solve the system > Vp=2.9V; |;-=1.8A; ,-=3.2A; I3-=1.6 A;

» Special Case 2 — Circuits with Current Source
When the circuit under analysis includes dependent or independent current source that is not
shared between meshes, the analysis becomes easier since the current in the mesh with the
current source is known. This means that there is no need for a KVL equation for the mesh.

For example, the following circuit contains an independent source:

2V 150
+ - N/
40 C's\ 10Q
/\/ /\/
5Q

Applying Mesh-Current Method is the same as discussed earlier with the only difference being
that the KVL equation for I, is not required since I, = -2A.. So instead of three equations, we need
to solve only two equations to find the mesh currents:

Mesh 1 KVL = 5(I1=1) +8+3 11+ 10(l;=13) =0 >
Mesh 2 current is given > |, = -2A
Mesh 3 KVL = -25+4(ls—15) + 10(I3—1;) +15l5=0

Simplify and plug in Io

181, - 10l;= 18
101, +291;3= 17

Solve the equations 2> |y =2.6 A ; I3=1.15A;

» Special Case 3 — Super-Mesh
When a circuit contains a current source between two meshes, we can simplify the analysis by
creating a Super-Mesh. A Super-Mesh is a mesh created by combing the two meshes that have
the shared current source while avoiding the branch with the current source..

The Super-Mesh concept may be applied to circuits with dependent and independent voltage
sources. The Current-Mesh steps apply to circuits with Super-Mesh with the additional
requirements to:

1) Identify meshes with shared current source and combine them into a Super-Mesh
2) Write one Super-Mesh KVL equation
3) Write equation relating the current of the two combined meshes

For example in the following in the following circuit, the 2A current source is shared between
mesh 1 and 2.
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20V

6Q

A,
("

2A

=t

;3
T <1ZQC +
a i

/\/

6V

Therefore, mesh 1 and 2 can be combined into a Super-Mesh as shown below:

___-}\—/—-"

/\/
120 \
[ C'S ]
30

/\/

6V

Represent Super-Mesh

For the above circuit, equations for Super-Mesh, current in the shared branch and mesh 3 can be

written:

Super-Mesh KVL - -20 + 6l, +4(lo—1I3) + 12(1;—13) =0
Current source branch > 2 =1y -1,
Mesh 3 2> 6 + 3'3 +12(|3 - |1) + 4('3 - |2) =0

Simplify the equations:
12'1 + 10'2' 16'3 =20

h=1=2

'12'1 - 4|2 + 19'3 =-6

Solve the system of equation 2> 11 =3.3 A; [b=1.3A;13=2.0 A;
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< Examples — Application of General Mesh-Current Method
Find Vy in the following circuit using Mesh-Current Method.

10 kQ 40 kQ 50 kQ 2V
—\/ —\/ N\ — + - +

=+

2 mA
6 mA l Vy
Vx %20 kQ 100 kQ 5KQ

» Solution:
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4.4. Node-Voltage and Mesh-Current Comparison

The Node-Voltage and Mesh-Current Methods allow a systematic approach to circuit analysis as shown
in previous section. Although both methods are applicable to all planar circuits, for some circuits one
method is more efficient and requires less equations and therefore calculation. So spending some time
to consider the best approach upfront may save time in the analysis.

Typical factors to consider when deciding between Node-Voltage Method and Mesh-Current Method
include:

» Number of nodes and meshes.
1) if (#node -1)

2) if (#node -1)
3) if (#node -1)

# mesh > use Node-Voltage Method
# mesh - use Mesh-Current Method
# mesh - Look for other factors to decide

v A

» Presence of Super-Node or Super-Mesh

1) If Super-Node is present > use Node-Voltage Method
2) If Super-Mesh is present = use Mesh-Current Method

» Focus of analysis and the unknown parameter.

®,

% Example — Node-Voltage vs. Mesh-Current
Which of Node-Voltage or Mesh-Current Method is more efficient approach to analyzing the following
circuit?

40Q

250 100Q 2500 2100Q la

A AN AN AN ——

Ope

v

Ref. S\u/per—Node

32V

510 Q

The above circuit has 4 nodes which require 3 equations. There is also opportunity to take
advantage of Super-Node which would reduce the number of equation to 2..

The above circuit has 5 meshes which means we have to write 5 Mesh-Current equations.

Based on the fact that node-voltage requires lower number of equations, the recommendation is
to use Node-Voltage method to simplify the analysis.
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< Example — Node-Voltage vs. Mesh-Current

Does Node-Voltage or Mesh-Current approach requires less effort to analyze the
following circuit?

193V

¢

3.2 Va

The above circuit has 4 nodes therefore requires 3 equations with Node-Voltage Method.

The above circuit has 3 meshes which would require 3 equations with Mesh-Current Method. But
considering the current sources and existence of Super-Mesh, we only require one equation.

Based on the fact that node-voltage requires higher number of equation, the recommendation is to
use Mesh-Current Method for more efficient analysis.
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4.5. Source Transformation

Source Transformation is another circuit simplification and analysis technique. In electrical circuit
analysis, as long as the voltage and current are maintained, an equivalent circuit may be used.

Source Transformation is a technique which allows current source to be replaced with a voltage source
and visa-a-versa.

As shown below, the following voltage source configuration and current source configuration are

equivalent at terminals a and b:

R

\/\ 02 lIL —ea lIL

Vs +
' W R Sy oW

ob - @b

RL

Valid transformation requires that I, & V| has to be the Same. For the above circuits:

e Voltage at terminal ab is V| for both circuits
e Current at terminal ab is I, for both circuits

The only relationship required to transform from one form to anotheris:Is =Vs/R

®,

< Example - Source Transformation
User source transformation to find the voltage V in the circuit shown below:

1.6 Q
- \60V +
+
20 Q
0 36 A
T 6Q \Y 8Q
5Q
120 V
Transformations:

(1) 120V & 20 Q Series > 120/20 = 6 A and 20 Q parallel
(2) 60V & 5 Q Series > 60/5=12 A and 5 Q parallel
There fore
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1.6 Q

6A

209%

12A

gSQ

36 A

C_>72 \'% v 889

|=72/(4+8)=6A
V=8x6=48V

< Example - Source Transformation

Draw the equivalent circuit with respect to current source terminals using only resistor and voltage

source for the following circuits:

a)
R2=100
11
20 mA \D
R1 =300
b)
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40 mA@\ 11

% R1 =300

R/

«»+ Solution:

Example - Source Transformation
Draw the equivalent circuit with respect to a and b terminals using only resistor and current source for
the following circuits:

a)
R1 =300
A a
V=30 v
<+
b
b)
R1 = 400
MV a
C—) V=20 v
b
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» Solution:
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4.6. Thevenin & Norton Equivalents

In many cases, it is useful to replace the circuit under analysis with a simpler circuit where its voltage and
current at the terminals behave the same as the original circuit. Thevenin and Norton Equivalents enable
us to come up with equivalent circuit consisting of one source and one resistor that is equivalent to the
original circuit.

The rest of this section outlines the process of finding a Thevenin or Norton Equivalent for any ideal
circuit. Thevenin equivalent consists of a voltage source and resistor while the Norton equivalent consists
of a current source and resistor as shown below. Further, the two forms are equivalent to each other.

Rth
N\ ® a ® a
Vth In
t
a—— v
e b o b
Thevenin Equivalent Norton Equivalent

% Thevenin Equivalent (Voltage Source & Resistor)
Thevenin Equivalent of a circuit is represented by only a voltage source referred to as the Vth or open
connection voltage (Voc) and an equivalent or Thevenin resistor (Rth).

Rth

N\ .a

Vth

e b

Definitions:
e Thevenin or Open Circuit Voltage (Vth = Voc) is voltage at terminal a and b when Current
through terminal a and b is zero (open across a & b)).
¢ Norton or Short Circuit Current (In=Isc) is the current through terminals a & b when Voltage
across a and be is zero (Short across a & b)
e Thevenin or equivalent resistor (Ry) is the ratio of Open Circuit voltage and Short Circuit
current:
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Ri, = Voc / Isc

% Thevenin equivalent using Standard Method

Thevenin equivalent of circuit is found with respect to a given pair of terminals since the Thevenin
equivalent will be difference depending on the terminals selected. Once the terminals and the circuit
have been provided, calculate two of the three variables Rth, Voc or Isc to find the equivalent circuit.
With two of variables, the third can be calculated using the Ohm’s law.. Here are the steps for the
standard method:

(1) Find the current across the terminals when the terminals are shorted (connected). This
is the short circuit current, Isc=In.

(2) Find the voltage across the terminals when the terminals are open. This is the open
circuit or Thevenin Voc=Vth.

(3) Use Ohms law to find Rth = Voc/Isc

(4) Draw the Thevenin equivalent circuit.

» Example - Apply the Standard Method
Find the Thevenin Equivalent for the following circuit at terminals ab.

12Q

/

50 80Q

72V
<+> 20 Q

@b

(1) Open terminals ab and find the voltage at terminals ab (Voc = Vth)

12Q
50Q m 8Q
@2
72VC> Tl 20 Q Il=0—lVoc
@b

Mesh 1 &> terminals ab are open = 11 =0
Mesh 2 > -72 + 5(12 - 13) + 20 (I12)=0
Mesh 3 > 1213 + 8(I3) + 5(I13 —12) =0

Simplify
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2512 -513 =72
-512 +2513=0

2=3A; I3=3/5A-> Voc=Vth=8*3/5+20*3=64.8V

(2) Short the circuit at terminals ab and find Isc

12Q

@ 2

72V
C) 12 l 200 I l Isc

@b

Applying Mesh-Current method
Mesh 1 > 20 (11 —12) + 8(I11 —13) =0
Mesh2 > -72 + 5(12-13) + 20 (I2-11)=0
Mesh 3 > 1213 + 8(I13 - 11) + 5(I13 - 12) =0

Simplify the equations
2811 -2012-8I13 =0
-2011 + 2512 -513 =72
-811 -512 + 2513 =0

Solve > 1 =10.8A; 12=12.7A; 13=6.0 A
Isc=I1=10.8

(3) Calculated Rth
We have Rth = Voc/lsc = 64.8/10.8 =6 Q

(4) Thevenin Equivalent Circuit

Rth=6 Q
/\/ o a

Vth =64.8 V
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% Thevenin Equivalent — Special Cases
In some cases, it may be easier (less calculations) to use an alternative method to find the Circuits
Thevenin Equivalents.

» Special Case 1 — Circuits only contains Independent sources
For this type of circuit, it is typically easier to find Thevenin equivalent by applying the following
steps:

Find Open circuit voltage at the terminals, Voc=Vth, same as in the Standard method.
Deactivate all independent current sources

An independent current source is deactivated by replacing it with an open circuits (1=0)
Deactivate all independent voltage

An independent voltage source is deactivated by replacing it with a short circuit (V=0)
Calculate Req for the resulting circuit which is the same as Rth

Draw the Thevenin equivalent using the calculated Vth and Rth

» Special Case 2— Circuits with dependent and independent sources
For this type of circuit, it is sometime easier to find Thevenin equivalent by applying the following
steps:

5)
6)

Find Open circuit voltage at the terminals, Voc=Vth, same as in the Standard method.
Deactivate all independent current sources
An independent current source is deactivated by replacing it with an open circuits (1=0)
Deactivate all independent voltage sources
An independent voltage source is deactivated by replacing it with a short circuit (V=0)
Use either test voltage source or current source
(1) Calculate test current while applying test voltage at terminals a and b.
OR
(2) Calculate test voltage while applying test current at terminals a and b.
Rth =Vtest/Itest
Draw the Thevenin equivalent using the calculated Vth and Rth

» Example — Thevenin Equivalent
Find the Thevenin equivalent of the following circuit with respect to terminal ab (across R4):

R1 V1 R3 V2
M AMA 4
20 100
[=1A
a RS
V=5y <+) R2 50
- 40 R4
10
b

Solution:

1. Find Voc=Vth with terminals ab open
see that 1 A is the current in that branch and resistance is 10 Q therefore
Vab = Vth = (-1)(10) =-10 V

Fundamentals of Electrical Circuits, V3.6 Page 87



2.

» Example

Find the Thevenin equivalent of the following circuit with respect to terminal ab:

Solut

Find Iy = Isc with terminals ab short circuited
lsc =-1A

Calculate Rth = Vth / Isc
Rth =-10/-1 =10Q

Draw the Thevenin equivalent Circuit

Rth = 10
MA

Vih=10v <+>

— Thevenin Equivalent

V3

R4=5

M
Vi1 R1Z10 o 1224
W@

V=bv <+> R2=20

<

ion:

Since this circuit only has independent source, we are able to use the special case 2 to find
Thevenin equivalent.

1.

Find Voc=Vth with terminals ab open

KCL at V1 > V1 =5V

KCLatV2 > (V2-V1)/10+V2/20-2=0
KCL at V3 - (V3 -V1)/5+2 +V3/100=0

Vth =Vab =V2=50/3=16.7V
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2. Find Req with respect to terminal a and b when sources have been deactivated

(open current source and short voltage source)

R4=5
AWV

R1=10

M —
a

g R3=100

Rth = Rab = (10 ]/ 20) + 5+ 100 = 111.67 Q

3. Draw the Thevenin equivalent Circuit

Ry=111.67 Q

Vih=50/3 ¥

M
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» Example — Thevenin Equivalent
Find the Thevenin equivalent of the following circuit with respect to terminal ab:

160 iA

[ J
QO

|Al
4A

20 Q 20 Q 20Q

[ J
(op

Solution:

1. Find Voc=Vth with terminals ab open

2. Find Iy = Isc with terminals ab short circuited

3. Calculate Rth = Vth / Isc

4. Draw the Thevenin equivalent Circuit
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% Norton Equivalent (Current Source & Resistor)
Norton and Thevenin are source transformation of each other. The method is very similar to
Thevenin Equivalent with the only difference is that the equivalent circuit consists of a current source,
Isc, and resistor, Rth. The Norton Equivalent circuit is shown below

® a

Rth

Definitions:
e Thevenin or open circuit voltage (Vth = Voc) is voltage at terminal a and b when Current
through terminal a and b is zero (open across a & b).
e Norton or Short Circuit Current (In=lIsc) is the current through terminals a & b when Voltage
across a and be is zero (short across a & b)
e Thevenin or equivalent resistance (Ry,) is the ratio of open circuit voltage and short circuit
current:
Rin = Voc / Isc
% Norton equivalent using Standard Method
Norton equivalent of circuit is found with respect to a given pair of terminals similar to Thevenin
equivalent. Once the terminals and circuit has been provided, calculate two of the three variables
Rth, Voc or Isc to find the equivalent circuit. With two of variables, the third can be calculated using
the Ohm’s law.. Here are the steps for the standard method:

(2) Find the current across the terminals when the terminals are shorted (connected). This
is the short circuit current or Norton current, Isc=In.

(3) Find the voltage across the terminals when the terminals are open. This is the open
circuit or Thevenin Voc=Vth.

(4) Use Ohms law to find Rth = Voc/lsc

(5) Draw the Norton equivalent circuit.
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» Example — Norton Equivalent
Find the Norton equivalent of the following circuit with respect to terminal ab (across R4):

R1 2 R3 V2
A M t
20 100
I=1A
a ; RS
=5y <+> R2 50
- 40 R4
10
b

Solution:
1. Find Voc=Vth with terminals ab open
see that 1 A is the current in that branch and resistance is 10 Q therefore
Vab = Vth = (-1)(10) =-10 V

2. Find Iy = Isc with terminals ab short circuited
lsc =-1A

3. Calculate Rth = Vth / Isc
Rth =-10/-1 = 10Q

4. Draw the Norton equivalent Circuit

M\@ gw
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» Example — Norton Equivalent

Find the Norton equivalent of the following circuit with respect to terminal ab:

Q)

§ R3=100

Solution:

Ré=5
A
R1=1 %
W@
R2=20
b
v

Since this circuit only has independent source, we are able to use the special case 2 to find

thevenin equivalent.

1. Find Isc=l4, with terminals ab Shortened

KVLatly=> -5+ 10(l;—1g) + 20 (Il — 1) = 0

KVLatl, > ;=0

KVL at supper mesh I3 & I4 > 51, + 100 I3 +10 (I, —11) =0

Simplify:
30-101,=5

10 |1 + 100'3 '5'4 =0
l4—l3=2

> h—Il3=2
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Solve to find:
lb=0, l3=-2.66A

Isc=lab=1,-13 =2.66 A

2. Find Req with respect to terminal a and b when sources have been deactivated
(open current source and short voltage source)

R4=5
M
R1=10
M a —

Rth = Rab = (10 || 20 || (5 + 100) = 6.27 Q

3. Draw the Norton equivalent Circuit

[=2.66 A
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» Example — Norton Equivalent
Find the Norton equivalent of the following circuit with respect to terminal ab:

160 iA

[ J
QO

|Al
4A

20 Q 20 Q 20Q

[ J
(op

Solution:

1. Find Voc=Vth with terminals ab open

2. Find Iy = Isc with terminals ab short circuited

3. Calculate Rth = Vth / Isc

4. Draw the Norton equivalent Circuit
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4.7. Delivering Maximum Power

There is a cost associated with electrical power generation therefore producers objective are to deliver
the maximum power to the load (user). This is also true when applied to radio, cell phone and other
devices. Although, the actual calculation for devices other than resistors and supply is beyond this
section, the underlying concept of wanting to maximize power to the load is applicable.

o,

% Requirements for delivering maximum Power

The following steps are used to prove the load and generating circuit configurations that delivers the
maximum power delivered to the load (user) must meet the following conditions:

v,, Vv,
Rth = Rl = pmax = = = -
4R, 4R,

» Find and draw the Thevenin equivalent of the generator circuit and represent the load as RL

Rth
N\ ® a

RI
Vth

e b

» Calculate the power of the load connected to Thevenin equivalent circuit
\%
p=I"R =(—"—)’R,
Rl + RRth

To find the maximum power, set the derivative of p with respect to R._ to zero. Note for the
following calculation R is a variable.

d_p = 2[(R1 +Rth)2 _Rz *2(Rz +Rm)
dr, " (R, +R,)*

]

Derivate must be 0 to find the R, of Pyax. So
(R,+R,)>—R *2(R,+R,)=0
or

(R,+R,)>=2R,(R,+R,)=> R, =R,
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» RL = Ry is the condition for obtaining maximum
2 2
p :( th )2 } — ‘/th — ‘/th
e R, + Ry, 4R, 4R,
% Example — Maximum Power
Find the value of R_ in order for maximum power to be delivered to the load:

160 iA

20 Q 20 Q

<>

iAl
4A

20 Q 20 Q 20Q

Solution:

% Example — Maximum Power

Load

North Bonneville Dam generates 500 MW at 100 kV. For this system, find load (R.) such that

maximum power is delivered to the load.

Solution:
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4.8. Super-Position Principle

Super-Position Principle can only be applied to linear systems. Fortunately, the ideal circuits with only
linear elements such as resistor, independent source and dependent source with power of one control
variables are linear systems. This means we can apply the Super-Position Principles to simplify, analyze
and design these circuits. The Super-Position Principle simply states that the effect of each independent
source can be added to find the total response in a linear system.
% Application of Super-position to Circuits Analysis

Here are steps to apply the Super-Position to Circuits:

» Deactivate all independent sources (short for voltage source and open for current source)
Note: Dependent sources cannot be deactivated

» Activate one independent source at a time and calculate the response for it

» Repeat the previous step for all the independent sources

» Sum all the individual responses to find the total response

% Example — Application of super-position principal
Find Vq in the following Circuit using super position:

20 Q 3A
A =D
+
20V
12 A Vg 600 15Q

- 4V
189\/ /’\

+ -

1) Deactivate all independent sources except 12 A current source

20 Q

<D12A Vg 60Q 15Q

Circuit the simplifies to :
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Vgl =60*12=720v.

2) Deactivate all independent sources except 3A current source

20 Q 3A
A =D,

+

Vg_> 600 150

Circuit the simplifies to :

3A

+ Vg2=60*3=180v.

4V
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3) Deactivate all independent sources except 20 V current source

20 Q

N\

+

Vg 600 150 C)

189\/' y\“\

+ -

There are not any closed loops between the independent source and the 60 Ohms resister
therefore Vg3 =0

4) Total value of Vq can be calculated by summing the individual responses:
Vg=Vqgl + Vg2 + Vg3 =720 + 180 + 0 =900 V
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4.9. Sensitivity Analysis

Sensitivity analysis is the process of determining the relative effect of change in one element of the circuit
on specific voltage or current in the circuit. The following steps are used to find out sensitivity of voltage
or current with respect to an element (resistor) in the circuit:

5) Write the voltage or current in term of the element value (V=f(r1, r2, ...))
6) dv/dr1 V/Q gives us the sensitivity V with respect to r1

As discussed in the previous section, this course is focused on linear systems (circuits) which mean we
can apply the Super-Position Principle to the sensitivity analysis. In other words, calculate sensitivity with
respect to individual elements and sum them to calculate the total sensitivity as shown below:

V sensitivity to r1 and r2 = dv/dr1 + dv/dr2

®,

% Example - Sensitivity Analysis
What is the sensitivity of V4 to r1, r2 and r3.

r3 VA1

10V

Use Node Voltage method to write Vy interms of r1,r2,r3 > (V1 —10)/(15+r3) + V1/r1 + V1/r2 =0
Applying ohms to branch with the voltage source > V4/15 = (V1 — 10)/(15+r3)

Simplify the first equation > (1/(15+r3) + 1/r1 + 1/r2)V1 = 10/(15+r3)
From Second equation find V1 in term of V4 > V1 = V4 (15 +r3)/15 +10

plug in V1 from 2™ equation to first one >

reader is encouraged to complete the example
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4.10. Summary

o,
o

Ohms Law
r=Y0o + v(t) -
. —>

Node Voltage Method (KCL) [Z(in) v=iR  f,(v, )}

EN

—_
~

Identify number of Essential Nodes (EN: nodes with more than 2 branches)
2) Set of one of the EN to Reference Node (Vref = 0)
“Select the EN with most branches”

3) For Each of the other ENs write the sum of currents equation in terms of node voltage

* Assume current leaving the node is positive
* Label Nodes V1, V2, V3,
* Write currents in term of V4, V,, V3, ...
4) Solve the system of equations to find V4, Vy, V3, ...

Special Cases:
a) Voltage Source from Essential Node to Reference Node
b) Dependent Source
c) Voltage Source between two Essential Node

Mesh Current Methold (KVL) [Z(vm) R=v/i  f,(, )}
Mesh
1) ldentify number of Meshes (Loops that do not include other loops)
2) For Each of Meshes write the sum of voltage equation in terms of current
* Label Mesh current (clock wise) 14, I, I3, ...
* Write voltages in term of Iy, I, I3, ...
3) Solve the system of equations to find Iy, I, I3, ...

Special Cases:
1) Current source in unshared branch
2) Dependent Source
3) Current source in shared branch
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4.11. Additional Resources

% Nilsson, J. Electrical Circuits. (2004) Pearson.
Chapter 4.
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4.12. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.
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Chapter 5. Operational Amplifier

Key Concepts and Overview

% Transistor Overview

% Operational Amplifier (Op-Amp)

% Op Amp Applications

% Common Mode (cm) vs. Differential Mode (dm)
% Op Amp DC Model

«» Additional Resources
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5.1. Transistor Overview

Transistors are fundamental building blocks of electrical and computer systems. A Transistor may be
used to amplify current or voltage (as an amplifier), or as a switch. In its operation as an amplifier,
transistors are used to build Op Amps and a multitude of other analog devices. In its operation as a
switch, a transistor is the building block of all computer and digital systems.

Transistors are implemented on a range of material with variety of polarities and configurations. In this
introductory section on transistors, NPN transistor will be used to describe transistor fundamentals. NPN
transistors are one of the earliest types of transistors. NPN Transistor was developed based on Silicon
physical Characteristics with specialized processes to leverage and direct its characteristics.

Silicon, a semiconductor material, is turned into transistors through processes with most important one
being doping where impurities are added. The doping results in material that either has extra electrons
(which are called N-type for the extra negative charges) or add "holes" to the silicon's crystal structure
(which is called P-type because it results in more positive charges).

The following diagram shows the NPN transistor circuit symbol and physical construction:

Base
Collector Emitter * Collector
i’ Base L=PB1L
Emitter N-Type
Cireuit Symbol Physical Construction

The following diagram utilizes a controlled current source and resistors to model the behavior of a
transistor as an electrical circuit element. The model is referred to as the Ideal DC model for
theTransistor.
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Collector
+Vce
R¢
R
Collector ic = Bip
Iy
Base
Base l o= B i
e
1p
% R
+
BE Emitter
Emitter

Ideal DC Model of an NPN Transistor

As it is shown by the above transistor Ideal DC model, the current i

nto the base (iy) is amplified by a factor

of B and flows from collector to emitter (i = Bi, ). Typical B is around 300. This means in a typical case,

1 mA base current produces 300 mA Collector current.

The following chart shows the relationship between the Vge and the current through the Collector Emitter

Junction(l.):
le

Max

Approx. 0

Saturation region, VCE>2.4 & Ic = Max,
Collector / Emitter shorted or switch closed.

Linear Regions, i. =P i
> (In-between open and close)

Cut-off Region, VCE=« & Ic=0, Collector /
Emitter is open or switch closed.

T
Approx. 0.7 v

As shown above, Transistors operate in three distinct regions:
e Saturation Region
e Linear Region
e  Cut-Off Region

VBE
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Analog electronics use transistors in Linear mode which operate as an amplifier. In this type of
applications, designer challenge is to design a circuit that remains in linear region and avoids the cut off
and saturation region.

All digital and computer systems operate transistors in the cut off and saturation region with special focus
on minimizing the amount of time spent in the linear regions. Since digital system utilize the transistor as
a switch by applying Vge=0 to put the transistor in cut off region or open Collector / Emitter Connection
(Switch open). For NPN transistor VBE is increase as quickly as possible to above 3 volts to put the
transistor in the saturation mode or short Collector / Emitter connection (Switch closed).
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5.2. Operational Amplifier (Op Amp)

The Operational Amplifier (Op Amp) was initially used to implement mathematical operations such as
summing and integration in analog computers. This initial application is where the Op Amp gets its name.
Op Amp is a versatile component with wide variety of applications. Refer to LM 324 specification for an
example of a general purpose low frequency low cost Op Amp.

The most common uses of Op Amp in the industry are:

Signal Inversion
Signals Summation
Signals Subtraction
Signal Amplification
Signal Filtration

gz

This section covers the application and external behavior of Op Amp in circuits but does not discuss the
internal design of the Op Amps. In this text, the Op Amp is typically represented by the following symbol:

Positive Bias (rail)

IN -
(Inverting Input)

Out

IN+
(Noninverting Input)

Negative Bias (rail)

As shown above, the Op Amp has two inputs (positive & negative), either one or two bias supplies (also
called rails since they provide the upper and lower output limits) and one output. When one bias supply is
used such as in LM 324, the other bias is set to ground (V=0).

Typically, the simplified schematic which is use in the rest of the section, the supply connection to ground
is not shown. This will simplify the schematic therefore making it easier to analyze the circuit. The
following diagram shows a fully drawn schematic to the left and a simplified version to the right.
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In
—>
+
In
| Vn
Ip

— +
Vi * Vee L T lcc

Vp EE TT lee )

_ — -Vee

Common or Reference Node (Gnd)

Open Loop Gain (A) is the value that input voltage difference (Vp — Vn) is multiplied by to get the output.
A is called Open Loop Gain since it is the gain when input and output of Op Amp are not connected (open
loop) and therefore there is no feedback. The value of A is typically well above the 10,000. In general,
output and input are related based on the following equation as long as the output is within the supply
range (-Vee £ Vce £ V) which is also called the linear region:

Vo=A(Vp—-Vn) if -Veg=Vo <V

In open loop configuration, the relationship between the input voltages (Vp & Vn) and output voltage (Vo)
depends on the Op Amp modes and relationship of A(Vp — Vn) with supply voltage V., and -Vge.

Vo 3 } Positive Saturation
Vo =V, when A(Vp—Vn) >V
( + Ve -7
Linear Region
Vo = A(Vp — Vn) when <
—Vee<A(Vp—-Vn) sV
-Vee/A (Vp-Vn)
: VoA
D A - VEE
Negative Saturation

Vo = -Vge when A(Vp —Vn) < -Vge

Open Loop Gain , A, for LM 324 is 100,000 at low frequencies and assuming Vcc = 30 v supply is used
to bias the Op Amp then (Vp — Vn) must be less than 0.3 mV in order for the LM 324 Op Amp to operate
in the linear region as shown below:

Linear Region requires that A(VP —Vn) < Vcc - 100000(Vp—-Vn) <30 - (Vp—-Vn) <0.3 mV
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This limitation is a major constraint since the smallest difference between Vp and Vn results in the Op
Amp to the saturated and no longer operating as an amplifier. In order to extend the input range in the
linear region, the designer needs to design the Op Amp with negative feedback which is discussed in
latter part of this section.

In order to analyze a circuit with an Op Amp, an equivalent Op Amp circuit or a model is required. The
first model is the simplest one and is called the Ideal Op Amp Model. Although simple, the Ideal Op Amp
Model is an effect tool in analyzing circuits with Op Amp. The Ideal Op Amp Model has the following

three characteristics:

1) Open Loop Gain is infinite (A = «)
2) Voltage Constraint — Input Voltages are the same (Vp — Vn = 0 or Vp=Vn)
3) Current Constraint — Input is virtual open (Ip = In =0)

Note: Characteristics 2 and 3 are based on the assumption that the input resistance (between
input p and n) is infinite and no current flows through it.

Ideal Op Amp Model in conjunction with Kirchhoff Current Law (KCL) is the preferred approach to
analyzing circuits with Op Amp in order to approximate the circuit’s behavior.

% Example — Application of Ideal Op Amp Model to circuit analysis
For the following circuit:

Vp
Vs M
-10V
“GND, V=0~

48 KQ

+20V

h’ Vo

8 KQ vnl In N
+

Find Vo for the values of Vs=1.2, 6.0, -1.5 and -5.

Solution

KCL for Node Vn = (Vn —Vs)/8000 + (Vn — V0)/48000 + In =0
From the circuit > Vp =0
Ideal Op Amp Characteristic > A =, In =1p=0 & Vp =Vn

Combine the above set of equations - -Vs/8000 - Vo/48000 =0 -> Vo =-6Vs

Vs=1.2 >
Vs=6.0 >
Vs=-1.5 >
Vs =-5 >

Vo=-7.2
Vo =-36 (this is less than —Vgg=-10V so Saturates) > Vo =-10
Vo= 9.0
Vo = 30 (thisis more than V,=20V so Saturates) > Vo = 20
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Another way is to calculate the range in which the Op Amp saturates as shown below:
-10£Vo<20 > -10<-6Vs<20 > -3.3<Vs<17
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5.3. Op Amp Applications

Op Amps are typically used to invert, amplify, add, subtract and compare signals in a circuit. This section
introduces the basic design and analysis approach for this type of applications. Throughout this section,
the Ideal Op Amp Model is used to analyze these circuits.

o,

% Inverting-Amplifier Circuit
Inverting-Amplifier negates and scales (amplifies or attenuates) source voltage (Vs) and outputs it as
Output Voltage (Vo).

» Circuit Diagram
Rf

+VCC

Rs vn |13
Vs Vo |, — Vo
'VEE

» Circuit Analysis
KCL Node Vn - (Vn-Vs)/Rs + (Vn—-Vo)/Rf +In=0
Ideal Op Amp Characteristics > A==, Vp=Vn,Ip=In=0
From the circuit Vp =0

Combine the above equation set 2> -Vs/RS — Vo/Rf =0 > Vs/Rs = -Vo/Rf

Vo = - (Rf/Rs)*Vs where:
”-“indicates an inverting amplifier
"Rf/Rs” is the scaling factor or gain
If Rf/Rs > 1 then signal is amplifier
If Rf/RS < 1 then signal is attenuated

The above relationship is valid only in the linear region where —Vgeg < Vo £V, or
-Vce < -(Rf/Rs)*Vs < Vcce. As discussed earlier, outside of linear regions, Vo will be limited by
either the V¢ or —=Vge rail..

» Example - Inverting amplifier
For the following circuit:
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Rf

+10V
5KQ vni In _\J
Ip Vo
+

Vp —
2V M
-20V

Find the range of Rf values that keeps the amplifier in the linear region.

Solutions

KCL Node Vn > (Vn—2)/5000 + (Vn—Vo)/Rf +In=0
Ideal Op Amp Characteristics > A=«~, Vp=Vn,lp=In=0
From the circuit > Vp =0

Combining the above set of equations 2 -2/5000 + (-Vo/Rf) =0 > Vo = - (2/5000)Rf
For the Op Amp to be in Linear Region > -20 < Vo <10
Substitute Vo equivalent in term of Rf Vo > -20 < - (2/5000)Rf <10 > 50000 = Rf =-25000

since R cannot be less than 0 lower limitis 0 >
Rf <50 KQ for Op Amp to operate in linear region
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% Summing-Amplifier Circuit
Sums a number of voltage sources (Va, Vb, ...) and output the scaled (amplified or attenuated) result
as the Output Voltage (Vo).

» Circuit Diagram

Va

Vb

Ve

» Circuit Analysis
KCL at the Node n > (Vn-Va)/Ra + (Vn-Vb)/Rb + (Vn-Vc)/Rc + In +(Vn -Vo)/Rf =0
Ideal Op Amp > In=Ip=0 & Vp=Vn
From the circuit > Vp =0
Combining the above set of equations - Va/Ra + Vb/Rb + Vc/Re + 0 + Vo/Rf =0 >
Vo = -Rf *(Va/Ra + Vb/Rb + Vc/Rc)

The above relationship is valid only in the linear region where —Vge < Vo < V¢,

» Example — Summing-Amplifier
For the following circuit:

400 KQ
10 KQ
+15V
50 KQ in
Vnd
2V o -
ip, Vo
+
Vx
-20V

Find the largest value of Vx while Op Amp is in linear region.

Solution

Vo = -Rf *(Va/Ra + Vb/Rb) = -400(2/10 + Vx /50) = - 80 - 8Vx

Linear region > -20sVo<15 > -20<-80-8Vx<15

Simplify > 60 <-8Vx<95 > -7.52Vx=>-11.9

The largest value of Vb that keeps the Op Amp in Linear Region (not saturated) is -7.5 V
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% Non-inverting-Amplifier Circuit
Non-inverting-Amplifier scales (amplified or attenuated) the source voltage (Vg) and outputs it as
Output Voltage (Vo).

» Circuit Diagram

Rf
JFE/ Vn I_n’ e
Rg Vp _IE, : L Vo
'VEE

» Circuit Analysis
KCL at the Node n 2> Vn/Rs + (Vn=VO)/Rf +In=0
Ideal Op Amp > In=1p=0 & Vp=Vn
From the circuit > Vp = Vg since Ip =0 then there is no voltage drop across Rg

Combine above equation set 2 Vg/Rs + (Vg —V0)/Rf =0 - Vo = {(Rs + Rf)/Rs}*Vg
{(Rs + Rf)/Rs} is the scaling factor and the above relationship is valid only in the linear region
where —Vge Vo <V, or -Vge <{(Rs + Rf)/Rs}*Vg} < V.
» Example — Non-inverting-Amplifier
For the following circuit:

30 KQ

+5V

T +

10 KQ Vp 10, Vo

20 KQ

5V
500 mv

Find the Output Voltage, Vo.

Solutions
Ideal Op Amp > In=Ip=0 & Vp=Vn
KCL at the Node n > Vn/5 + (Vn-V0)/30 +In=0
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KCL at the Node p 2> (Vp—-0.5)/10 + Vp/20 + Ip=0 > Vp=1/3V

Combine the above set of equation > 1/15 + (1/3-V0)/30 =0 > Vo =2.33 V.
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% The Difference Amplifier Circuit
The output voltage of difference amplifier is proportional to the difference between the two input
voltages.

» Circuit Diagram

Rb
Ve
Ra vn N
L Vo
Va Re Vp |+
Vb Rd -Vee

» Circuit Analysis
KCL at the Node n > (Vn-Va)/Ra + (Vn-Vo)/Rb +In=0
KCL at the Node p = (Vp-Vb)/Rc + Vp/Rd + Ip =0
Ideal Op Amp > In=1p=0 & Vp=Vn

Combine the above set of equations >
(Vp-Va)/Ra + (Vp-Vo)/Rb =0
Vp = {Rd/(Rc+Rd)}Vb

Rd(Ra+Rb)Vb_&Va
R (R.+R) " R

a

Plug value of VP in the first equation > Vo =

A useful simplified special case is where k= Rb/Ra = Rd/Rc simplifies the equation to:
Vo = k(Vb —Va)

The above relationship is valid only in the linear region where —Vgeg < VO < V¢

» Example - Difference Amplifier
For the following circuit:
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40 KQ

20V

10 KQ vnl In \1
+

25KQ Ip, Vo
2.0V . Ve
" 10 KQ Iy

Find the range of Vx values that will result in Linear operation (Not Saturated) of OpAmp.

KCLatVn =2 (Vn-2)/10 + (Vn—-V0)/40=0 > 5Vn-8=Vo
KCLatVp =2 (Vp—-Vx)/25+Vp/10=0 > 5Vp-4Vx=0 > Vp=4Vx/5
Ideal Op Amp Characteristics In=Ip=0; Vn=Vp

Combine the above equations > Vo = 5(4Vx/5) -8 - Vo= 4Vx -8

Linearregion »> -20sVo<20 > -20<4Vx-8<20 > -3<Vx<7

®,

% Example — Build a comparator using ideals Op Amps such that it meets the following conditions (0.2
volts of tolerance is allowed)::

Vout1 > 3.5 Volts when Vin >1 v, otherwise Vout1 < 0.4

Vout2 > 3.5 Volts when Vin > 2 v, otherwise Vout2 < 0.4
Vout3 > 3.5 Volts when Vin > 3 v, otherwise Vout3 < 0.4
Vout4 > 3.5 Volts when Vin > 4 v, otherwise Vout4 < 0.4

Comparator L Vout
— Vout2

Vin ——
— Vout3

+5V——
Gnd — Vout4

Solution
This problem can be solved using 4 Non-inverting Amplifiers as shown below:
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33 KQ

1V
+5V
1 KQ
— _
Vin 1 KQ . — Vout1
GND
33 KQ
2V v
+5V
1 KQ
/\/ _
1 KO > Vout2
+
GND
33 KQ
3V v
+5V
1 KQ
1KQ >1_ Vout3
+
GND
33 KQ
4V
+5V
1 KQ
1 KQ B L Vout4
+
GND
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5.4. Common Mode (cm) vs. Differential Mode (dm)

Op Amp’s two input present two types of voltages. One is the difference between the positive and
negative input voltage which is called the Differential Mode voltage and the other is the difference
between the input and the ground or common) which is called the Common Mode voltage.

In most application, the signal is carried by the Differential Mode voltage and the Common Mode voltage
is the result of unwanted energy (noise) from other electrical sources in the environment. So it is
important to minimize the impact of Common Mode voltage (noise) and maximize the impact of
Differential Mode voltage.

The first step is to redraw Op Amp circuits so that the input is represented in terms of Common Mode and
Differential Mode voltage. Starting with the Difference-Amplifier circuit shown below:

Rb

+Vce

Vn ﬂ»_\[
+

Ra
1
Va Rc Vp i, N
/\ Vo
Vb Rd -Vce

Applying the definition of Differential Model and Common Mode voltages results in the following two
equations:

1) Vdm = Vb —Va (Differential Mode voltage - Signal)

2) Vem = (Vb + Va)/2 (Common mode voltage - Noise)

Rewriting the equation so that the value of voltage sources are written in terms of Vem and Vdm results in
the following two equations::

1) Va=Vcm —(1/2)Vdm

2) Vb=Vcm + (1/2)Vdm
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Using the above two equation, the initial Difference-Amplifier can be redrawn as:

Ra Rb

Vdm/2 RV

N

Vdm/2
Rc

Vo

Vem
Rd

-Vce

From earlier section, it is known that for a Difference amplifier, the following relationship is correct:
R,(R +R R

VOZ—"( = ")Vb——" .
R,(R.+R,) R

a

By substituting for Va and Vb with their equivalent in terms of Vcm and Vdm, the output voltage equation
may be rewritten as:

vo| BB =RR | [ R/R +R)+R, (R +R)],
R (R +R,) | ™ 2R (R, +R,) a

Vo=A, V. +A,V,

cm - cm

Where:

— RaRd _RbRc
o R,(R.+R))

} Common Mode (Noise) Gain

4 _[Rd(Ra +R,)+R,(R_+R,)
dm

Differenital Mode (Signal) Gain
2R, (R.+R)) } I (Signal)

An Ideal Difference Amplifier has a Common Mode Gain of zero (Acm = 0). This is an Ideal Difference
Amplifier since it eliminates the impact of Common Mode voltage (Noise) from the output.

Ideal Difference Amplifier definition (Acm =0) > RaRd — RbRc =0 > Rc=Ra & Rd=Rb

which means the output equation simplifies to the following equation for an Ideal Difference Amplifier:

R
Vo = R—dem

a

The goodness of a Non-Ideal Difference Amplifier is measured based on the value of Common Mode
Rejection Ratio ( CMRR = |Aqnw/Acml| ). The larger CMRR, the closer the ideal Difference-Amplifier. In
other word, CMRR = « represent an ideal Differential Amplifier which Occurs when either V., is infinite or
Vgm is zero..
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5.5. Op Amp DC Model

Although the Ideal Op Amp model provides a simple model for analyzing OP Amp circuits, some
application required better approximation. In this section, a more realistic model for the Op Amp is
introduced which is referred to as the DC Model. Here are three differences between DC and Ideal Model
of OP Amp:

1) ldeal Model assumed an infinite input resistance, DC model uses the input resistance which can
be found in the Op Amp Specifications (for example: Ri for LM 324 is 2 MQ)

2) Ideal Model assumed an infinite open loop gain, DC model uses the value from the Op Amp
Specifications (for example: A for LM 324 is 100,000)

3) Ideal Model assumed an output resistance of zero, DC model uses the value from the Op Amp
Specifications (for example: Ro for LM 324 is 75 Q)

It is understood that the ideal Op Amp Model assumptions such as Vp=Vn and lp=In=0 are not valid when
using the DC model. The following circuit diagram shows the equivalent circuit for Op Amp when using a
DC Model:

Vee
In
Vn —> -
Vo
Ip
Vp >
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» Example — OpAmp DC Model

Use OpAmp DC Model (Ro=75Q and Ri = 2 MQ) to find Vo for the following circuit:

1 KQ

10 kQ

+15V

3 KQ

3V

Solutions

I

ND

Vo

1 KQ

1 kQ

1kQ
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KCL @ Vn = (Vn—2) + (Vn = Vo)/10 + (Vn -3)/2003 = 0

KCL @Vo = (Vo - Vn)/10 + Vo — 105(Vp-Vn)/0.075 + Vo = 0

Where Vp = 3 + 3(Vn -3)/2003

» Example — OpAmp DC Model

Find Vo for the following circuit using the DC model of Op Amp:

Rf

l ' Vp
v :

Form the circuit > Vp=0

KCL at Vn = (Vn—Vs)/Rs + Vn/Ri + (Vn — VO)/Rf =0

KCL at Vo = (VO — Vn)/Rf + (VO — A(Vp — Vn)/Ro) + Vo/RL=0

Simplify the equations

(1/Rs + 1/Ri + 1/Rf)Vn — Vo/Rf - Vs/Rs =0 - Vo = Rf {(1/Rs + 1/Ri + 1/Rf)Vn - Vs/Rs}

RL

(1/Rf + 1/Ro + 1/RL)VO — (1/Rf — A/Ro)Vn=0 > Vn = (1/Rf + 1/Ro + 1/RL)/(1/Rf — A/Ro)

Plug Vn into first equation

Vo = Rf {(1/Rs + 1/Ri + 1/Rf)(1/Rf + 1/Ro + 1/RL)/(1/Rf — A/Ro) - Vs/Rs}
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5.6. Summary

% ldeal Op Amp Model

A=
Vo=V,
lh=1,=0

% DC Op Amp Model

Vee
In
Vn —> -
Vo
Ip
Vp >

«» Common & Differential Mode
~ {RaRd —R,R. }V _{Rd (R, +R,)+R,(R.+R,)

R (R +R,) 2R, (R, +R)) a
VO = Acchm + Admvdm
Adm . . .
CMRR = Common Mode Rejection Ratio

cm
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5.7. Additional Resources

% Nilsson, J. Electrical Circuits. (2004) Pearson.
Chapter 5.
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5.8. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.
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Chapter 6. Capacitors and Inductors

Key Concepts and Overview

« Passive Elements

«+ Inductor, L

% Series and Parallel Inductors
% Capacitor, C

% Series and Parallel Capacitors

«» Additional Resources
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6.1. Passive Elements

In the study of electricity, electrical components are classified either as passive elements or active
elements. Passive elements are the elements that consume energy. In other words, they are not
capable of power gain. On the contrary, active elements are the elements that can produce energy or
are capable of power gain.

So far four active elements have been introduced which are current source, voltage source, transistor and
OpAmp. And the only passive element introduced is resistor which relates voltage and current. In
addition to resistor, inductor and capacitor are also passive elements that are well understood and will be
introduced in detail later in this section. The fourth element is called a Memristor and in 1971, Leon Chua
theorized its existence but it was not until 2008 that a working memristance was developed by scientists
at Hewlett Packard.

The four fundamental circuit variables are current, |; voltage, V, charge, Q; and magnetic flux, ®. The first
three circuit variables have already been introduced in earlier chapters. Magnetic flux, represented by the
Greek letter @ (phi), is a measure of quantity of magnetism. Magnetic flux is measured in units of weber
(volt-seconds) per square meter, or tesla. Magnetic field surrounds electric current so if charge is
traveling through a wire (current), it will result in a magnetic field that would surround the wire.

Each of the four basic passive components relates two of the four circuit variables as shown below:

Voltage, v

Resistor, R, dv=Rdi i Capacitor, C, dg=Cdv
doe=vdt i I

Current,i e e e do=idt ooéoooooooooooo> Charge, q

Memristor, M, dpo=Mdq

— U

Inductor, L, de=Ldi

VY

‘O.......

Flux, ¢

You may have noticed that both capital and lower case letters are used to represent circuit variables such
as current and voltage. In electrical engineering, capital letters are used to refer to circuit variables when
they are constant with respect to time. Prior to this section most of the circuits analysis was done with
constant circuit variables. In this section, circuit variables may not be constant with respect to time and
therefore lower case letters will be used as it is done in the above overview diagram of relationship
between electrical circuit elements and variables.

Remainder of this chapter introduces inductor, L, and capacitor, C.
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6.2. Inductor, L

Inductor is traditionally built by winding a coil of wire around a supporting core which its material may or
may not be magnetic. In some cases, the core is simply air (a nonconducting - dielectric). Inductors are
manufactured from variety of material and are packaged based on the application requirement so it is
difficult to know an inductor’s characteristic without the manufacturer’s specifications.

Below is a basic inductor construction for the purpose of demonstrating the underlying physical
phenomenon and corresponding schematics:

i(t) \\___o----mmmTTTTTTTTTTT I N L ]
v Flux Lines-. _
Physical Construction > \/\ \/\ f f f f f

- 1
-

- FluX Lines --~

+ v(t) -
Circuit Symbol > L
Note that passive convention is used. A
_—

“henry” is the units used to measure inductance. The henry (symbol: H) is named after Joseph Henry, the
18" century American scientist who discovered electromagnetic induction (see flux lines) about the same
time as Michael Faraday made the similar discovery in England. Faraday is not forgotten, Farad which is
units of capacitance measurement is named after him.

As electric current flows through a wire (charge moving), the charge movement causes the generation of
electromagnetic field (flux) which induces voltage across the inductor terminals. The resulting voltage is
derived by the following equation:

v(t)= LM When
dt

Voltage, v(1), is in Volts
Current, i(t), is in Amps
Inductance, L, is in henrys

As it can be seen from the above equation, voltage is only generated when the current changes. Here
are a few observations:

1) If current is constant then the voltage across the inductor is Zero.

2) If the Current is changed from one level to another in time interval dt >0 then v (t) > <.

3) If the current changes linearly then voltage remain constant as shown in the following
diagram:
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t

Application of introductory calculus is used to calculated inductor current in the term of voltage as shown
below:
di(t)

Integrate v(¢t) =L
dt

fromtgtot

t

. 1 .
i(?) :ZIV(T)dT+l(t0) Where i(t) is value of inductor current at t, also called initial condition

Iy
The Power and Energy calculation in inductor are shown here

» Inductor Power Calculation, p(t)
Start with p(t) = v(t) *i(t) and substitute equivalent of v(1) in terms of i(t)

L di(r)
p(t) = Li(z) 0

» Inductor Energy or Work Calculation, w(t)

p(t) = @ Power is change in energy(work)
t

o di(t)
w(t) = Hdt = | Li(t)—=dt
()= [ pdr=[ L=
w(t) = %Liz(t)
where w(t) is in Joules, L is in henrys and i(t) is in Amperes

As it can been seen from the above power and energy calculation, inductor stores energy that may be
delivered over time. This is different from resistor which did not have the ability to store electrical energy
and would instantly react to changes in current or voltage.

®,

+ Example — Application of Inductor basic relationships
The current source in the following circuit generates a current, ig:

i, (1)=0 1<0
i,(0)=12¢7" -12¢7" 120
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() CT) V 2 mH

a) v(t) immediately after t=0 which is referred to as v(0%)
b) t>0 when voltage v(t) passes through zero.

¢) The expression for the power delivered to inductor

d) Power delivered at t= 25 msec.

e) Total energy stored at t=25 msec.

Solutions
Part a) Find v(t) immediately after t=0 which is referred to as v(0*)
dl (t) d 12 —200¢ _12 —800¢
vty = L2 _ g gop 4U2¢ ¢ )
dt dt

v(t) = 0.002(=2400e > +9600e**")
v(07) = 0.002(-2400¢" +9600¢") = 14.4v

Part b) Find t>0 when voltage v(t) passes through zero.
v(t) = 0.002(-2400e " +9600e ™) = 0

2400e """ = 9600e "'
1 — 4e—6OOt
Take natural Log of both side
In(1/4) =In(e™*")
—-1.39=-600¢ Ine note: Ine=1
t =0.0023sec = 2.3msec
Part ¢) The expression for the power delivered to inductor
p) =v(®)*i(r)
p(t) =0.002(-2400e " +9600e * )(12¢ > —12¢7%")
p(t) ==57.6¢ " +288.0e 7" —230.4¢ "

Part d) ) Power delivered to the inductor at t= 25 msec.
p(r) = —57.6¢ " +288.0¢ " —230.4¢™ "

p(t=0.025)= 57,6 2007(0025) | H@@ (1,7100040025) _ 53y 4,~1600%(0.025)
p(0.025) =-0.0026 W =2.6mW
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Part e) Total energy stored in the inductor at t=25 msec.
w (t) =V2 Li(t)*
w (t) =12%(0.002) * (12¢ " —12¢7*)?
w (t =0.025) =% *(0.002) * (12¢ %00 — 12750070022
=0.0000065 = 6.5uJouls
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6.3. Series and Parallel Inductors

Circuits with multiple inductors may be simplified by replacing a network of inductors with one equivalent
inductor. As will be demonstrated in this section, the parallel and series networks may be replaced by
their respective equivalent inductors in order to simplify the circuit.

o,

% Serial Inductors
This section covers the process for simplifying a series network of inductors.

it) R i(t)
_—
+ Vv - + Vo - + Vy -
~V— ~— - + r\w/r\n }
L1 L2 Ln Leq

Original Circuit > v=vy+ Vo + ... 4V, > Vv=1L di(t) +L, di(t) +..+L, i)

dt dt dt
Equivalent Circuit > v = Lequ d;(t)
t
From the above two equations > v=L, di(t) =L di(1) +L, dit) +o.+L, dit)
"o dr dt dt dt

dit)

equ

=(L,+L,+..+L))
For Series network > L, , =L, +L,+...+ L, withinitial condition i(to) at t=to

» Example — Simplify Series Inductors
Find the equivalent inductance of the circuit shown below:

: — 5 12H 3.6 H
i(t) ~A A
Initial Condition i(tg)

v(t) %4.2 H

Solution

Series network > L, =1.2+3.6+4.2=9.0H

ity —*
Initial Condition i(tg)

v(t) % 9.0H
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% Parallel Inductors
This section covers the process of simplifying a parallel inductor network.

i(t) i(t)

—> —>
AN l (1) l In(t)l '
v(t) L1 L2 Ln vt Leq

KCL at the node in original circuit = i(t) = iy(t) + io(t) + ... +in(t)
Note: i(t) and ix(t;) represent the instantaneous and initial condition current

i(r)zLilj v(r)dr+il(t0)+Lizj v(t)dr+i2(r0)+...+Linj v()dt +i (1)

. I 1 1 . . .
i(t)= (Z+L_++Z)J- v()dt+1i,(t,) +i,(2,) +...+1,(,)

1 2
. 1 .
KCL at the node in the equivalent circuit = i(f) = L_J- v(t)dt +i(t,)
equ

From the above two equations >

. 1 . 11 1 . . .
l(t)=?quj- v(t)dt+l(t0)=(E+L—2+...+Z)j V()dt +i () +iy(t,) + ...+ (1))

Therefore in a parallel inductors network, equivalent is calculated by:

1 I 1 1
+.o.+—

n

= — 4 —
L. L L

equ

i(t,) =i,(t,) +iy(t,) +...+i,(t,) “initial conditions of the resulting inductor”

» Example — Simplification of Parallel Inductors Network
Simplify the following Circuit:

25H 200 H
'a'a’a" R Y R
300H |300H 300 H 400H | 4004

=100H

1
The three 300 H are in parallels > Lequl = I 1 ]
+ +

300 300 300

Fundamentals of Electrical Circuits, V3.6 Page 136



The two 400 H are in parallels > L, , = - 1 - 200H
400 400
25H 200 H
2aa , ~A
The 100 H is in parallel with (200+200) H > LW3 :ﬁ =80H
100 400
25H
'aa'a

80 H

The equivalent of the total network > L,q=25+80=105H

105 H
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6.4. Capacitor, C

A capacitor is a circuit element made up of two electricity conducting surface, separated by dielectric (a
non-conducting or insulating) material. Capacitors are manufactured from variety of material and are
packaged based on the application requirement so it is difficult to know a capacitor characteristic without
the manufacturer’s specifications.

Below is a basic capacitor construction for the purpose of demonstrating the underlying physical
phenomenon and corresponding symbol:

i(t)

Physical Construction > Conductor
I d

C :ﬁ where
d

C is capacitance in Farad Dielectric

A is area of conductor plate

d is the thickness of dielectric i Conductor
€ the permittivity of the dielectric

Circuit Symbol > I I

As voltage varies with time, the displacement of charge also varies with time, causing what is known as
the displacement current. The displacement current is proportional with the change in voltage over time
and can be calculated based on the following equation:

i(t)= Cﬂ where:
dt

v(1) is the voltage in Volts
i(t) is the current in Amps
C is measure of capacitance in Farad

Here a few observations based on this equation:

e |f voltage, v(t), is constant then the current through the capacitor is zero.

e When the voltage changes instantly (dt = 0) then the current, i(t) will be infinity (i(t) > ).
Although voltage cannot change instantly, the nearest approximates is to place a voltage source
across the capacitor terminal long enough to fully charge the capacitor {i(t)=0}, then replace the
source with a short across the terminals. This experiment will results in a large current discharge
and may be extremely dangerous due to large instantaneous current generated.
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Capacitor is a passive component meaning it does not produce power but is able to store energy.
Below is an example of relating a linear change in voltage with resulting current in a capacitor:

: : o dv : : :
Integrating the earlier equations i(¢) = Cd_ provides with an equation to calculate Voltage across the
t

capacitor in term of current:

vty =" [imdz+v(y)
C

Ty

Power and energy equations will complete the discussion of capacitor’s behavior:

» Capacitor Power, p(t) Calculation
Form earlier discussion = Start with p(t) = v(t) *i(t)
Substitute Capacitance current equation in the p(t) equation >

pt)y=C v(t)ﬂ where:
dt

Power, p(t), in Watts (W)
voltage, v(t), in Volts (A)
Capacitance, C, in Farads (F)

» Capacitor Energy or Work, w(t), Calculation
Form earlier discussion - p(t)= dw/dt -> dw/dt = Cvdv/dt > dw = Cvdv

Integrate both side with respectto t >

w(t) =%C v2(t) where:

Energy or Work, w(t) is in Joules
Voltage, v(1) is in Volts
Capacitance, C, is in Farads

Finally it is important to notice the duality of Capacitors and Inductors as one is driven by voltage change
while the other is driven by the current change.

% Example — Applying Basic Capacitance Relationships
For the following Circuit:

*
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0.4 uF
vs(t)

O T

The voltage at the terminals of 0.4 uF capacitor is:
v, (1) = oV <0

v, (1) =20e* 5in10,000r V 120

Find:

a) i(t) at t=0"

b) power delivered to the capacitor at t=100 usec.
c) energy stored in the capacitor at t=200 usec.

Solutions
a) Findi(0")

i(=C % = (0.4 *107°)(20* (=5,000e > sin 10,000¢ +10,000e " cos10,000¢)
i(0) =8%107° *(0+10,000) = 0.08A

b) Find the power delivered to the capacitor at t= 100 usec.
p() =i(r) *v(t)

p(t) = (8*107°)(=5,000e """ sin 10,000¢ +10,000e """ cos10,000¢)(20)(e """ sin 10,000¢)
p(=0.0001)=0.059w =59 mW

c) Find the energy stored in the capacitor at t=200 usec.

1
w(t) =—Cv?
(1) 5

w(t) = % (8#107°)(=5,000e """ 5in 10,0007 + 10,000 " c0s10,000¢)*
w(t =0.0002) =41.05 J
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6.5. Series and Parallel Capacitors

Circuits with multiple capacitors may be simplified by replacing a network of capacitors with one
equivalent capacitor. As will be discussed in this section, the parallel and series networks may be
replaced by their respective equivalent to simplify the circuit.

o,

% Serial capacitor network
This section covers the calculation of equivalent capacitor for a series capacitor network.

| tVi- +Vo- + Vp- I
> |

el —

oF

Original Circuit > v=v{ + Vo + ... + V V=

Ciji(t)dwrciji(r)dw....+Ciji(r)dt+ V(1) +v, (1) + v, (1)

1
Equivalent Circuit = v= C—Ii(t)dt +v ()

From the above two equations >

1 ¢, 1. 1 ¢, 1 ¢
C—J.z(t)dt+v(t0)=afz(t)dt+C—2Il(t)dt+....+C—nIz(t)dt+vl(t0)+v2(t0)+...+vn(t0)

equ

Therefore -

1 1 1 1
—_—=—t—.+— For series Capacitors
Cequ Cl CZ Cn

v, (t,) =V, (t,) +v,(t,) +...+v,(t,)  “Initial condition relationship”
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% Parallel capacitor network
This section covers the calculation of equivalent capacitor for a parallel capacitor network.

—-C; —=GC, -+ Gy v(t) = Cqq

=l + L+ ...+,

Ceq dv/dt = G4 dv/dt + Codv/dt + ... >

Ceq=C1+GCo+Cs+ ... for Parallel Capacitors

< Example — Application of Capacitor Network Simplification
The following capacitor network at time t0 is shown with the following initial condition. Find the

equivalent capacitor for the following network:

+ VS(t(i)|=4V -
02
Vi (to?=4V J: 3uF I5I uF V4(to;=2V J: 4 uF
+ +
v2(to2=7V ﬁ: 6 uF v5(to?=5V ——10uF
e b

Solutions

5, 8 and 6 uF capacitors are in series >

1
CequA —ﬁ—l“-MF
S+
5 3 6
VA(to) = V1(to)+ V2(t0)+ V3(t0)=7+4'4=7 \Y

4 and 10 uf capacitors are in series >

1
Cetu :ﬁ=2.9 ulF

410
Ve(to) = Va(to)+ vs(to) =7 V

Redraw the circuit as:
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+ +
Va(to)=7V —= 1.4uF ve(to)=7V ——= 29uF

o b
1.4 and 2.9 uF capacitors are in parallel >

Ceq=Ca+Cpg=1.4+29=430uF
Veg(to) =7 V

92

+

Ve(to)=7V == 4.3uF

o b
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6.6. Summary

% Relationships

Resistor, R Ohms

) t
A v(t) = R*i(t) (1) = %
/\/ B v(t)z . ) t
0 p(t)=——=i()'R w(r) = j p(D)dT +w(t,)
Inductor, L Henrys
di . 1
+ V(E) v(t) = L% i(t) = 7 j v(r)dT +1(t,)
A .o di() 1 .,
= = —
—’i ) p(t) = Li(t) o w(t) > Li~(t)
Capacitor, C Farads
PV i(t) = cd v(t) =lji(f)df +v(7))
C dt c o
i, pt)=C v(t)ﬂ w(t) Lo vi(t)
i(t) dt 2

% Simplification
Resistors

Series: R, =R +R,+..+R,

Inductors

Series: L, =L +L,+..+L,

lequ(to) = l1(to)= l2(to)=. =ln(to)

Capacitors

) 1 1
Series: — =

1,1 .1
equ Cl CZ Cn
Vequ(to) = Vi(to) + Valto) +.. + Vi(to)

Parallel:

1

1
Parallel: —=—+ +...+—

n

1
equ 1 LZ
iequ(to) = l1(to) + l2(to) +.. + In(to)

Parallel: C,, =C, +C,+...+C,

4

Vequ(to) = Vi(to)= Va(to)=.. =Vn(to)
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6.7. Additional Resources

% Nilsson, J. Electrical Circuits. (2004) Pearson.
Chapter 6.
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6.8. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.
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Chapter 7. First-Order (RL & RC) Circuits

Key Concepts and Overview

« Definitions
% Step Response of a First Order Circuit (RL & RC)
% Natural (Source-Free) of a First Order Circuit (RL & RC)

«» Additional Resources
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7.1. Definitions

Inductors (L) and capacitors (C) have the ability to store energy which means the relationships between
current and voltage in circuits with L and C are not linear algebraic as they were with only resistors (R).
Therefore, analysis of circuits with R, L and C will be discussed in two levels:

First Order Circuit — The circuit with only one storage element (C or L) and R is called first order
circuit since the equation describing the relationship between current and voltage is first order
differential equation. The first order circuit may be a RL circuit or a RC circuit. This chapter
introduces first order circuits. Instaneouse equation for given RL and RC circuits may be written
as a differential equation and solved as shown below:

5
Vs(t)
oY

-Vs +Ri+Ldi/dt=0

* Vs(t)
v(t)

e +Ri+ijidt:o
C
or

_ b, +R£+li=0
dt d C

Second Order Circuit — The circuits with both L and C present is a second order circuit which is
also refers to as an RLC circuit. This is called second order circuit since the equation describing
the relationship between current of voltage is 2™ order differential equation. This type of circuit
will be covered in the next chapter. Instantaneous equation for a given RLC circuit may be written
as a differential equation using KCL as shown below:
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R

IO
+ _——

Q:lﬁ+cff+ljwﬁ:0
dt L

R
or
_ 2
ld@ “)+Cd:+lv=0
R dt dt L

For any circuit with storage elements (C & L), finding the circuit response (output) requires understanding
the three distinct circuit phases (Start up, on-going operation and shutdown). The following three
responses match the three phases of a typical RC, RL or RLC circuit:

Step Response - Refers to circuit analysis and response when the power is first applied and
before the circuit has stabilized. The Step Response for first order circuits (RC and RL) will be
discussed in the next sections.

Steady State Response - After the circuit has been powered long enough for the circuit to
stabilize and long enough before the power is removed as not to impact operation, it is said that
the circuit is in Steady State. The circuit analysis in this phase is referred to as the Steady State
analysis and the output is referred to as the steady state response. During this state, the circuit is
operating in Steady State mode.

Natural Response - After the circuit power supply has been removed, the circuit is said to be in
Natural state (no external power). The Response from this type of circuit is referred to as the
natural response. The Natural Response for first order circuits (RC and RL) will be discussed in
this chapter also.
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Step Response Natural Response
“Circuit Response During Power Up” “Circuit Response During Power Down”

f—)% K_J%
f —_
—

Steady State Response
“Circuit Response (output) During Normal or Steady State Operation”

The remainder of this chapter introduces analysis of Step Response and Natural Response of RL and RC
circuits and associated first order differential eauations. Next chapter will repeat the analysis for RLC
circuits and associated second order differential equations. Finally, Chapter 9 covers the Steady State
Response.
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7.2. Step Response of a First Order Circuit (RL & RC)

Step response is the current and voltage that results when a source is connected to a circuit that has not
been powered long enough so that the energy stored in the inductor and capacitor is equal to zero. In
other words, the voltage across the capacitor equals zero and current through the inductor equals zero at
the time the power is connected to the circuit. The following diagrams are typically used to demonstrate

this concept.
R

o li(t) =0
g - +
R + L
< Lo wy Vs |/m> V()
Typical RC Circuit Typical RL Circuit
Step Response (t=0) Step Response (t=0)
Use Node Voltage and integrate: Use Mesh Current and Integrate:
di
Vs=iR+L—
R Vs %
v(t)=1,R+(Vy —I,R)e™* for >0 K0=§4(%—§}ﬂ”“ﬂrt20
Where: Where:

lp is initial inductor current (=0)

Vy is initial capacitor current (=0)
Circuit Time Constant T = L/R

Circuit Time Constant T = RC
i(t) it)

V4R
(1- 1/%) V4R

Is/e
2
Is/e i i
0 T 2t 3t 0 t© o2t 31
v(®) v(®)
IsR v
(1- 1/6%) IR s
1-1/e) IR
( ) Is Ve
3 t Ve t
0 T 2t 3t
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o,

% Observations

» As the power is applied to the capacitor, initially, it appears as a short and then after a long time
(>>T) it will appear as an open.

» As the power is applied to the inductor, initially, it appears as an open and then after a long time
(>>T) it will appear as a short.

> Typically t=0is used to refer time just before 0 and t=0" is used to refer time just after time 0.

» Although the typical RL and RC circuits shown above are simple, from earlier chapters, it is
understood that any first order circuit may be simplified to the typical circuit form:
= Any RL circuit may be simplified to the typical form shown, by finding the venin’s equivalent
with respect to inductor’s terminals.
= Any RC circuit may be simplified to the typical form shown above by finding the Norton
equivalent circuit with respect to capacitor’s terminals.
< Examples — First Order Circuit Step Response
For the following circuit:

5kQ

-0 l i(t)

400 mH
+ YoV
<> < 10kQ

Switch has been open for a long time before the switch is closed at t=0. Calculate the value of i(0),
i(0%). Find the equations for i(t) and v(t) for t > 0.

Solution
t=0" refers to time just before the switch is closed or T->0 from the negative side. v(0') refer to
voltage after the circuit has been in the following configuration for a long time.

A

20 V 400 mH

Which means the inductor does not have any energy 2 i(0) =0V
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t=0" refers to time just after the switch is closed since At = {(t=0") — (t=0")} = 0 and it physically not
possible for inductor current to change instantly, we can conclude that i(0*) = i(0) =0 V

To Calculate i(t) for t>0, draw the circuit with the switch closed:
5k a
+

400 mH
20 V v(t
0 < 10kQ 0

At this point we have a choice to either derive the differential equation for this circuit or get the circuit
to the typical circuit which we have the solution for. The easier method is to find the Thevenin
equivalent of the circuit with respect to terminals a and b.

Rth can we found by deactivating the voltage source (short) which reduces the circuit to:

A

.m

Ren = (5] 10) = 3.3kQ

To find Vth or Voc, use the following circuit which is simply a voltage divider.
5k a
—e

Voc
20 V
< 10kQ

Voc=20*10/(10+5)=13.3V

Now that we have Thevenin equivalent, apply it to the original circuit at t>0 which results in the
following equivalent circuit
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3.3 kQ

a
+
+
<D13.3 v 400 mH v(t)
b —
@

With the above circuit, the Step Response equation derived for typical RL circuit can be used in this

problem:
Vs =iR+ Lﬁ
dt
i(r) = [1 —%je_(m“’for t>0
(1) = 333 (O 3 133 .33)6_(3300/0.4)th’, £>0

i(t)y=4—4e " Afor 20

vty = LD Z 0 4% 4582500 for 130
t

v(t) =19300e 2"V for t=0
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7.3. Natural (Source-Free) Response of a First Order Circuit (RL & RC)

When the circuit has been supplied by a source for a long-time such that the circuit is in steady state and
then the source is removed, the response is called a Natural Response. In other words, Natural response
is the currents and voltages that result from discharge of stored energy is the inductor and capacitors.

The following section uses a typical RL and RC circuit to derive the relationship for Natural Response.

Typical RC Circuit Typical RL Circuit
Natural Response (i20) Natural Response (20)
Using Node Voltage & Integrate: Using Mesh Current & Integrate:
dv v di .
C—+—=0 L—+iR=0
dt R dt
v(t) =v(0)e ™" for t=0 i(t) =i(0)e ™ ™" for t>=0
Where: Where:
Circuit Time Constant T = RC Circuit Time Constant T =L/R

2t ot 0 1t 2t &t

®,

% Examples — First Order Circuit Natural Response
For the following circuit:
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>0 1

15V 200 uF =— Ve (t)

212kQ

\
Switch has been in position A for a long time. At the time t=0, the switch is moved to position B, find
i(t) for t >0.

Solution
First calculate the Initial condition v¢(0). C has been energized for a long time, therefore the C will
appear open. The circuit can be redrawn as shown below just before the switch is moved:

15V Ve(t 12k

ve(0)=15*12/ (8 + 12) = 9 V Initial voltage of the capacitor.

At time t > 0, after the switch has been moved to Position B >
Our goal is to simplify the circuit to be the same as the typical RC circuit so that we can apply the
equations derived.

. Vi

Combine the resistors >
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.o ]
_
200 uF —— Vq(t)
c 48K0
koL > 02%e 4 Ve
dt 4800

Apply the natural response equation dt R
v(t) =v(0)e " for t>0

v(t) =9 for t>0
V(t) 3 9e—t/.96

i()=—2
= = 1800

for t=0
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7.4. Summary

Step Response of a First Order Circuit (RL & RC)

Typical RC Circuit
Step Response (t=0)

Use Node Voltage and integrate:

Cﬂ+lzlv
d R

v(t)=I R+ (V, =1 R)e™"* for 120

Where:
V, is initial capacitor current (=0)
Circuit Time Constant T = RC

v(t)
IR
(1- 1/e®) IR
(1- 1/e) I,R

(1- 1/%) V4R

Typical RL Circuit

Step Response (t=0)

Use Mesh Current and Integrate:

Vs =iR+Lﬂ
dt

Vs V.
i)=—+| 1, ——= e ®'D" for >0
() R (0 Rj f

Where:
lp is initial inductor current (=0)

Circuit Time Constant T = L/R

i(t)
A
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o,

< Natural Response of a First Order Circuit (RL & RC)

R X L,

i )
t=0 * t=0 *
L

+ \Vin v(t) R l Isc R, i R
S A < & vy >

Typical RC Circuit Typical RL Circuit
Natural Response (20) Natural Response (20)
Using Node Voltage & Integrate: Using Mesh Current & Integrate:
d di
cZ+l=0 LY+ iR=0
dt R dt
v(t) =v(0)e " for t>0 i(t)=i(0)e " for t>0
Where: Where:
Circuit Time Constant T = RC Circuit Time Constant T =L/R

T ot 0 t© 2t 3t

o,

% Process of determining Step and Natural Response

1) Decide if the circuit has Step Response (includes at least one source) after the change or the
circuit has Natural Response (No Source). Select the appropriate typical circuit & associated
solution.

2) Calculate initial conditions (After a long time of constand voltage and current settings).
(Inductor is short or v (t5)=0 ; Capacitor is open or ic(tp)=0)

3) Use the standard solution form for your circuit to calculated v(t) and i(t) for t>t,.
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7.5. Additional Resources

% Nilsson, J. Electrical Circuits. (2004) Pearson.
Chapter 7.
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7.6. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.
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Chapter 8. Second Order (RLC) Circuits

Key Concepts and Overview

% Overview

% Parallel RLC Circuit Step Responses

% Parallel RLC Circuit Natural Responses
% Series RLC Circuit Step Responses

% Series RLC Circuit Natural Responses
% Summary — General Form

+ Additional Resources
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8.1. Overview

This chapter is focused on RLC circuit which includes at least a capacitor, an inductor and a resistor.
Techniques such as KCL, KVL and their extensions from earlier chapters will be used to analyze the RLC
circuit. The resulting equations for RLC circuit step and natural responses will be ordinary second order
differential equations. The word ordinary implies the all derivatives are with respect to one variable which
is time, t.

It is understood that not all ordinary differential equations have analytical solution (mathematically
solvable). In many cases numerical techniques and aid of computer programming will be required to
approximate the answer. In this chapter the analyzed circuits will be limited to pure series or pure parallel
RLC circuits which ensure the resulting differential equations are of the following form:

2
d f+2aﬁ+w§x=0
dt dt

This differential equation form is known to have analytical solutions consisting of linear combinations of
Ke®. Differential equation solutions are typically found by using the known differential equations and
solutions form. The specific solutions to a differential equation can be found by plugging the known
archetype solutions into to differential equation to find the specific solutions. The initial condition values
of x(t) and dx/dt are used to find the associated constants and parameters.

The following derivation uses the technique described above to find the specific solutions to the earlier
general differential equation using the archetype solutions, x(t)=Ke™:

Ks’e” +20Kse” +w;Ke” =0

Ke® is factored out.

Ke* (s> +2as+w;)=0

It is known that Ke®'#0 for all finite values of t. Therefore, both sides can be divided by Ke®, resulting in
the following quadratic equation:

s +2as+w; =0
Solving the above quadratic equation >

s=—ata’ —w,

Therefore response, x(t), may be written as:
x(t)=X, + K" + K,e™ Where:

Characteristic equation is {s° + 2as +w; =0}

s; and s, are the characteristic roots, also referred to as the complex frequencies. They
describe the mathematical character of the system.

s, =—a+a’ —w; rad/sec
2 2
§, =—0—+a” —w,; rad/sec

a is the neper frequency, also referred to as the damping coefficient or factor. The name is
derived from the fact that x(t) is damped equal to e °.

wy is the resonant radian frequency, also referred to as the undamped natural frequency.
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wy is the damped radian frequency, and is defined as: w, =+/w, —&” rad /sec

X; is the time independent portion of x(t) and also referred to as the final value. The name “final
value” means that as t approaches infinity, X is the only non-zero portion of x(t). In other
words, X; = X(«).

K, and K; are constants that are calculated using the initial condition of x(t) and dx/dt.

Depending on the relationship between wq and a, the response, x(t), may be Overdamped ((.1)02 < 0(2),
Critically damped (wo” = o), or Underdamped (w,® > o). More information on each of the three circuit
types are presented below:

> x(t) is Overdamped if wy’ < o®
o s1 and s2 will be both real and distinct.
o X(t) approaches final value without oscillation

x(t)

\ Final Value, X;
o

o Response may be rewritten as:
x(t) =X, +Ae" +Ae™

> x(t) is Critically damped if w,’ = o’
o s1 and s2 will be both real and equal.
o X(t) is on the verge of Oscillating about its final value

x(t)
Final Value, X; i

o Response may be rewritten as:
x(t)=X, +Djte™ +D,e”™

> x(t) is Underdamped if wy’ > o®
o s1 and s2 will be both complex and conjugate of each other.
Note: (a+jb) is conjugate of (a-jb); conjugate means j is replaced by —j.
o X(1) oscillates about its final value
x(t)

/\p  Final Value, X
vy

o Response may be rewritten as:
x(t)= X, +Be ™ cosw,t+ B,e “ sinw,t

The remainder of this chapter focuses on application of the above mathematical model to Step and
Natural responses analysis of the following specific circuit types:
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Parallel RLC Circuit Step Response
Parallel RLC Circuit Natural Response
Series RLC Circuit Step Response
Series RLC Circuit Natural Response

Eal e

The steady state RLC circuit response will be covered in chapter 9.
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8.2. Step Response of a Parallel RLC Circuit

This section introduces the Parallel RLC circuit and step response analysis. At time, t=0, the switch is
opened which means current starts to flow to the RLC part of the circuit. For this analysis, it is assumed

that energy stored in C as represented by voltage, V, and the energy in L as represent by current, |, are
both equal to zero at t=0.

'Q) to’%\ ICCDlZZ ?/0 IL %g llo I;b v(t)

Apply KCL >

ic+i, +i,=1
t
Cﬂ+ljvdt+lzl
dt Ly R

differentiate and re—arrange
d>v 1 dv 1

5 + —+ v
dt~ RCdt LC

2
d f+20{ﬂ+w§x=0 >
1 dt

Comparing the above equation with the characteristic equation:

a =

rad /sec Neper Frequency

1
W, = c rad/sec Resonant Radian Frequency

w, =@, —a&’ rad/sec Damped Radian Frequency
s, =—a+a —w; rad/sec Characteristic Root or Complex Frequecy 1
s, =—a—+a’ —w;, rad/sec Characteristic Root or Complex Frequecy 2

Depending on the relationship between wg and a, the response “output voltage, v(t)” may be

Overdamped (wo’ < of), Underdamped (w,® > o®) or Critically damped (wo’ = a®), one of the following
three types:

Overdamped (@, < &’ ) = v.(t) = V,+Ae" +Ae™

Critically Damped (@ = *) = v (t) = V,+Dte™™ +Dye™

Underdamped (@, > 0*) = v (t) =V, + Bie™ cosw,t + B,e™ sinw,1
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Overdamped (@) <o’) =i, (1)=1, +A e +A e
Critically Damped (@, = &*) =i, (t) = I, + D/te™™ +D, e

Underdamped (@ > o*) =i, (t) =1, + B/e ™ cosw,t+ B, e ™' sinw,t

Where:
e Ay, A, B, By, Dy, Do, Af, Ay, B, By, Dy, D, coefficients can be found by using the initial
conditions:
o For voltage use v(0") =V, and dv(0*)/dt which are derived from the capacitor
voltage.

o For current use i(0"), =l, and di(0%)/dt which are derived from the inductor current.
e V;is the value of voltage source or the capacitor voltage as t approaches infinity.
e Iiis the value of current source or the inductor current as t approaches infinity.

In summary, the following four steps may be used to find v(t):

Find roots of Characteristic equation using R,L & C value.

Decide if the circuit is over damped, under damped or critically damped.
Find v(o") and dv(0")/dt using circuit analysis

Find Coefficients of v(t) using initial Conditions.

—_— — — ~—

(1
(2
(3
(4
Similar approach may be used to find the expression for i(t). Additionally, this process is applicable to
all 4 types of circuits discussed in the chapter.

Example — Parallel RLC Step Response
For the following circuit where the switch is opened after a long time.:

2 mA<¢> to% C=20 nifc l:: SL/O 5ianHl g llo i;b v:t)

Find:
a) Range of R values such that the circuit is underdamped, overdamped and critically damped.
b) Expression for i (t) when t = 0 and R=250 Q.

Solution
a) Range of R values such that the circuit is underdamped, overdamped and critically damped
1 25x10°
a= =227 ad i sec Neper Frequency
2RC R

1
W, = c =10’rad /sec Resonant Radian Frequency

Conditions for each type of circuit response are listed below:
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625x10"
2

Overdamped(@; < o) = 10" < = R* <625x10> = R < 250Q

625x10"
2

Critically Damped((a)g =a’)=10" = = R=250Q

= R? > 625x10*> = R > 250Q

12
Underdamped(a)g >a’)=10" > %

b) Expression for i (t) when t = 0 and R=250 Q
Based on Calculation in part a, the circuit is critically damped for this value of R. Therefore, the
Critically damped current equation for the circuit may be used:

Critically Damped(@; =) =i, (t) =1+ Dlvtefa’ + Dzye_“"

| is the final value of Inductor current which would the same as the source current of 20 mA
therefore:

l- (t) _ 0 02 + D 'te—l()()()()()t + D 'e—100000]t
L -V 1 2
Now, need to find the values of D1 and D2’ using the initial conditions

There is no energy stored in inductor prior to opening the switch = 1.(0%) =0
initial voltage of the capacitor is zero therefore it will after switch is closed

Ldi di
y="20 o S 07y =0
dt dt
Apply the initial conditions to the characteristic equation.
i, (0+)=0.02+ D, =0= D, =—-0.02

%(04_) — Dle—IOOOOOt +Dlt(_105 )e—IOOOOOt + D2 (_105 )e—IOOOOOZ — O = Dl' — 2,000
t

therefore
iL (t) =0.02 + 2,0006_100000' _ 0.02te_100000'

It is recommended that the reader plot the i (t) to see an example of critically damped signal.
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8.3. Natural Response of a Parallel RLC Circuit

This section introduces the Parallel RLC circuit natural response analysis. At t=0, the source is removed
from the circuit which means the energy stored in L and C will be powering the circuit. For this analysis, it
is assumed that energy stored in C as represented by V, and the energy in L as represent by ..

| T
CT \ Lgl Re v(t)

ic+i, +ip, =0
dv
dt

1 t
C +—jvdt+10 +2=0
Ly R

differentiate and re—arrange

d*v 1 dv 1
S ——+—
dt RC dt LC

2

X dx
+2a—+wix=0 >

Comparing the above equation to the characteristic equation: — 4
t t

o=

rad /sec Neper Frequenc
2RC 14 q y

!
w, = c rad /sec Resonant Radian Frequency

wd =\/@; —a’ rad/sec Damped Radian Frequency
s, =—a++a’ —w, rad/sec Characteristic Root or Complex Frequecy 1

s, =—a—+ &’ —w, rad/sec Characteristic Root or Complex Frequecy 2

Depending on the relationship between wg and a, the response “output voltage, v(t)” may be

Overdamped (wo’ < of), Underdamped (w,> > o®) or Critically damped (wo’ = a®), one of the following
three types:

Overdamped(@] <a’) = v(t)= A" + A,e™
Critically Damped((w; = &”) = v(t)= D te ™ + D,e ™

Underdamped(@; > ) = v(t)=B,e ™ cosw,t + B,e ™ sinw,t
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Overdamped(@, < &*) =i, (t)=A'e" + A, e™
Critically Damped((w; =&*) =i, (t)=D,'te ™ +D,'e”™

Underdamped(@; > a*) = i,(t)=B,'e “ cosw,t+B,'e”* sinw,t

Where:
e Ay, A, B, By, Dy, Do, Af, Ay, By, By, Dy, D, coefficients can be found by using the initial
conditions:
o For voltage use v(0%) =V, and dv(0*)/dt which are derived from the capacitor
voltage.

o For current use i(0"), =l and di(0%)/dt which are derived from the inductor current.

< Example — Parallel RLC Natural Response
For the following circuit, source has been removed at t=0 after a long time of being connected.

ic l . iLl o iRl
20nF o 5 mHg l 2.5 kﬂe v(t)

a) Determine the response type.
b) Find the equation for v(t) during t>0 with initial conditions V(=0 and l,=-10 mA at t=0.

Solution
a ) Determine the response type
1 25x10°
a= = >x10 =10*rad /sec Neper Frequenc
2RC 2500

1
W, = c =10’ rad /sec Resonant Radian Frequency

Conditions for each type of circuit response are listed below:
Since @} > &’ = Underdamped circuit

b) Find the equation for v(t) during t>0 with initial conditions V(=0 and lp=-10 mA at t=0.
Since @, > &’ = Underdamped circuit = v(t) = B,e™™ cosw,t + B,e ™ sinw,t

w, =@ —a® =410 —10° =10"y/99 =99498.7 rad /sec

Att=0" >
v(0") = V, = 0 voltage across the capacitor is 0
Capacitor is a short therefore 14(0")=-i_(0%)=-lp = -10 mA = dv(0%)/dt = i;(0%)/C = -5x10°

Apply the above initial conditions to v(t) to find By and B,
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v(0")=Be ™ = B, =0

dv(t . o o -
:l( ) _ —Bw,e”“ sinw,t+ B, (—a)e ™ cosw,t + B,w,e " cosw,t+ B,(—a)e ™ sinw,t
t
dv(0”
V; ) _ B,(=5x107) = 99498.7 = B, = 0.2
t
Therefore

v(t) = —0.2¢ """ 5in99498.7¢ V for t> 0
It is recommended that the reader plot the i (t) to see an example of Underdamped signal.
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8.4. Step Response for Series RLC Circuit

This section introduces the Series RLC circuit step response analysis. Attime, t=0, the switch is closed
which means current starts to flow to the RLC part of the circuit. For this derivation, it is assumed that
energy stored in C as represented by v, and the energy in L as represent by |,.are both equal to zero.

KVL =
Vetv, +v, =V

ljidt+10+Lﬂ+1fei:V
c’ dt

differentiate and re—arrange

di Rdi 1

> Ldr LC

2
Comparing the above equation to the characteristic equation:

d
f+2a—x+w§x=0 >
dt

R
a= LY rad /sec Neper Frequency

1
W, = Ic rad /sec Resonant Radian Frequency

w, =@, —&” rad /sec Damped Radian Frequency
s, =—a++ &’ —w, radlsec Characteristic Root or Complex Frequecy 1
s, =—a—+&’ —w, rad/sec Characteristic Root or Complex Frequecy 2

Depending on the relationship between wg and a, the response “output voltage, v(t)” may be

Overdamped (wo’ < of), Underdamped (w,> > o®) or Critically damped (wo’ = a®), one of the following
three types:

Overdamped (@) <o) = i(t) =1, + Ae™ + Ae™
Critically Damped (@, = &) = i(t) = I, +Dte™™ +D,e™

Underdamped (@, > &*) = i(1) =1, + Bie™™ cosw,t + B,e™ sinw,t

Fundamentals of Electrical Circuits, V3.6 Page 172



Overdamped (@) <a’) = v (1) =V, + Ale + A e
Critically Damped (&} = a*) = v (t) = V. + Dlvte_m + Dzve_m

Underdamped(@; > &) = v (t) =V, + B e ™ cosw,t+ B, e “ sinw,t

Where:
e Ay, A, B, By, Dy, Do, Af, Ay, By, By, Dy, D, coefficients can be found by using the initial
conditions:
o For voltage use v(0") =V, and dv(0*)/dt which are derived from the capacitor
voltage.

o For current use i(0"), =l, and di(0%)/dt which are derived from the inductor current.
e V;is the value of voltage source or the capacitor voltage as t approaches infinity.
e Iiis the value of current source or the inductor current as t approaches infinity.

®,

% Example — Series RLC Step Response

For the following circuit where the switch is closes at time t=0 after being open for a long time with no
stored energy:

2.5kQ 40 mH
X IaVAVAY

«
Vi=2v | =0 5

M v C= vo

a) Find the minimum value C to the nearest uF so that this circuit is overdamped.
b) Find the expression for vg(t)

Solution
a) Find the minimum value C to the nearest uF so that this circuit is overdamped.
R 2500
=——+—=231250 rad /sec Neper Frequency
2L 2%0.04

JLC 1{— rad /sec Resonant Radian Frequency

Overdamped when @, < o’

25 <(31250)> = C >2.56x10"° = C,,,, =1 uF

b) Find the expression for vg(t)
We know the circuit is overdamped therefore

Overdamped(@} < o) = v (1) =V + A, e" + A, e"" where V=2V.
Since no energy is stored in the circuit both Vc(0™) and dv.(0%)/dt = 0 =
ve(0")=2+A +A, =0

dv o (0)/dt =2+ A, s, +A, s, =0

Calculate Characteristic roots s; & ss:
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-6

5, =~ —Ja’ —w, —31250+\/312502— 25 _ _402.6rad /sec

B 1210
5, =~ —Ja? —w =—-31250 - \/312502 - le3_6 = 62097 .4rad | sec

Substitute and solve for A;" and A’:
A +A =2

—402.6A, —62097.44, =-2
2> A/=-2.013 and A,’=0.013

Therefore:
0verdamped(a)§ < a’z) = Ve ®H=2- 2.013e %020 4 ().0]3¢ 020974
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8.5. Natural Response for Series RLC Circuit

This section introduces the series RLC circuit natural response analysis. At time, t=0, the switch is open
which means current start to flow to the RLC part of the circuit. For this derivation, it is assumed that
energy stored in C as represented by v, and the energy in L as represent by |,.

Vet+v, +v, =0

di 1%, .
L—+—idt+V,+Ri=0
d Cy
differentiate and re—arrange
d’i Rdi 1
—t+——+—i=
dt~ Ldt LC

2

X dx
+2a—+wix=0 >

Comparing the above equation to the characteristic equation: P 4
t t

R
o= by rad /sec Neper Frequency

!
w, = c rad /sec Resonant Radian Frequency

w, =+ @, —a&’ rad/sec Damped Radian Frequency
s, =—a++a’ —w; rad/sec Characteristic Root or Complex Frequecy 1
s, =—a—+a’ —w; rad/sec Characteristic Root or Complex Frequecy 2

Depending on the relationship between wy and q, the response “output voltage, v(t)” may be
Overdamped (wo’ < a®), Underdamped (w,° > o) or Critically damped (wo” = o), one of the following
three types:

Overdamped (@, < a’) = i(t) = Aje™ + A,e™
Critically Damped(@; = ) = i(t) = D,te™™ + D,e™™

Underdamped(@; > &*) = i(t) = Bje™™ cosw,t + B,e ™ sinw,t

Overdamped (@} < a*) = v (1) =A'e" +A,'e™
Critically Damped(@; = ’) = v.(t)=D,'te * +D,'e™™

Underdamped (@, > a’) = v.(t)=B,"e ™ cosw,t+B,'e ™ sinw,t
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Where:
e Ay, A, B, By, Dy, Dy, Af, Ay, By, By, Dy, D, coefficients can be found by using the initial

conditions:
o For voltage use v(0") =V, and dv(0*)/dt which are derived from the capacitor
voltage.

o For current use i(0%), =ly and di(0*)/dt which are derived from the inductor current.

% Example — Series RLC Natural Response
For the following circuit the initial current through inductor is 10 mA and initial voltage through the
capacitor is 5 volts at time t=0.

If R=40 kQ and C=2 nF, what value of L ensures that the circuit is critically damped.
Solutions

azizmmd/sec

2L L
8
W, = /L = "5x10 rad / sec
LC L

For critically damped RLC circuits 2 wy’=a® >

(20000)2 _5x10°
L L
L= 4 =08 H
5
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8.6. Summary

This section summarizes all four type of RLC circuit Reponses into a general form where x(t) may be
current or voltage signal. To use the equation here, simply apply the appropriate initial conditions to find

the constant and circuit parameters.

The general equations describing the circuit and its behavior:
2

L . X dx 2
> Characteristic equation: —-+ 20{7 +w, x=0
t
> Complex Roots (rad/sec.): s,, =—«& Hja® - wo2 =-atjw,
» Neper Frequency (rad/sec.):
1
e o= for Parallel RLC
C
R :
e o =— for Series RLC
2L
1
> Resonant Radian Frequency rad/sec.): w, = f
> Damped Radian Frequency (rad/sec.):w, =/w,

The following table summarizes the responses of all RLC circuits discussed in this chapter:

Critically Damped
w,” = o
X(t) is on the verge of

Overdamped
w, <a’
X(t) approaches final value
without Oscillation.

Oscillating about its final value.

Underdamped
‘saf
X(t) oscillates about its final value.

Natural Response

x(t)=Ae" + Ae™ x(t)= (Dt + D,)e™™ x(t) = (B,cosw,t+ B, sinw,t)e ™
Coef .Cal. Coef .Cal. Coef .Cal.
x(0)=A, +A2 x(0)=D, x(0) = B,
dx(0) dx(0) dx(0)
2 =A;s, +A,s, % =D, —-aD, g =-aB, +w,B,
Step Response (X;,is Source Value)

x()=X, +A'e" +A,'e” x(t)=X, +(D,'t+D,")e ™

Coef .Cal. Coef .Cal.

x(O):Xf+A1’+A2’ x(o)zxf+D2'

ax(0) _ ., \ dx(0) , ,
& =A's, tA)'s, 0 =D,'-aD,

x(t)= X, +(B,'cosw,t + B,'sinw,t)e™
Coef.Cal.

x(0)=X s+ B'
dx(0) , ,
0 =-aB,'+w,B,
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8.7. Additional Resources

% Nilsson, J. Electrical Circuits. (2004) Pearson.
Chapter 8.
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8.8. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.
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Chapter 9. Sinusoidal Steady State Analysis

Key Concepts and Overview

% Sinusoidal Source & Steady State Response

% Root Mean Square (RMS) Value and Total Response
% Phasor Domain Definition

% Passive Circuit Elements in Phasor Domain

% Phasor Domain Circuit Analysis Techniques

% Phasor Domain Circuit Analysis Exercises

+ Additional Resources
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9.1. Sinusoidal Source & Steady State Response

In the last two chapters, circuits with R, L and C were introduced and analyzed for their performance
during turn on phase (Step Response) and turn off phase (Natural Response). This chapter focuses on
the steady state operation phase. The steady state phase starts after turn on phase has stabilized and
before impact of turn off phase has affected the circuit operation.

Further in this section, all sources are assumed to be sine or cosine functions which are generally
referred to as the sinusoidal sources and general forms of RLC circuits are analyzed in their Steady
State. The output under these conditions is referred to as the Sinusoidal Steady State Response.

Sinusoidal source can be expressed either as a cosine or as a sine since Cos (x) = Sin (x — 90°). In
Electrical Circuit analysis, the general Sinusoidal source is typically represented by Cosine as shown
below:

v(t) = Vi, cos(wt + ¢) for Sinusoidal Voltage Source
or

i(t) = I, cos(wt + ¢) for Sinusoidal Current Source

where:

» w = angular frequency in radian/second
w=2n/T where T =1/f period in seconds
w= 2nxf where f=1/T is the frequency in Hertz(cycles/second)

“degree = radian * 180/x”

t is time in seconds.
Im and Vm are maximum amplitude of current/voltage also called peak value.
0 is the phase shift which is basically a measure of dt, the distance from t=0 of the start of
the period.
e Meaning of sign of ¢

(1) If >0 the signal is shifted to the left

(2) If 0<0 the signal is shifted to the right
e Relationship between ¢ & dt

¢= (dt * w) radians which is the phase shift in radian or dt = ¢/w which is shift in time in
seconds.

YV VYV

It is common to express “w” in radians/sec and “¢” in radians since the process requires
less conversions than if degrees were used instead of radians.
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Below is a diagram of typical generalized sinusoidal signal, x(t) = X, cos(wt - ¢):

X(t)
A

/

A
—
v

+Xm

[
»

dt =o/w

A Sinusoidal signal is completely defined when its frequency, maximum amplitude and phase angle is
given or can be derived from the available information.

» Example — Sinusoidal Signal
Write the Sinusoidal signal equation for the Following x(t) function:

NN

.01 sec.

.08 sec

-15

Solutions:
Phase shift = dt * (2m/T) = 0.01 * (21/0.08) = 1/4 rad
DC offset = (Max + Min)/2=0V
Radial Freq = w = 2mf = 211/T = 211/0.08 = 2517 rad/sec

x(t) = 15 Cos(251t - 1/4) V
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» Example — Sinusoidal Signal
Write the Sinusoidal signal equation for the Following x(t) function:

X(t)
A <«— 0001sec —

ANVA

»
»

.0004 sec

Solutions:
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9.2. Root Mean Square (RMS) Value and Total Response

Before focusing on steady state response analysis, it is important to consider two other type of analysis
for circuit with sinusoidal signals (RMS and Total Responses).

Root Mean Square (RMS) Value is such named because it is calculated by taking the square root of
averages of the squared signal value over a single period as shown below.

J2v

1 t0+T R R V
Vims = |— |V cos”(ax + ¢)dt = = = ——™ for Sinusoidal voltage onl
J ; I 1 o’ (@1 + gt == === ge only

t0+T
I 21
Irms = \/? J-I,i cos’(ax + @)dt = = = \/_2 = for Sinusoidal current only
10

NG

RMS value is useful in understanding the voltage, current and power equivalent of the sinusoidal signal
as if it was a constant DC voltage and current. It is commonly used to calculate average power delivered
by the sources or absorbed by an element.

The following trigonometry equalities are used to prove that RMS value of a sinusoidal signal is

m .

Xrms = —2
V2

e sin’ + cos’x=1

e Cos(x+y) =CosxCosy — Sinx Siny

e cos(2x) = Cos®x — sin®x

e Cos’ = Y5(cos(2x) +1)

Another concept to consider is the Total Response. Total Response includes a transient portion and a
steady state portion. As the name implies transient portion goes to zero after the circuit has been in
operation for some time. On the other hand the steady state portion will continue to present until the
source has been removed.

An example is the best way to demonstrate the concept. For the following circuit find the total response,
i(t) for t> 0.

Given:
* Initial State Energy is 0 at t=0
* Vs =VmCos(wt +¢9)

t=9< R\F

Vs

Fundamentals of Electrical Circuits, V3.6 Page 184



L% + Ri =VmCos(wt + @)
t

Solving theabove DFQ

—Vm
VR> +w’L
The total response includes:

e Transient response (first term) which reduces in magnitude over time

cos(¢— @)e K’V

i= cos(@—B)e™ P + cos(wt+¢—0)  Where@=tan"' (wL/R)

Vm
NR? +w?l?

m
VR + WL
e Steady State Response which is periodic therefore will not diminish over time
Vm

VR + W}
where:

(1) Output signal Frequency is the same as input signal frequency (w).

Vim
VR? + w'I?
amplitude is Vm.

(3) The phase angle of the output will generally be different from the input signal unless
the circuit is purely resistive (no inductors or capacitors)

Transient response of i(t)=

Steady State Response i(t) = cos(wt+¢—0)

(2) Maximum amplitude of response is when input maximum

R/

% Example — Total response
The Voltage applied to the circuit shown below at t=0 is 20cos(800t + 25°) where the Initial current is

0 at t=0.
t=9< R=80 Q
s\
—>
I(t) L=75mH
Vs

Find the Total Response i(t) and identify its transient and steady state response:

Solution
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Vs = VmCos(wt +¢) = 20cos(800f +25°) = Vm =20, w =800, ¢ =25"
6 =tan'(wL/R) = tan " (800 *0.075/80) = 36.9°
—Vm Vm
i=—————cos(g— e ' + ———
VR +w'I? VR +w'I?
i =(—0.2)(cos(25—36.9)e """ +(0.2) cos(8007 + 25 —36.9)
i =.196e™%%"" £ 0.2c0s(800f —11.9°)

cos(wt +¢@—6)

Therefore:
Transient Response for i(t) = 0.196¢ '
Steady State Response for i(t) = 0.2cos(800r ~11.9°)

As we discussed earlier, the resulting differential equation may be difficult or not possible to solve directly
in order to obtain the total response. Since the transient response is only of interest during the initial start
up phase, it will not be needed in steady state analysis which is the most common circuit analysis .

In the following section, Phasor or Frequency Domain analysis will be introduced for calculating the
steady state response of arbitrary RLC circuits without needing to use differential equations. Phasor
Domain analysis enables the use of algebra to find the RLC steady state circuit response.
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9.3. Phasor Domain Definition

All the previous analysis has been in time domain where the independent variable is time. In this section,
Frequency or Phasor Domain will be introducing where time is not part of the equation. But before
starting the circuit analysis in Phasor domain, it is important to introduce and review a number of key
concepts.

Start with some basic trigopnometry equalities which are commonly used in analysis:

e Euler’s identity is foundation of the transformation.

+j0 -jé +j6 -jé
+ —_
=Cos0@ =t jSin@ or Cos@—Te or Sing=%—"¢

e Real and Imaginary part of complex number (')
Real Part = R(e’?) = CosO
Imaginary Part = 3(e’?) = Siné

With the above information, It is time to introduce Phasor transformation. By applying Euler’s identity, the
sinusoidal signal may be rewritten as shown below:

v(t) =V, Cos(wt +¢)=\/,n93{e'f(W’+¢)} V 9?{6”’6”’} 9?{\/ e’e ’W’}

In this chapter, only linear RLC circuits are analyzed which means the circuit frequency is the same for all
input and output. So in the Phasor Domain, there is no need to carry the e (it is implied) therefore
Phasor representation of the sinusoidal signal may be written as V.,€'®. In other words, the Phasor
representation of VmCos(wt+¢) carries the phase angle and amplitude information. In other words, the
frequency is assumed to be “w” and is not explicitly shown in the Phasor representation of the signal.

P[x(t)] is the notation used to indicate Phasor transformation of x(t) which is shown below:
Phasor Transform or Phasor Representation = P[VmCos(wt + ¢)] =V e’

This transformation transfers the sinusoidal function from the time domain to the complex number domain
which is also called the Frequency or Phasor Domain since now the response mainly depends on phase.

In Phasor domain, Phasor variables are shown as capital letter and may be presented in one of the
following three accepted Phasor representations:

e PolarForm: V=V ¢/
e Rectangular Form: V =V Cos¢ * jV Sing

Note: conversion between Polar and rectangular form uses '’ = Cos@ % jSiné

e Angular Form: V = Vm|¢°
Note: Angular Form is a variation of Polar Form.

In all three formats, the maximum amplitude (Peak value) and phase are present. Of course the
frequency is the same as w (implicit in the Phasor Transformation). It may be useful to revisit Unit Circle
and Complex Coordinate systems in order to show the relationship between the three Phasor forms:
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Imaginary Axis
Sin(0) Vi,
% » Real Axis
Cos(0)
Radius=1
Polar & Angular Form on Rectangular Form on
Unit Circle Complex Rectanaular Coordinate System

So far, transformation from Time to Phasor domain has been shown. The inverse transformation may be
represented by the following notation and relationship:

PV, ey =RV /e )=V Cos(wt +9)

The benefit of Phasor domain is that it simplifies analysis of circuit in steady state mode with sinusoidal
input. This simplification is the result of the fact that Phasor domain only requires solutions to algebraic
equations instead of the more complex differential equations.

Proper use of Phasor and Time domain dictate that analysis must be completed either fully in Time
domain or fully in Phasor domain. It is incorrect to mix the two on the same circuit analysis. All the
analysis techniques such as Kirchhoff's Laws and associated methods apply to the Phasor domain in
much the same way as they did to the Time domain analysis.
< Example - Phasor transformation

Find time-based equation and Phasor transformation for the Voltage v(t) signal:

y
6.2V

v

Solution:

Form the above diagram, it is observed that:
Maximum voltage, V,, = 6.2 V
Period, T =10 msec -> Linear frequency, f=1/T =100 Hz >
Radial Frequency, w = 2xf = 2n/T = 200% radians/Sec.
dt =-1 msec > @ = w*dt =2007*(-10°)= -1/5
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Therefore the Time domain signal may be presented as:
v(t)=V,,Cos(wt + @) = 6.2C0s(200nt -n/5) = 6.2C0s(2007t — 7/5)

Phasor Representations are:

: -i%)
Polar Form: V =V ¢"/? =6.2¢ s

Rectangular Form: V =V Cos¢=x jV Sing=6.2Cos(x/5)— j6.2Sin(—x/5)
Angular Form: V =Vm|¢ = 6.2 |-1/5
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9.4. Passive Circuit Elements in Phasor Domain

In the previous section, the transformation of signals (current and voltage sources) between time and
Phasor domain was discussed. In this section, the focus is on conversion of elements (R, L and C) value
between Time domain and Phasor domain. The transformation of passive elements is based on the
relationship between Phasor Voltage (V) & Phasor Current (l). The general term for V/I is impedance and
starting with section, impedance will be used to refer to the value V/I. You may recall for a purely resistive
circuit, we referred to V/I=R as resistance which is a special case of impedance.

In this section, Phasor domain element values for R, L and C will be derived along with their relationship
to the corresponding Time domain element values.

®,

% Resistor’s impendence in Phasor domain (Z=R)

R Z=R
+ v(t) - + v -

»
»

i(t) —>

Resistor’s current and voltage in the Time domain can be driven as shown below:
For the given i(t) = |,Cos(wt + 8) >
v(t) = RI,Cos(wt + 6)
Therefore R = v(1)/i(t)

Now, transform the current and voltage equation to Phasor Domain as shown below:
I=1,e""
V=RI "

Therefore Z=V/I =R “Impedance for resistor in Phasor Domain”
e Observations:

(1) | & V are in-phase (no phase shift)
(2) Resistor only impacts the signal magnitude

% Inductor’s Impendence in Phasor domain (Z=jwL)

L Z=jwL
_ /YWWAL /YVYW\
+ V(t) = + v -

v
v

i(t) I
Inductor’s Current and voltage in the Time domain is derived below:
For the given i(t) = I,Cos(wt + 6)) >

v(t)=Ldi/dt = -wLI,Sin(wt + 6;)
Using the fact that sine and cosine are only shifted by 90°, v(t) can we written as:
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v(t)=-wLI,,Cos(wt + 6,- 90°)

Now, writing the Phasor transformation of i(t) and v(t) results in:
Phasor Transformation of v(t)= V =—wLI ¢’ =—wLI e’" ¢

Apply Euler's Identity e ™ = cos 90— jsin90 = — j=V = jwLI ¢’”
Phasor Transformation of i(t) = I =1, e’
Therefore

Vv
Z= T = jwL "Impedance of inductors in Phasor Domain"

e Observations:
(1) Current flowing through inductor will results in voltage with 90 degree phase lead (+90°)

V=wLI,|(6, + 90)°

* Voltage leads current or in other words current lags voltage in Inductors as shown
below:

v

(2) L impacts both the amplitude and phase

It has shown the impact on the phase (90 degrees shift) and the amplitude V,, = wLI, as
shown by earlier equation V=wLl,|(6, + 90)°.

*.

% Capacitor’s impendence in Phasor domain (Z=1/(jwC) = - j/wC)

C Z= 1/GwC)= -/(wC)

Il

| |

+ v -

+ v -

v

v

Capacitor’s current and voltage in the Time domain can be derived as shown below:

For the given v(t) = V,Cos(wt + ;) >

i(t)=CdV/dt = -wCV,Sin(wt + 6,)

Using the fact the sine and cosine are only shifted by 90°, i(t) can we rewritten as:
i(t) = - wCV,Cos(wt + 6, - 90°)
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Now, writing the Phasor transformation of i(t) and v(t) results in:
Phasor Transformation of i(t) = I=—wCV ¢’ %™ = —wCV ¢'" e/

Apply Euler's Identity ¢ = c0os90— jsin90=—j = V= jwCV e’

Phasor Transformation of v(t) = V=V e’

Therefore
Vv 1

e Observations:
(1) Voltage across capacitor results in current with 90 degree phase lead (+90°)

I=WCV,, |(8, +90)°

I jwC  wC

J

m

m

"Impedance of capacitors in Phasor Domain"

* Current leads voltage or in other words voltage lags current in capacitors

90°

(2) C impacts both the amplitude and phase

It has been shown the impact on the phase (90 degrees) and the amplitude I, = wCV,, as
shown by earlier equation | = wCV,, |(; + 90)°.

% Summary of Relationships and additional terminology

v

Impedance

Reactance Admittance Susceptance
Element (Z=V/) In Ohms | (Imaginary Partof Z) | (Y=I/V=1/Z) in Mhos | (Imaginary part of Y)
Resistor R(resistance) 0 G=1/R (conductance) 0
Capacitor 1/jwC = -j/wC -1/wC jwC wC
Inductor jwL wL 1/jwL= -j/wL -1/wL

e Impedance may be a complex number (a + jb)

e j*j=-1s0 1/j=j (multiply top & bottom by j)

R, L and C use passive sign convention which means current flows through the element in
the direction of voltage drop (from + to — voltage).

Fundamentals of Electrical Circuits, V3.6

Page 192




o,

% Example — Phase and Time Domain Transformations for a Steady State Circuit
For the following circuit element:

20 mH
S A VAV AYAY A

i(t)= 10 Cos(10,000t + 30°) A

+ v(t) =

a) Find the inductive reactance and the impendence of the inductor
b) Find the Steady State Time domain voltage expression
¢) Find the Steady State Phasor domain voltage expression

Solution
a) Find the inductive reactance and the impendence of the inductor
Compare i= 10 Cos(10,000t + 30°) mA with standard for i=Im Cos(wt + ®) > w = 10,000
Therefore Reactance = wL = (10000)(20x1 0'3) =200 Q and
Impedance = jwl=j200 Q

b) Find the Steady State Time domain voltage expression
V=(jwL)l = j2000 Cos(10,000t + 30°) V

c) the Phasor Voltage V
Note: J = Jsin90°’ + Cos90° = ¢’

V =2 =2 kv "Polar Form"

V =2(120" kV "Angular Form"

V =2Cos(120°)+ j2sin(120°) =2+j1.7 kV "Rectangular Form"
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9.5. Phasor Domain Circuit Analysis Techniques

In the earlier sections of this chapter, Phasor transformation of signals and elements values have been
described. Once the circuit (elements and sources) has been transformed into the Phasor domain, all the
circuit analysis techniques developed for circuit analysis applies where R is replaced by Z. The only
difference being that R was always real number where Z may be a complex number.

By replacing the R with Z, all the circuit analysis tools learned in Previous sections which are listed below
apply:

Kirchhoff’s current and voltage law
Node Voltage and Mesh Current method
Parallel and Series simplification

Source Transformation

Thevenin and Norton equivalent

VVYVYVVY

For example Kirchhoff’s Voltage (KVL) in Phasor domain require writing “V1+V2+V3+ ... + Vn = 0” when
these are Phasor representation of voltages around a mesh. When using Kirchhoff's Current Law (KCL)
in Phasor domain, the equation “[1+12+13+ ... + In=0" applies where these are Phasor representation of
currents out of a node. Other techniques such as Norton and Thevenin similarly apply.

Here are few pointers when applying Phasor analysis:

» Transform all the signals and elements in the circuit to Phasor domain and redraw the circuit in
Phasor domain prior to start of your Phasor domain analysis.

» Typically, Rectangular Form (a +jb) of Phasor representation is best suited for equations requiring
addition or subtraction to solve. While the Polar Form (de*) of Phasor representation works well
for equations requiring multiplication and division to solve.

» Once the problem is solved then results may be transformed back to Time domain if needed.

Simplifications techniques such as Serial, Parallel and Delta-to-Wye Transformations may be used in
Phasor analysis. As shown below, these techniques work the same as they did when the circuit only
contained R instead of impedance, Z.

o,

% Combining Impedances (Z) in Series

| = = om Zn
Var=Zil + Zol + ... + Z,| 2 Z Z
Zaol=Zil + Zol + ... + Z,| |
Divide by | Vap '
Zab=Z1+Zg+...+Zn -
b
% Combining Impedances (Z) in Parallel
=1+ o+ o+, 1,
Vap 1Zab= Vab /Z1 + Vo /25 + ... + Vap 1Z1 a
+
Divide by Vap
: Vab |nl Z4 |2l Z; ..o I”l
1/Za=1121 + 1/Zo+ ... + 1 /2,
or -
Yao= Y1+ Yot oo + Yy b
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o,
°n

Simplification using Delta-to-Wye and Wye-to-Delta transformations

Note it is important to label
your nodes and impedances
as shown here for the
following equations to be
applicable.

» Equations for transforming Delta-to-Wye
_ AV
' Z 47,427,
B Z,Z,
CZ,+Z,+7Z,
_ Za Zb
CZ,+Z,+7Z,

2

3

» Equations for transforming Wye-to-Delta
272,+2,2,+72,Z,

Z, =
Zl

, _ZZ,+ 2,7, + 2,2,

b 22

, _ZZ,+2,2,+ 27,

c Z3
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9.6. Phasor Domain Circuit Analysis Exercises

This section provides a number of examples for the application of circuit analysis techniques from earlier
chapters to the Phasor domain circuit analysis. As discussed in the previous section, these are
techniques introduced for resistive circuit analysis which apply to RCL circuits when R (resistance, real

number) is generalized to Z (impedance, complex number).

o,

% Example — Application of KCL and Network Simplification
For the following circuit:

i(t) = 922C0s(20,000t + 30°) A 20 uH

D -

10 Q

5uF

Find the expression for v(t)..

Solution
Here is step by step process of using Phasor Domain for the analysis:

Form the equation of the i(t)=ImCos(wt + ®) = 922C0s(20,000t + 30°) >
Radial Frequency, w = 20,000 radians/sec
Maximum Current, |,= 922 A
Phase, ® = 30°

Step 1) Transform the circuit signals and elements to Phasor domain ( user Rectangular form)
Current i(t) in rectangular form, | = 922 Cos(30) + j922 Sin (30)=798.5 + j461 A

Inductor, 20 uH 2> Z=jwL = j(20000)(20x10'6) =j0.4 Q
Capacitor, 5 uH > Z=1/jwC = 1/j(20000)(5x10'6) =-j10Q
Resistor value, R and Z, are the same in both domains

Step 2) Redraw the circuit in Phasor domain

5

ln l|2

Z, = -10Q

+
| =798.5 + j461
T V| Z,=10 +j0.4Q Z,=10Q

Step 3 - Option A) Apply Kirchhoff’s current law to solve find V
l=11+12+13> 7985 +j461 = V/(10 +j0.4) + V/10 + V/-j10

Solve for V
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Note that we can apply the (a + bj)(a - bj) = a® + b® to first fraction to have all imaginary part in the
numerator:

798.5 +j461 = (10 — j0.4)V/(100 + .16) + V/10 +jV/10

798.5 + j461 = 0.1V —j0.004V + 0.1V +j0.1V

798.5 + j461 = 0.2V +j.096V

V= (798.5 +j461) / (0.2 + j0.096)

Since there is a division, it may be easier to use angular or polar form to find the value of V.

V= 22130 = ZITL — 419091130 (-25.6)

10.22 +0.O962 |tan—1(06026j .22 | _25.6

V =4190.9155.6 =Vml ¢

Step 3 - Option B) Combine Impedances using parallel simplification

Zeq = 1/(1/21 + 1/Z22 + 1/Z23) = 1/(1/(10 + j0.4) + 1/10 + 1/-j10)=4.07 +j1.95
Then V=1*Zeq =(798.5 + j461)(4.07 +j1.95)=2350.9 + j3433.3

V=4190.9 |55.6°

Step 4) Transform Phasor domain form “V=Vm | ® “to Time domain “v(t)=VmCos(wt + ®)”
Form derivation so far it is given that
radial frequency, w=20,000 radian/sec
peak voltage, Vm=4190.91V
phase shift, ®=55.6°
Therefore v(t) = 4190.91Cos(20,000t+55.6°)
% Example—Application o delta-to-Wye transformation

Find current | in the following circuit.

14 Q

—
| Z=j40Q L 150

136|0° V/ +
) Z5=50 Q
/\/ ¢

gzz=4o Q (10 Q

WW™1*

1) Apply Wye-to-Delta Transformation
22, +Z,2,+ 72, Z; (j40*40+40*50+ j40*50) 3600+ 2000

Z, . =90- ;50
Z, j40 j40
27, +2,2,+2,7Z i
7, 2Lt Tl A 0T, ]3600+2000:J.90_|_50
Z, 40
Z = 2,2,+2,Z,+2,Z; _ j3600+2000 _ 772440
Z, 50
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2) Redraw the circuit

140
N
| Zb=j90+50 |_L_j150
136]0° V
Zc={72+40
C
100
Za=90450 |
\b _/
Y
Zeq = [{zb || (-j15)} + {Za || (10)}] || Zc + 14
Z, = ! 14 =
= 1 1 197 30-j15.9 =34 |-28.07°
+
1 N 1 Jj72+40
1 1 1 1
(= +—) ot )
j90+50 —j15° 90— j50 10

| = V/Zab = (136 |0°) /(34 |-28.07°) = 4 |-28.07° *

% Example - Application of Source Transformation
Find the Steady state expression for v(t) for the following circuit where:
v1(t) = 240 cos(4000t+53.13°) V and v,(t) = 96 sin(4000t) V

10mH 40 Q

/VVYW\ /\/

& 20 Q vi)y —T— 25UuF

V4 V2

Step1) Convert the signal and V, | and elements to Phasor Domain
Vy =240 |53.13° = 240c0s(53.13°) + j240sin(53.13°) = 144 +j192
V, = 96 |-90° = 96c0s(-90°) + j96sin(-90) = -j96
“remember needs to have the signal first in Cosine form v,(t) = 96 cos(4000t - 90)”

Zc = 1/jwC = 1/(7*4000*25*10°)=-j10 Q
Z, = jwL = [*4000%0.01=j40 Q
Zr=40Q &20Q

Step2) Redraw circuit in Phasor Domain
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J40 Q 40 Q

V4 Vo
20Q v(t)

Step2) Apply Source Transformation:
Vi=144 +j192 and Z; =j40Q > |, = V4/Z, =4.8 - j3.6 A and Z;=j40 Q
Vo=-j96 and Z,=40 Q > |, = V2/Z, = j2.4 A and Z,=40 Q

40 Q

200 v(t) 40 Q

Step 3) Using Parallel Impedances Simplification
Zeq=1/(1/j40 + 1/20 — 1/j10 + 1/40) = 6.7 - j6.7

4.8-i5A

6.7-i6.7Q

V=l*Zq=(48—-5)(6.7—6.7) =-1.3-65.7 V

R/

% Example - Application of Thevenin Equivalence
Find Thevenin equivalence with respect to terminals a,b.

J10 Q 10Q
— /VYVWVYW\ /\/ @2

2145° A le
20 Q —— 100

< 10 Ix

eb

Step 1) Find Vth (Open a,b) using Mesh-Current technique
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J10 Q 10 Q

YV N ed
. le +
2/45° p—
(200 10 Ix -j10 Q Vith = Voc
o] te te -
eb
Mesh#1 > |, =2|45° = 1.4 + 1.4
Mesh#2 > 20('2 - |1) +J10|2 +1OI>< =0 > '20'1 +20|2+j10|2+10|1 - 10|2= 0
Mesh#3 - -10l, + 10l —j10l;=0 > -10l; + 10lo+ 1013 —j1013=0

Dependent source 2> Iy =1y — I,

The above four equations can be reduced to two:

-10l; +10Io+ j10l,=0 > 30(1.4 +j1.4) +(- 30+j10)l,b=0 > 1,=0.8 +j1.7
-10l; + 10lo+ 10l3—j10l3=0 > -10(1.4 +j1.4) + 10l+ (10-j10)I3=0

rewrite last equation with value of I,
-10(1.4 +j1.4) + 10(0.8 + j1.7)+ (10— j10)I3=0 > I3=(6-j3)/(10-j10) =0.45 +j0.15

Vth = Voc = (10)*( ls)= 1.5 - j4.5 V

Step 2) Find Isc (Short a,b) using Mesh-Current technique

J10 Q 10Q
/YWY /\/ a
le
2145 p— Isc
c20 10 Ix 510 Q l
|1 | |2 |3
b

note that the capacitor is in parallel with a short circuit so will not have any effect and can be
removed to redraw the circuit as:

J10 Q 10Q
I AVAVAVAVA /\/
le
2|45
(200 Isc
10 Ix

b e s

Mesh#1 > |, =2/45° = 1.4 + 1.4

Mesh#2 > 20(ly — I) + J10l; +101, =0 = 20 |y +(-20+j10) I, + 1013 =0
Mesh#3 > -10l, + 10l3=0 > I, =13

Dependent source 2> Iy=l1 =1, 2> l3=li—-lb = 1.4+j1.4-1,

|__'

We can reduce above 4 equations to the following two equations:
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20 (1.4 +j1.4) +(-204j10) I, + 1013 =0
|3 = 14+J14—|2

Plug I into first equation:
20 (1.4 +j1.4) +(-20+j10) I, +10(1.4 +j1.4—15 ) =0 > 1, =(42+j42)/(30 —j10)
> 1,=0.84+j1.68
I3=0.6 —j0.3
Isc= 13=0.6—-j0.3
Step 3: Find Zth = Vth / Isc & Draw the Thevenin Equivalent

Zth = Vth / Isc = (1.5 - j4.5)/( 0.6 — j0.3) = (1.5 — %i*4.5)/( 0.6 — %i*0.3)=5 —j5 Q

Zth=55Q0 | @a

Vth =1.5-j4.5V

PYo)

®,

% Example — Phasor Domain Analysis
Find value of V(t) in the following circuit:

R1
M 1
1k l
10 cos{1000t+00) L1 c2
10mH 10uF
o 1uF L2
10mH
L
R2
A
10k
- Vo(t) +

e Solution (Ans: 0.1 cos(1000t - 0.52)):
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9.7. Summary
% Sinusoidal Signal in Time Domain:

x(ty=X,, cos(wt +¢@) Where x(t T
Angular Frequency, w=2mf=2m/T

Phase shift, ® /. \ /\
Linear/Angular relation: ﬂ = i < !
T 2rx at, ®

% Time-domain to complex format

¢ Intime domain, time is the variable and e Complex Coordinate System and time is not a
function is real number. variable.
x(t)

\ Img., Axis
/ > t X
\/ Ximg

(O] Real

—_— Axis

e XuCos(wt + ¢)

Rectangular Form:
X=X+ X, =X,Coso+ jX,Sing
Polar Form:

_ jo _ | 2 2 jtan ™ (X e / X )
X=X,e" =X, . +Xl.mg e

Angular Form: X =X, ‘ i

Euler’s Identity: e’® =cos@+ jsin @
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% Time - Phasor domain Transformations
The Phaser Domain Transformation is only valid for Sinusoidal Steady State Operation with single
frequency (w constant).

Time Domain Phasor Domain
x(t)=XnCos(wt + ¢) e Polar Form: X = X, ¢’
x(t) A T < 1/f = 211/w e Rectangular Form: X =X Cosg+ jX, Sing
> e Angular Form: X = X;|0°
+Xm
Imaginary Axis
A
:t Xm Slnq) X
b Real Axis
Xm Cosd
X
¥t =-o/w

v(t)& i(t) Relationships V & | Relationships (Impedance Z = V/I Ohms)

v(t) = Ri(t) Z=R

v(t) = L di(t)/dt Z=jwL

i(t) = C dv(t)/dt Z=1/(jwC)=-j/wC
Analysis/Modeling Tools Analysis/Modeling Tools

Passive convention Passive convention

Resistor simplification Impedance (Z) simplification

KCL KCL

KVL KVL

Thevenin Equivalent Thevenin equivalent

Norton Equivalent Norton equivalent

R =R 2 Maximum power in Resistive circuit Z,=Zy, > Maximum power in RLC circuit

Phasor Domain Problem Solving Steps.
1) Transform the circuit to Phasor Domain
2) Apply appropriate analysis/modeling tools to solve the problem
3) Transform the solution back to Time Domain if required

Useful Relationships
+j6 -jée +j6 -jé
+e . e’ —e
or Sinf =

Euler's Identity > e’? = Cos@+ jSin@ or Cos@ = ¢ >

Z=(R + jX) is impedance, R is Resistance, X is Reactance and all are in Ohms
Y=1/Z is referred to as Admittance and Imaginary part of 1/Z is referred to as Susceptance

J:«/—l = ejﬂ'/Z :—l.
J
Sin@ =Cos(@—7/2)
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9.8. Additional Resources

% Nilsson, J. Electrical Circuits. (2004) Pearson.
Chapter 9.
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9.9. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.
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Chapter 10. AC Power Analysis

Key Concepts and Overview

% AC Power Components

% Root Mean Squared (RMS) or Effective Power
% Complex Power

% Maximum (Average or Real) Power Transfer

«» Additional Resources

Fundamentals of Electrical Circuits, V3.6 Page 206



10.1 AC Power Components

Similar to DC power calculation, Alternative Current (AC) power can be calculated using the following
equation:

p(t)= v(t)I(t) where v(t) and I(t) are the Instantaneous current

p(t) is the power at time t which is referred to as instantaneous power. Instantaneous power consists of
Average (or Real) Power and Magnetizing Reactive Power .

In DC analysis, upper case letter were used to refer to constant value of voltage, current and power (V, |,
P) in the circuit. In order to signify dependency of AC voltage, current and power on time (t), these signal
parameters are represented using lower case letters (i, v, p). It is common to write p, v and |, instead of
writing p(t), v(t) and i(t).
% Instantaneous Power, p(t)
As mentioned earlier instantaneous power is represented by the following equation and the sign is
define by passive convention (current enters the positive voltage terminal indicates positive power):

p=v)it)=Vi

+ | Black box
Y, Passive Convention

As discussed in earlier chapters, steady-state sinusoidal circuits represent majority of circuits in use.
Therefore, we will continue to focus on these types of circuits. Power Engineering work on energy
generation and delivery which has led to a rich set of theories, technology and processes to design
and analyze power system in steady-state sinusoidal condition.

The first step is to define the current and voltage equations. As shown in earlier chapters, the general
sinusoidal equations for current and voltage are as follows:

v =V, cos(wt + 6,)
i =lncos(wt+ 6)

In power analysis, we are interested in difference between current and voltage phases so instead of
having to deal with two general forms. It can be assumed that 6; is the reference. This assumption
lead to simplification of current equation as shown below:

Current has a phase shift of (6;—6;)=0 > i=I, cos(wt)
voltage has a phase shift of (6, — 6)) 2> v=V,cos(wt+6,-6)

Now that current and voltage have been defined, instantaneous power is simply the product of the
two parameters:

p=vVvi=ImVm cos(wt+ 6, — 6, cos(wt)
We could stop here since given the current and voltage, the power can be calculated using the above
equation. But we need to manipulate this equation further to identify two key components for

instantaneous power that provides valuable insight.

Applying trigonometric identity {cos(a) cos(b) = V2 cos(a —b) + 2 cos(a + b)}, p can be rewritten as:
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VI Vil
p= %cos(ﬁv -6, +%cos(2wt +6,-6,)

Applying trigonometric identity {cos(a + b) = cos(a) cos(b) - sin(a) sin(b)} to second term results in:

VI V I VI
p= %cos(ﬁv -0)+ %cos(ﬁv —6.)cos(2wt) — ’"2 “sin(@, — 6,)sin(2wt)

e Observations:
(1) Instantaneous power consists of constant first term and two time-dependent terms with
opposing sign.
(2) Frequency of instantaneous power is twice the frequency voltage or current.
(3) Instantaneous power may be negative for a portion of each cycle (even for completely
passive devices. For a completely passive device, the negative power (generating
power) means that the energy stored in C or L is being extracted.

At this point, it would be helpful to look at a graphical representation of instantaneous power when current
phase shift 8, = 0° and voltage phase shift 8, = 60° = 11/3.

v, i, p

3Vilm/4

N [T

Im

wit
radians

% Average and Reactive Power

Instantaneous power has two distinct components that will be discussed in this section. The Average
(or Real) Power and Reactive Power components.

Let’s start with the instantaneous equation derived in the previous section:

VI VI VI
p= %cos(ﬁv -6)+ %cos(ﬁv —6.)cos(2wt) — ’"2 “sin(@, — 6,)sin(2wt)

The first term is not time-dependent and is referred to as Average or Real Power:

V.1
P = Average Power or Real Power = ——*-cos(6, —6.)

The name average power is derived from the fact that it is equal to the average of instantaneous
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power over a full period is equal to P. You may want to carry out the following integral to prove that it
is true:

T+t0
1

P=?'[pdt=

Y 21’" cos(@, —6,)

Additionally, Average Power is the portion of instantaneous electric power that can be converted to
non-electric form and visa versa. This is the reason that Average Power is also referred to as Real
Power.

By applying the definition of P to the instantaneous power equation, p, can be written as:

vIi . .
p=P+ Pcos(2wt) — %sm(é{, — 6.)sin(2wt)
The coefficient of sin(2wt) in the third term is referred to as the reactive power, Q:

1
Y 5 “sin(@, —6,)

Q = reactive power =

The reactive power is the electric power exchanged between magnetic fields of power supply,
capacitors and inductors. Reactive power is never converted to non-electric power.

Utilizing the instantaneous, average and real power, the instantaneous power equation can be
rewritten as:

p = P + P cos(2wt) — Q sin(2wt) where

P = Average Power or Real Power = “cos(6, —6,)

Q = Reactive Power = =sin(@, — 6,)

As a consumer of electricity, Average Power, P, is the power that does the work of running your
motors and heating while Q is power that is moved around in the system between capacitors and
inductors. Both consumers and generators of electricity prefer P to be as large as possible and Q to
be as small as possible. Later in this chapter, we will discuss how to maximize Average Power.

Power Factor is used to define the relationship between the Average and Reactive power. Power
Factor as a measure is important to power industry since the ratio of Average and Reactive power
defines the efficiency of the power generation and consumption systems.

The key Power Factor definitions are:

Power Factor Angle = (6, — 6))
Power Factor = pf = cos( -0)
Reactive Factor = rf = sm(e -06)

Observations:

» If (8, — 6;)=0 then pf = cos(6, — 6;) = 1 and rf = sin(B, — 6;)=0 which means all the power is Real
and non is Reactive. Most efficient system from generator and consumers’ point-of-view. Both
consumers and generator work toward this ideal situation but is very hard to achieve under
variable load.
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» Power Factor (pf) is not sufficient to describe the power factor angle since

cos(8, — 6;) = cos(B; — 8,) so we have to use the phrase of leading or lagging to qualify it.
e Lagging power factor implies that current lags the voltage >

8=6,—A°> (8,-6)>0 ’Inductive load”
e Leading power factor implies that current leads the voltage >

8=6,+A°> (8,—6)<0 ’Capacitive Load”

» Power in purely resistive circuits

Since resistive circuit impedance is a real number then Voltage and Current are in phase.
Therefore (8, — 6;)=0 or 6, = 8; which means:

p = P + P cos(2wt) where
P=(Vmln)/2
Q =0;

Graphic representation of Instantaneous, Real, Reactive power

Instantaneous (p, Watts), Average (P, Watts) and Reactive (Q, VAR) power

At this point, let’s apply the concepts of instantaneous, Average and Reactive power to the three pure
circuits (pure resistive, capacitive and inductive):

2P N , o~ I

\ / N\

\ / \
P=(Vi In)/2 A v4 AN P
\ / \
\ \
S / \
0 O 4 I Q wt
/2 m Radians

Observations:

e Instantaneous power is all real

e No negative power (one cannot extract power from Purely Resistive circuit)
e Power’s frequency (2wt) is twice the voltage’s and current’s frequency (wt).

Power for Purely Inductive Circuits
Impendence of a purely inductive circuit is {jwL = wLe
voltage by m/2 therefore (8, — 8;) = n/2 = 90°

"2 which means the current lags the

=-Q sin (2wt) where
Q= (Vmln)/2
P=0;

Graphic representation of Instantaneous, Real, Reactive power
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Instantaneous (p, Watts),Average (P,W) and Reactive (Q, VAR) power

(VAR Y
( ) p 7 Q
/ \p
7 A P
0 L wit
“\ /4r/2 T Radians
\ /
(Vi )2 S
Observations:

e Instantaneous power has no real component (real power is zero) meaning no transforming
from electrical to non-electric energy takes place.
(1) The name reactive comes from the fact that this is the only power from reactive elements

such as Capacitors and inductors.

e Although average power and reactive power carry the same dimensions, we use different unit
to distinguish between the two types of power:
(1) Watt (W) is used as the unit for real or average powers and instantaneous power
(2) VAR (Volt-Amp Reactive) is used as the unit for reactive powers

e Circuit continuously exchange power at power’s frequency (twice voltage or current
frequency, 2wt)
(1) pis positive , energy is being stored in the magnetic field associated with the inductor
(2) pis negative, energy is being extracted from the magnetic field

» Power for Purely Capacitive Circuits '
Impendence of a purely Capacitive Circuit is {1/jwC = e™?/wC} which means the current leads the
Voltage by n/2 therefore (8, — 6)) = -n/2 = -90°

p = Q sin (2wt)
=—(Vnln)/2
P =0;

Graphic representation of Instantaneous, Real, Reactive power

Instantaneous (p, Watts),Average (P,W) and Reactive (Q, VAR) power

(Vi Im)/2 P
/ \ -
/ \ 1P
N Yau Radians
\ N /
V4
(Vi 1n)/2 > Q
Observations

(1) Instantaneous power has no real component (real power is zero) meaning no
transforming from electrical to non-electric energy takes place.

(2) Circuit continuously exchange power at power’s frequency (twice voltage or current
frequency, 2wt)
(a) pis positive , energy is being stored in the electric field associated with the capacitors
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(b) pis negative, energy is being extracted from the electric field

Power industry recognizes the algebraic sign of + for inductors and — for capacitors by saying:
¢ Inductors demand (or absorb) magnetizing VARs.
e Capacitors furnish (or deliver) magnetizing VARs.
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Example —AC Power Analysis

Calculate the Real, Reactive Power transferring between network A and B, state whether the power
flow is from A to B or vice-versa. Also state whether magnetizing VARs are being transferred from A
to B or vice versa. Use the following voltage and current equations, and figure.

v = 100 cos(wt — 35°) V i,
i = 20 cos(wt + 155°) A A T B
v

Solution:
Power Factor Angle =(68, —6.) = (-35—(155)) =-190°
(20)(100) c

Real Power =P = V’”zl’” cos(8, —6)= 0s(—190) =-984.8 W (B to A)

Reactive Power =Q = Vm—zl”’sin(é’v -6)=173.6 VAR (Ato B)

Note: B is configured as passive device (Current flows to positive terminal) in the diagram. Therefore,
if the power is positive then B is consuming and A is generating power

Example -- AC Power Analysis
Compute the power factor and the reactive factor for the network inside the box, with the following
current and voltage.

v = 200 cos(wt + 15°) V
i = 95 sin(wt—15°) A + Network

v

SOLUTION:
First step is to convert i to standard cosine form = i = 95 cos(wt — 15°- 90°) = 95 cos(wt - 105) A
Therefore:

6, =15
6 =-105

Power Factor Angle = (6, — 6;) =
Power Factor = pf = cos( - 0)
Reactive Factor = rf = sin(8, — 6,

s (120) =- 0.5
sin(120) = 0.866

15— (-105) = 120°
=Co
)=

Lagging power factor since (8, — 8;)= +120° > 0 which means it is an inductive load.
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< Example — AC Power Analysis
v(t) is a sinusoidal signal with 60 Hz frequency and maximum voltage of 156 V in the following circuit.

R1
AN %
1k
L2 - C2
100 mH 100 uF
® L1
v(t) @ 10 mH
C1 ®
10 uF

Find Power Factor (pf), Real Power (P), Reactive Power (Q).

SOLUTION:
Covert circuit components to Phasor Domain (w= 2mf = 120™):

ity R

ADYYY .
Tk jwl = j37.7 1/(jwc) = -j26.53
2 - C2
100 mH 100 uF
[ ] L1
viD) @ 1/(jwe) = -j265.3 € 10mH jwl =]3.77
100l our ’
u

Zeq = 1000 + (-j265.3 + j37.7) || (-j26.53 + j3.77) = 1000 — j20.7 = 1000.2 "2

Power Factor = pf = cos(power factor Angle) = cos (Ov — Oi) = cos (-1.2) =1 Leading
Im = Vin/Zeq = 156/1000 e''? = 0.156 | 1.2°

Real Power = P = (VmIm/2) cos (Qv— Qi) =12.2 W

Reactive Power = Q = (VmIm/2) sin (Ov — Oi) = -.25 VARs
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10.2. Root Mean Squared (RMS) or Effective Power

Root Mean Squared (RMS) is used to calculate the sustained power consumption or generation ability of
a device. Instantaneous power changes with time from a maximum positive value to a minimum position
value. In a steady-state sinusoidal system, RMS power is the accepted method of calculating the
sustained power and it is commonly referred to as the effective value also.

In order to calculate the RMS or Effective power, we have to start by calculating the RMS or Effective
voltage and current for a sinusoidal steady-state circuit:

T+t0

Vs =V = ; J' 2dt—\/ I L cos?(wi+@,)dt =

=5

T+t0

1 .2 1 2 2 I
[, =1,=_|= |idt=_|=|1, cos"(wt+@)dt =—=
=\ ] \/TI V2

t0

Vims Or Ve deliver the same power to a resistive load as a DC voltage of the same magnitude as shown in
the following figure:

Vs = Vs = R
45V rms 45V dc

The effective value of v¢ (45 V rms) deliver the same power to R as the dc
voltage vs (45 V dc)

The effective values of sinusoidal signal in power calculations is so widely used that voltage ratings of
circuits and equipments in power utilization is always given in terms of rms value. For example the

voltage of electricity in typical US homes is stated as v=110 V which means that the RMS or Effective
voltage is 110 V. The Peak Voltage value may be calculated using the following equation:

Peak Voltage = Viax = \/5 V =156V

If we need to find the effective current through a 100 Watts light bulb in a typically US home Then:
|eff= P/ Veff =100/110 =0.91 Arms
Of course the peak current value may calculated using the following equation:

Peak Current = Iy = \/5 I, =129A

The definition of RMS value can be applied to the Average and Reactive Power as shown below:
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“=cos(@, —0.) = cos(6, —6,) =V, 1, cos(6, - 0,)

P = average power =

i

~sin(@, —6,) = sin(@, —6,) =V, 1, sin(6, —6,)

Q = reactive power =

&ﬁ
S S

Example - Power consumption and rating

A typical system is capable of generating or consuming peak power at many times its RMS power
rating. Furthermore, Average Power is the portion of power that can be converted to non-electrical
power and used. It is expected and recommended that electrical devices be rated in terms of

Effective or RMS Average power, P.

Find the number of computers that can run off a circuit breaker capable of lw=15 Amp at Ve =110v.
Each computer consists of a SPU (RMS Average Power of 200 watts) and a LCD display (Average

Power of 100 watts).

Pone computer = 200 + 100 = 300 Watt
Pavaitable = leff * V =15 * 110 = 1650 Watt
# of computer = integer { Payailable / Pone computer and monitor) = iNteger {1650/300} = 5

Note: the instance power many be an issue if all system are turned on at the same time since turn-on
power requirements are higher than steady state usage.

Example — RMS Value for non-Sinusoidal Signals
A source is capable of delivering a periodic triangular signal with peak current of 100 mA. Find the
average power delivered to a 4 KQ resistor.

I, mA
dA

1 1 1 |
-T2 -T/4 T/4 T/2 3T/4 T

-1A

1T+1‘O 4T/4
_ L (20 = [T [;2
Im—leﬂ—\/T J.l dt \/T J.l dt

t0 0
Note: only need to calculate 0 to T/4 then multiply by 4 (simplification)

The line equation representing i(t) 0 <t<T/4 = i=(0.1/(T/4)t=(0.4/T) t
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_ 47 2 M0 o 404)? T
I,mS—JT !{(0.4/T>r} dt \/ G \/ G J0.003 A

Note: Period is cancels out and does not effect the value of I,s.

P=l4 R =(0.003) * 4000 = 12 W

Fundamentals of Electrical Circuits, V3.6 Page 217



10.3. Complex Power

As we discussed in earlier Chapter, steady-state sinusoidal analysis and associated mathematics may be
simplified by using complex number and Phasor representation. The same is true for AC power analysis.
AC power may be represented using complex number form which is referred to as Complex Power and is
represented by letter S and defined below:

Complex Power =S =P +jQ in Volt-Amp (VA)
where:
P = Average or Real Power = Real part of {S} in Watts (W)
Q = Reactive Power = Imaginary part of {S} in Volt-Amp Reactive (VAR)

Using the Complex Power offers two advantages:
(1) Use of complex representation of V, | and Z to calculate power
(2) Ability to relate power components using trigonometry as shown below (Power Rectangle):

|S|= Apparent Power . _
Q = Reactive Power = |S] sin(6)

B=Power Factor Angle

P= Average Power = |S| cos(0)

Observations:
(1) Angle 8 in the above diagram is the Power Factor Angle (6, — 6;). Below is the proof:
V. I [2)sin(@ —6.
ang =2 = Vulu /D506, 20) _ 6 6y - 6=(6,-6)
P vV, I, /2)cos@ —6,)

(2) The magnitude of the complex power is called Apparent Power:

IS |=+/P>+Q°

Apparent Power like Complex Power is measured in Volt-Amp (VA). |S| is more important
than real power when discussing devices that have a leading or lagging Power Factor
(Capacitance or inductive load). In other words are not pure resistive circuits.

In general Average Power represents the usable output of the transferred energy. While the
apparent power represents the volt-amp capacity required to supply the desired Average
Power. Only in a resistive circuit, the capacity to supply Average Power and Apparent Power
are the same. In inductive loads (most common), we need to correct for the lag power factor
to maximize average power delivered.

(3) Power Factor, PF = Cos(6) =P/ |S|

Complex Power, S, calculation utilizes the learning from the Phasor section and definition of Average and
Reactive power earlier in this Chapter.

Starting with the following definition of a device where effective current and voltage are represented in
complex form:
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Inff

+ Circuit
Veff

S=P+j0 :V’”—ZI’”COS(Q, _6)+ jV’”—ZI”’sin(Hv _g)-= szlm [cos(8, —8) + jsin(8, — )]

Apply Euler's identity e’ =cos(a) + jsin(a)
Vil jie-0) _ Vo L i0-0) _

_m_

2 “ J_J_

1 \%
In Steady — State Sinusoidal circuit =1, =1 __= & V.=V =1~
y eff \/E eff rms \/E

§=mn \(9 0)

rms

S ‘/eﬁleff (ev _01)
OR

_VI j(6,-6;) mm j(6,-6;)
S =m0 =Y 1|0, - ) == e

Also it is useful to write complex power in term of complex | and V directly as shown below:
— _ 0= j(6,-6) _ 6. -j(8)
S——Veﬁleﬁ @, Bi)—VeﬂIeﬂe =V,e Ie

Here is a summary of Complex Power Calculation:

o . . 1 . .
S = P+]Q — ngfquf (9‘ _ 91) — qufqufej(et' o) _ qufej(ev,)qufe i) _ Evmej(&,)lme j(6)

2
_ 1 ® _ * _ Veﬁ _ 2
—EV.I —Veﬁleﬁ —Zleff.leff = 7 = Ieﬁ Z
Note:
1) Bold | & V represent max.current and voltage and | o & V  represent the effective or RMS
values.

2) The “*” indicates conjugate which means imaginary portion is multiplied by negative (or
replace j with —j)

Using the Impedance equation (Z= R+jX) for a typical device shown below, we can develop an additional
set of Complex Power equations:
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By applying Vet =Zler 10 S = Vst e
Complex Power may be written as:
S=2Z logt et

We know that product of a complex number with its conjugate KK*= (a+jb)(a+jb)* = (a+jb)(a-jb)=a2 +b%>

va® +b* =K|
Therefore
S =Z [leyl® = llestl” (R +X) = llenr” R + jllestl” X) = P + JQ
Which means:
P = lel° R = 2 I.°R
Q = [leg|* X = 12 12X

If the circuit is purely inductive then Reactance X is positive and if the circuit is pure capacitance then
Reactance X will be negative.

Of course the Complex Power may be also written in terms of voltage using similar steps as show here:
By applying lest = Vet /Z 10 S = Vet I"et > S = Vet (Vert/ Z)*
S=|Ve°/Z*=P +jQ

If Z is pure resistive > P = = | Vg |2 /R
if Z is pure reactive > Q = = | Vgt |2 / X “note X is positive for inductor and negative for capacitor”
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% Example — Complex power Calculation
The following circuit is an electrical power and transmission model. For the following circuit find:

a) The RMS Phasor V| and |,.

b) The Average Power and magnetizing Reactive Power delivered by the source to the load.

c) Draw the Power Triangle shows Apparent, Average and Reactive Power delivered to the load.
Note: reactive power is magnetizing so magnetizing Reactive Power is the same as Reactive Power.

T
/N
—
AV N A L
40 Q
200 |0° T
V (rms) Vv, — -30Q
20 O
Source < : > Load
Line

Solution:
a) RMS Phasor V_and I
Calculate Load equivalent Impedance > Zq = 1/(1/(40+j20) + 1/(-j30)) = 21.2 - j24.7
Voltage source is already in RMS value = V = 200 | .0° V (rms)

lL=V/Z =(200)/(21.2 —j24.7 + 2 + j10)) = 6.2 +j3.9 = 7.2|.32.4° A (rms)
Vi=1Z = (6.2 +3.9) (21.2 - 24.7) = 223.8 — [70.5 = 238.42| -17.2° V (rms)

b) P & Q delivered to the load
S=V_ I =(223.8-j70.5)(6.2 - j3.9) = 16662.5 + j435 VA
Average Power = P = 16662.5 W
Magnetizing Reactive Power = Q = 435 VAR

c) Power Rectangle

o

1 9

_ 4 435
Power Factor Angle = @ = tan 7 =tan™'

—=1.
16662.5
Apparent Power = | S |= 4/ P*> + Q° = 16667.7 VA

S|= 16667.7 VA
Q =435 VAR

0=1.5°
P=16662.5W
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% Example — Complex Power
For the following device:

i(t) = 25 Cos(Wt+10°) _
v(t) = 100 Cos(Wt+55°) i

find:

(a) Real Power

(b) Reactive Power

(c) Power Factor

(d) Instantaneous Power

(e) Complex power in all three forms (Rect., Polar & Angular)
» Solution:
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10.4. Maximum (Average or Real) Power Transfer

As it was discussed earlier, Average Power is the portion of power that can be converted to non-electrical
power such as kinetic or thermal energy. Therefore the goal of energy consumer and generators is to

deliver the maximum power to the load.

In this section, the requirement for maximum is explored for an AC circuit. The process is similar to the
DC and resistive circuit with the difference that impedance (Z), current (l) and Voltage (v) may be complex

numbers instead of real numbers.

A model for power generation and consumption is shown below. Transmission line impedance can be

modeled as part of source impedance, load impedance or separately.

Load Equivalent

Zin = Rin + jXin

Z|_ = RL +jX|_

Thevenin Equivalent of Generator

Note: Vi, and | are rms value

Maximum Average Power, P, is
transferred when

Z =2y

" is Conjugate >(a + jb)* = (a—jb)

The key finding here is that for maximum average power to transfer in a Steady-State Sinusoidal
condition, load impedance must be equal to the conjugate of Thevenin impedance (Z, = Zy,*).

Now that the answer is known, let’s take a look at the proof:

KVL > = Yiu
(Rrh+RL)+.](XIh+XL)

IV, 1> R

P=|||2R|_= th L

(R, +R,)>+(X, +X,)’

In order to find the maximum, take a derivative of P in-term of R_ and X,. Since load is the only variable

in this situation.

a_P:O = XL:_Xth

X,

:TP:O = R, =Ruw+(X,+X,’ = R, =R,
L

Combining the above two conditions we have

= Z,=7Z*%

The next question to explore is if the condition (Z, = Z,*).exists then what is the maximum average power
transferred? To answer this question substitute (R =Ry, and X = -Xy) in the earlier Average Power

equation:
2
IV, P R,

P=|I’R, = : 5
(R,+R) +(X,+X,)
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P = IV, R,
"R AR+ X, + X))
v, I’

— th
P, = AR for'V, rms value
L

or

P = ;/I”é for max 'V, amplitude sinceV, =V |/ 2

L

There are times that the designer does not have full control over the load so we need to explore
approaches to maximizing power transfer under restrictive load conditions. Here are three possible sets
of restrictions and associated approaches:

» Ry and X_ may be restricted to a limited range so that you cannot achieve maximum power
transfer conditon  Z, =Z,

In this case, the designed is expected get as close as possible to maximum Average Power by
adjusting:
(1) Adjust X, so that it is as close to (-Xy,) as possible

(2) Adjust Ry to that it is as close to 4/ R*x + (X, + X, )* as possible.
L th

» Magnitude of Z can be varied but its phase angle cannot
In this case, the greatest Average Power is transferred to the load when the magnitude of Z_ is
set equal to magnitude of Zy,. > |Z| = |Zu|

» Purely Resistive Load
In this case maximum Average Power is transferred when R, = Ry,
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% Example - Maximum Average (Real) Power
The source current in the following circuit is iy = 3cos(5000t) A.

3.6 mH
NV ea |
i 20 O SuF == 2
9
40
N ob

a) What load impedance at terminals a and b enable maximum Power Transfer?
b) What is the Average Power transferred to the impedance from part a?
¢) Assume that the load is restricted to pure resistance.

What size load resistor results in the maximum average power transferred?
d) What is the Average Power Transferred to the load for part C?

Solution:
Part a) Load impedance for Maximum Power Transfer?

Start by finding the Impedance of the Thevenin Equivalent at w=5000 rad/s
Redraw the circuit in Phasor domain and deactivate the current source Ig (=0, open)

jwL =18 Q
AN

-jlwe =

20 Q 'j40 Q p— <:| Zth _ Zeq
4})\/ ob

Zn=4+ (20 || (-j40)) +j18 =20 + j10

In order for the maximum power to transfer we have to have: Z, =Z, *
Therefore > Z, = Z'y, = (20 + j10)* = 20 — 10

Part b) What is the average power transferred to the impedance from first part?
Now we have to find Vi, = Vap-open

jwL =j18 Q
TAVAVAYAN e 2
-ilwe = _| 10 > ¥
iy 3]0° 20Q > o T = Vi,
4Q
N ~_eb

Vin = ig (20 || -j40) = 3 (16 - 8j) = 53.7|26.6°V
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y4
Vin -

I = Vi _33OTIZ265T | 34196 57°
Z,+7Z, 40

;oL 134

SRR

1.34
P =({_,)’R, =(—=)*20=17.96 W
max (eff) L (\/E

Another option would be to use Py = |Vth|2/(4RL) to solve the problem.

Part ¢c) Assume that the load is restricted to pure resistance, Find R.?
The two conditions for maximum power transfer are:

oP
Sl =0 = X, =-X, < wehave no control over this since X_ =0 given.
L
oP 2 2 ;
S =0 = R = JR% + (X, +X,)? <€ wehave Zy=20+10
L

R, = \/202 +(0+10)* =22.36 Q Maximizes the average power transfer to load

Part d) What is the Average Power Transferred with R, from part c?
V., _53.671-26.57°

I, = = =—— —1.231-39.85°
Z,+Z, 4236+ j0 -
r, = to 123
T2 W2
P.=U,) R, =(£)222.36:16.91W
V2
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10.5. Summary

+ Instantaneous Power

p(t) =v(®)i(t) =

sin(@, —6,)sin(2wt)

“cos(@, —6,)+ 21 cos(@, — 6)cos(2wt)—v’"1m

« Power Factor
Power Factor Angle = (6, — 6))
Power Factor = pf = cos( -0)
Reactive Factor = rf = sm(e -0)

< RMS or Effective Value
T+T0 V

vidt = — 2 cos?(wt+@,)dt = —=

rmx m
to 2

T+t0

itdt = — 2 cos® (wt +@,)dt =

Wl

IW!
V2
% Average and Reactive Power

cos(0,—6,)=V, 1, cos(6,-6,)

&F
S

v.I,
P = average power = 5 ——cos(8, - 6.) =

~sin(0, —6,) =V, 1, sin(6, —6,)

V.1
Q = reactive power = %sin(@v -6,)= 5

2

% Complex Power

o . . 1 . .
S = P+jQ — Veffleff (ev _ 91) — Veffleffej(ev 0 _ qufej(ﬂv,)qufe i) _ Evmej(é’v,)lme j(6)

|S| = Apparent Power, VA
Q = Reactive Power, VAR

0=Phase Angle
P= Real Power, W

Power Factor Angle = @ = tan

Apparent Power = | S |=/P* + Q°

% Complex Power Derivations
S= VeffI eff = z IeffI eff = | Veff | /1 Z*

L0
P
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< Maximum Power

Load Equivalent

Zin = Rin + JXin Maximum Average Power, P, is
P transferred when
V I Z =R_+jX,
Th ZL — Zth*

”*” is Conjugate 2> (a + jb)* = (a—jb)
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10.6. Additional Resources

% Nilsson, J. Electrical Circuits. (2004) Pearson.
Chapter 10.
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10.7. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.
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Chapter 11. Three-Phase Circuits

Key Concepts and Overview

% Introduction

« Balanced Three-Phase Voltages

% Three-Phase Voltage Sources

< Analysis of the Wye-Wye (Y-> Y) and Wye-Delta (Y->A) Circuits
< Balanced Three-Phase Circuit Power Analysis

« Additional Resources
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11.1 Introduction

Three-phase electric power is commonly used in larger electricity generation, transmission and
distribution operations. Three-phase is a more economical way to transmit power since it uses less
transmission line material than other systems at a given voltage. Although most households in US use
single-phase power, generally transmission of power is done using three-phase power.

Additionally, three-phase power is used in industry where there is a need for large-load motors that
require near constant torque. The instant power of each phase peaks at a different time results in a more
constant power delivery which results in constant torque and reduces vibration in machinery.

Full coverage of three-phase circuit is the focus of Electrical Engineers specializing in Power and is
beyond the scope of this text. In this chapter, we will focus on the balance three-phase power in steady-
state sinusoidal condition which provides an excellent introduction to three-phase power systems.

In a three-phase system, three wires carry the three alternating currents and it may or may not have a
neutral wire. In typical transmission systems there are step-up and step-down transformers in order to
increase and decrease the voltage levels. High voltage transmission lines outside of populated areas
may carry as high as one million volts and have to be stepped-down in multiple stages to 110 volts used
in typical US House Hold. In this chapter, we will be working with three-phase system models that directly
connect between the generation (Source) and consumption (Load) facilities as shown below:

Three-Phase Transmission Lines (3 or 4)

N
a )

Three-Phase Three-Phase
Voltage Source Load
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11.2. Balanced Three-Phase Voltages

The first step is to define balanced three-phase Voltages. Balanced three-phase voltages refer to three
sinusoidal voltages with the same amplitude and same frequency that are exactly 120° out of phase with
each other. a, b and ¢ are used to name the phases as listed here:

a-phase voltage
b-phase voltage
c-phase voltage

The phase voltage sequencing is determined by the system designer. The two common sequences are
abc (Positive) phase sequence and acb (Negative) phase sequence as shown below:

V. \
+120° +120°
V. Va
-120° -120°
Vb vc
abc (or Positive) Phase Sequence acb (or Negative) Phase Sequence
Va=Vm |0° Va=Vm |0°
Vb =Vm |-120° Lags a by 120° Vb = Vm |+120° Leads a by 120°
Vc=Vm [+120° Leads a by 120° Vc=Vm [-120° Lags a by 120°

Notes: Counter Clockwise is the positive direction to read angles
The balanced three-phase voltages have three important characteristics which are listed below:

1. Sum of phase voltages is zero > V,+Vy+ V=0

2. Sum of instantaneous voltages is zero 2 vy + Vp+ Ve = 0

3. Once you know one of the voltages in a balanced three-phase voltage, you know them all
since they have identical frequency and amplitude. The only difference is that each voltage is
out of with the other by 120°.
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11.3. Three-Phase Voltage Sources

Three Phase Voltage Source or generator configuration is typically made up of a three set of winding
equally space around a permanent magnet. As the magnet rotates, each winding generates one of the
phase voltages. As discussed earlier in the case of balanced three-phase system, voltages will have the
same magnetite but 120° phase difference.

The three windings may be interconnected either in a Wye(Y) or Delta(A) configuration as shown below:

a a
Ve
Va
Vb
. A b
b
c C

Y-Connected Source (ideal)
“n” terminal is referred to as the neutral terminal
and may not have an external connection.

A-Connected Source (ideal)

The above diagram assumed that the generator windings are ideal with no Impedance. Although
designers make every effort to minimize the winding impedance, sources will have some amount of
impedance inherent in their construction which will effect the system operation. Therefore, the more
accurate model of a three-phase generator is to include the impedence for each phase. R, and X,
represent the winding resistance and reactance respectively. Since this is a balanced system, all three
windings have the same impedance. The following diagram shows the balanced three-phase source
model with the impedance:
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[ a

Zw= Rw + ij

a

Z,=Ry + jXy V.,

v, [/ <
Z,=Ry + jXw
Zw=Rw + ij ZW=RW + ij

Vp
b \* Zu=Ru + X b
c C

Y-Connected Source A-Connected Source

Although, the three-phase power generated may be converted to other configurations such as 2-phase
and single phase, we will focus on its use on three-phase load. Three-phase load similar to three-phase
source may be either configured as a Wye(Y) or Delta(A). Here are the typical load configurations:

A A
ZA=RA + ]XA
/<\l (neutral terminal) Zs=Ra+ X Zx=Ry + Xy
Zc=Rc + jXc Zg=Rg + jX3
B ZA=RA + ]XA B
C C
Y-Connected Load A-Connected Load

“n” terminal is referred to as the neutral terminal
and may not have an external connection.

Since there are two source configurations and similarly two configuration of load, we have 4 possible way
of connecting load and source (Y=Y, YA, A>Y, A>A). In the remainder of this section, two of the
four possible configurations are discussed.
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% Analysis of Y=Y Connection

Here, we will analyze the circuit resulting from connecting a Y-configured source to a Y-configured
load. Inthe Y-Y circuit, in addition to the three transmission lines, it includes a neutral (4th connection
transmission line). Furthermore, the transmission lines are modeled by their impedances (Zia, Zy, Zic,
Zy,). Below is the resulting circuit:

Transmission Lines
A

I Source ... e J — Load ..
! : Z ! i
| : — ! .
| | a1 |
i Zga LN Z. N Zia |
: | —— ! i
: b | |
' Van ‘ : ' |
> ‘ Zyp |1 D Zy B\ |2z, i
v : : The :
- Ver O " i i Zic |
Zy
| | e Ze C |
: ! I/ | :
e ! lec o |

A single node voltage equation can be used to describe the circuit.
VN + VN _Va'n + VN _Vb'n + VN _‘/C'n

Z, Z,+Z,+Z, Z,tZ,+Z, Z,+Z.+Z,

tn

We can Simplify this equation by using the conditions for a balanced three phase circuit:

(1) The Voltage sources are balanced > Vaon+ Vpn+Ven =0
(2) Internal impedances of each source are identical > Zya=2gp =Ly

(3) Impedances of each transmission are identical > Zin =2y = 2y

(4) Impedances of each load are identical > Zia=2p =2,

Letting Zo = Zia + Zia + Zga = Ziy + Zip + Zgo= Z1c + Zic + Zyc Which lead to the node voltage equation to
be rewritten as:

V_N+ 3VN — (Va'n +Vb'n +Vc'n) —

Z, Z,

0

First condition of balanced 3-phase says Vg, + Vyn + Ve = 0 therefore:

V_N+%:O = VN(L'f‘i):O
Z, Z¢ Z, Z¢

Given that Impedances is not zero > Vy = 0
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This means there is no difference between source and load neutral > lg = 0. Therefore, in a
balanced three-phase Y=Y connected circuit, the designer may either remove the neutral conductor
or replaced it by short when modeling balanced three-phase circuits.

Next step is to write the line currents equation as shown below:

V.,V Vi, =V V,-V
aA = s Iy = ’ B = s

Z¢ Z¢ Z¢
where Zq>= Zp+ Z1a + Zga= Zg + Z1b + Zgb= ZC + Ztc + ch

The three currents similar to their respective voltages have the same magnitude and frequency, and
are 120° out of phase.

Therefore, it is understood that we only need to find voltage and current for one phase and then shift
them by 120° to find the voltage and current for other phases. In other word, we can solve a single
phase equivalent circuit and extend the result to other phases.

Here is a single-phase equivalent circuit for the Y->Y circuit:

Zga ———@— Za

=
@

ZLA
N
Note: the neutral current here has only one component so it is not equal to three-

phase ly = Ipa + lps + lec

The above circuit may be used to find laA by applying KVL. Now that we have laA, we can use the
following equivalent diagram of loads to calculate load voltages:

A
®
+ + +
VAB ZLA VAN
B - + VBN - -
- @
Vac VAT N
+ -
VBC ZLC VCN
. ¢ ¥
®
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Based on I, from single phase circuit, we calculate magnitude of Line-to-Neutral Voltages
(Vo = laa Za) for abc (positive) configuration, Phase voltages may be written as:

Van = Vo [0°
Vgn = Vo [-120°
VCN = ng +1 200

Line-to-Line voltages can be found using the KVL as shown below:
Vi = Van - Van=Vo 10° - Vo [-120° = /3 Vo[30° = +/3 Van130°
Vic = Ven — Von = Vo [-120° - Vg [+120° = \/§V¢Ji0° = \/§VBNJ3_OO
Vea = Von = Van= Vo [120° - Ve [0° = /3 Vol+150° = V3 Vonla0®

Phasor diagram of Line-to-line and line-to-neutral voltages for abc or Positive Sequence:

Vag abc (or Positive) Sequence
Note: Angle is positive in the counter
clockwise directions

Vea

Vae

One could also go through the same process too draw the phase diagram for acb or negative
sequence. The only difference would that the line-to-line voltage would lag the line-to-neutral voltage
as shown below:

Vec acb (or Negative) Sequence

Note: Angle is positive in the counter
clockwise directions

Vor Ve

Finally, here are some of the terminologies which are common to this field:
e Line Voltage refers to voltage across a pair of line or line-to-line voltage (ie. Vgc)
e Phase Voltage refers to voltage across a single phase or line-to-neutral voltage ((ie. Vgn)

Fundamentals of Electrical Circuits, V3.6 Page 238



e Line current refers to the current in a single line

¢ Phase current refers to current in a single phase

¢ Since three-phase is used for power, effective or rms value is commonly used. So the
statement “transmission line is rated for 500 kV”, means that the nominal value of the rms
line-to-line voltage is 500,000 V.

e The Greek letter ® is used to refer to per-phase quantities: I, (Current/ Phase), Vo (Voltage/
Phase), Zs, (Impedance/ Phase), P, (Real or Average Power/ Phase), Q4 (Reactive power/
Phase)

e AandY Connection Comparison

(1) Phase and Line voltage are the same in A Connection
(2) Phase and line current are the same in Y connection.

» Example — Y=Y Balanced Three-phase Circuit Analysis
The phase voltage at the terminal of a balanced three-phase Y connected load is 2400 V. The
load has an impedance of (16 + J12) Q/® and is fed by a line having an impedance of 0.1+J0.8
Q/®. The Y-connected source at the sending end of the line has a phase sequence of acb and an
internal impedance of (0.02 +J0.16) Q/®. Use the a-phase voltage at the load as the reference to
calculate:

a) the line currents |, I and Ic.
b) the line voltages at the source, Vg, Vi, and Vg,
¢) the internal phase to neutral voltages at the source, Vg, Vo and Ve,

Solution:
a) Line currents?
Analyze the single phase circuit for a-phase

a a A
Z4=0.02 +J0.16 Q — @ Z12=0.1+J0.8 Q —T
—> +
IaA
Van Zy=16+J12Q | 2400[0° V
n N
2400 2400

KVL around the loop > =1201-36.87" A

aA

C 16+ j12)  20136.87°
Using acb or negative sequence to write the line currents therefore:

I,=1,10"=1201-36.87" A
I, =1, 1120+68° =1201+83.13° A
I.=1,1-120+6° =1201-156.87° A
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b) Line Voltages?
V,w =240010°V

V., =U,18°)(Z)=(1201-36.877) 16.1+ j12.8) =2468.1811.62°V

Vab = (\/5 |=307)(2468.1811.62°) =4275.021-28.38° V

Using the Blanace three — phased circuit conditions (Shift by 120°) — acb sequence

Vbec =4275.021120 —28.38° =4275.02191.62° V
Vea =4275.021=120—28.38" =4275.021-148.38° V

c) Internal Voltages

V. =U,18°)(Z)=(1201-36.87") (16.12+ j12.96) = 2482.0511.93°V
Using the Blanace three — phased circuit conditions (Shift by 120°) — acb sequence

V,, =2482.051120+1.93% =2482.051121.93° V
V., =2482.051-120+1.93° =2482.051-118.07° V

®,

< Analysis of Y->A Connection

In this section, we will analyze the circuits resulting from connecting a Y-configured source to a A-
configured load. The simplest approach to analysis is to use the A=>Y impedance network
transformation from the earlier chapter to convert the A load to Y Load as shown below:

Zy

Zn

Z
Zy
\/
Zp
Zy

Delta-<—> Y Transformation
Zr=32Zy or Zy=12Z,/3

Note that in a Balanced three phase A load, all loads are equal which means its Y equivalent

will also have equal loads.

Now that the load is in Y configuration, we can apply the learning from Y->Y analysis

section as shown below:

Step 1) Using the above transformation we can now use the same techniques as Y-Y circuit by
replacing Z, with Zy. After the conversion, the following single phase equivalent circuit may be

used for analysis.
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Step 2) The following circuit can be used to establish relationship between line currents and phase
current in a balanced A load.

A
- 5
laa
Ica
lag -
Za A
lac
|
bB B
—’ C
Z
IcC ’
—=< 5

(1) Phase Current (abc or positive sequence)
lne = 16]0° ; lgc = 1o[-120° ; lca = l[120°
(Note: Iagis arbitrary selected to be the reference and Iy, represents the magnetite of line
current)

(2) Line Current (abc or positive sequence)
laa = lag — lca = 10]0° - 15]120° = \/g lp|-30° = \/g lagl-30°
g = lsc = lag = l6l:120° - 16]0° = /3 lp|-150° = V3 lc-30°
lic = loa — o= 16[120° - 16]-120° = /3 16]90° = V3 lcal-30°

Phasor diagram of Line and phase currents
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abc (or Positive) Sequence

Note: Angle is positive in the counter clockwise
directions

log

laa

One could also go through the process for acb (or negative) three phase system — the only
difference is that the line current leads the phase current by 30°.

la acb (or Negative) Sequence
log

Note: Angle is positive in the counter clockwise
directions

» Example 1 — Y->A connected circuit
The phase current Ic, in a balance three-phase A-connected load is 12 |-25° A. If the phase
sequence is positive, what is the value of IcC?

Solution:

Line Current = lc = V3 1-30° loa= /3 (12)1-25 - 30° = 20.8 |-55°A

» Example 2 -- Y->A connected circuit
The line voltage Vg at the terminals of a balanced three-phase A-connected load is 3210 [0° V.
The line current laA is 75|-15° A. For this circuit

a) calculate the per-phase impedance of the load using positive phase sequence.
b) Repeat part (a) using negative phase sequence.

Solution:

a) Positive Sequence - Z,.

la= V3180° g > lae=(1aa130°) / /3 = (7515°) / /3 = 43.3 [15° A
Zn = (Vas/ lag) = (3210 ]0°)/( 43.3 [15° ) = 74.1 |-15° Q

b) Negative Sequence - Z;

= /3130° g > lag = (Iaa 1:30°) / /3 = (75 [-45°) / \/3 = 43.3 |-45° A
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Za = (Vag/ lag) = (3210 0°)/( 43.3 |-45° ) = 74.1 |45° Q

o,

% Summary of Y & A Loads
» Y Load
= Phase VOItage > VAN: VBN: VCN
= Line Voltage > Vag, Vac, Vac
= Phase Currents are the same as Line Currents = Iz, lpg, lcc

|
— aA
@
+ + +
Vas Zy Van
B - + VBN - -
@o————— ———@
Vac Zs N
+ | -
Vi Zc Ven
) c I "
@

> AlLoad

= Line voltage and Phase Voltage are the same = Vag, Vac, Vac
= Phase Current =2 lag, Igc, lca
= Line Current 2 laa, log, lcc

A
—
IaA
lca
Iag Z
Za A
lsc
lbs '
B
s Z ¢
IcC ’
— >
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11.4. Balance Three-Phase Circuit Power Analysis

Power is an important parameter in circuit analysis since power represents circuit’s ability to effect or
sense the physical environment and other devices. Additionally, power is a integrative measure of
current and voltage, the two main characteristics of any circuit. For these reasons, power calculation and
analysis will be an important part of any type of circuit analysis and design.

At any point-of-time, circuit power is represented by instantaneous power, p(t) or simply p. As discussed
earlier Power delivered by a balanced three-phase circuit is constant with major benefit being the
constant torque developed at the shaft of the three-phase motor is constant which leads to less vibration
in machinery powered by three phase motors.

The following few paragraphs show an approach to prove that instantaneous power is constant in three-
phase balanced circuits. Let’s start by calculating per phase as shown below:

Pa = Van iaa = Vi Im cos(wt)Cos(wt - B4)
Pg = Ve ibg = Vi Im cOS(Wt — 120°) cos(wt - B¢ — 120°)
Pc = Ve e = Vi Im cOs(wt + 120°) cos(wt - B¢ + 120°)

Where:
* van is voltage between a phase and neutral line
* By is the power phase angle (B, — 6ia);
Assume positive phase sequence (abc)
Vm and I, represent the maximum amplitude of the phase voltage of line current.

*

*

*

Vi = \/5 Vo and I, = \/5 lo relating maximum to the effective or rms value per phase.
The Total Instantaneous Power = pr =pa + ps + Pc = 1.5 Vi I, €0S(B0)

Conclusion: Total Instantaneous Power (pr) is constant with respect to time (t).”

In the remainder of this section, we will be discussing average, reactive and complex power in a balanced
three-phase circuit. We will start with a Y-load power analysis and follow it with a discussion of A-Load

power.

< Power Calculation in a Three-Phase Balanced Y—load
Below is diagram of a typical Y-load with voltages and currents.

laA A
: @
+
Notes
—_—=2 Z
= Vg, Vec, Vac are Van A
Line Voltages. i
IbB B
* Van, Ven, Ven are ) ®— Zz; ———@N
Phase Voltages.
+ BN - -
= Line and Phase Currents are
the same in Y Connection. Ven Ze
IcC c +
> @
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Apply the Average Power equations {P = |V| |l| cos(8, - 6))} to calculate Average Power for each of
the three phases:

Pa = |Van| [laal cOS(Bya - Bia)
Pg = |Ven| |lbs| cOS(Bys - Bis)
Pc = [Ven| lec| cos(Buc — Bic)
Note: all Voltage and Current are written in term of their rms or effective values.
The following conditions are true since the analysis is being done on a three-phase balanced circuit:
Vo = [Van| = [Ven| = [Venl
|<1> = ||aA| = ||bB| = IcC|
eCD = evA - eiA = evB - eiB = evC - eiC
Therefore, per phase average power can be rewritten as:
Average Power per phase = Py = Pg = Pc = Py = Vo | COS(B0)
Total Average Power delivered to all three phases can be written as:

Total Average Power = Pt = P5 + Pg + Pc =3P = 3 Vg |l cOS(Bg)

Total Average Power can be written in term of line voltage and current:

Total Average Power = Pt = 3(VL/\/§) I. cos(Bo) = \/5 V_ I. cos(By) Where
* VL and I are the rms magnitudes of the line voltage and current.
* By is the phase angle difference between phase voltage and phase current

Using similar process, Reactive Power (Q) in a three-phase balance Y-load can be calculated by the
following equation:

Reactive Power per phase = Q¢ =V lo Sin(Bo)

Total Reactive Power = Qt = 3Qq = \/5 V_ I sin(By) Where
* VL and I are the rms magnitudes of the line voltage and current.
* By is the phase angle difference between phase voltage and phase current

Complex Power (S = V I*) can be expressed in-term of load using the equations derived earlier for
Reactive and Average Power:

Complex power per phase = S¢ = Van laa* = Ven lbs* = Von loc® = Vo lo* = Po + jQo
Total Complex power = St = 3Sg = \/5 VI 8e

Power Calculation in a Three-Phase Balanced A—load
Below is diagram of a typical A-load with phase voltages and line currents.
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Notes: + _
"lan, loe, lec are
Line Currents. Vag Z, g loa
®lag, lac, Ica are N
Phase Currents. lbs Za
—————@8B Vea

= Line and Phase

Voltages are the same *
in Delta Connection
VBC ZA IBC
) IcC l +
—>
C

Apply the Average Power equations {P = |V| |l| cos(8, - 6))} to calculate Average Power for each of
the three phases of a Three-Phase Balanced A-Load:

Pa = [Vag| ||as| cOS(Bya - Bias)
Pg = [Vic| [lsc| cos(Bvec - Biac)
Pc = |Vcal [lcal cos(Byca — Bica)
Note: all Voltage and Current are written in term of the rms values.

The following conditions are true since the analysis is being done on a three-phase balanced circuit:
Vo = [Vag| = [Vec| = [Veal
lo = |las| = [lac| = [lcal
e¢ = evAB - eiAB = evBC - eiBC = evCA - eiCA

Which means Average Power per phase = Py = Pg = P¢ = Py =V I c0S(B0)

Sum of powers for all phases or Total Average Power = Pt = 3P = 3V |, cOS(B0)

Total Average Power can be written in term of Load Current and Voltage:

Total Average Power = Pt = 3(I|_/\/§) V| cos(6y) = \/5 V_ I. cos(B8y) Where
* VL and I are the rms magnitudes of the line voltage and current.
* By is the phase angle difference between phase voltage and phase current

Using similar process, Reactive Power (Q) in a three-phase balance A-load can be calculated by the
following equation:

Reactive Power per phase = Qg =Vg lo Sin(Bo)

Total Reactive Power = Q1 = 3Qq¢ = \/5 V., I sin(B8y) Where
* VL and I are the rms magnitudes of the line voltage and current.
* By is the phase angle difference between phase voltage and phase current

Complex Power (S = V I*) can be expressed in-term of load using the equations derived earlier for
Reactive and Average Power:

Complex power per phase = Sg = Van laa* = Ven lbg* = Ven lec® = Vo lo* = Po + jQo
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Total Complex power = St = 3Sg = \/5 VLI B
% Example - Power Calculation in a Balanced Three-phase Circuit
The complex power associated with each phase of a balanced load is 144 + j192 kVA. The line
voltage at terminals of the load is 2450 V. For this abc sequence circuit:
(a) What is the magnitude of the line current feeding the Y connected load?
(b) The load is delta connected and the impedance of each phase consists of a
resistance in parallel with a reactance. Calculate R and X.
(c) The load is Wye connected, and the impedance of each phase consists of a
resistance in series with a reactance. Calculate R and X.
Solution:

a) Magnitude of Line Current?

Vas = V3 Vanl30° > Van = (Vas :30°)/ /3 = (2450 1-30°) / +/3 = 1414.51 |-30° V

So =Van laa® > laa" = So/ Van
la* = 1000 (144 +j192) / (1414.51 |-30°) = 1000(240]53.13°) / (1414.51 |-30°) = 169.67/83.13°
[laal = 169.67 Magnitude of the line current feeding the load

b) R & X for A-Connected Load
S=V¥Z* > 7* = V¥/S = (2450)%/(144000 + j192000) =

c) R & X for Y-Connected Load
Zo=Van/laa= 141451 -30° /169.67| - 83.13° = 8.34 | 53.13° =5 + | 6.67 Q
> R=5Q & X=6.67Q
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11.5. Summary

< Balanced 3-phase sequences

V. \A
+120° +120°
V. Va
-120° -120°
Vb Vc
abc (or Positive) Phase Sequence acb (or Negative) Phase Sequence
Va=Vm |0° Va=Vm |0°
Vb =Vm |-120° Lags a by 120° Vb = Vm |+120° Leads a by 120°
Vc=Vm [+120° Leads a by 120° Vc=Vm |-120° Lags a by 120°

Notes: Counter Clockwise is the positive direction to read angles

+»+ 3-Phase Y and A Sources

| a
Z,=Ry, + jXy

a

Zy=Ru + Xy v,

V. / \
Z,=Ry + Xy

Vy

Z,=Ry + Xy b
Zw=Rw + ij Zw=Rw + ij
b c
c
Y-Connected Source A-Connected Source
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< Y=Y Connection

Transmission Lines
A

___________ Source ./ Nk
a Zta
—
IaA
Zga n Z, N Z4
|
0

‘ <
- SD_
=)
N
«Q
o
(o
IN
o
U_l
@
w
N
&

ZLc
Zge
| c Ztc C
— >
S ! IcC
% Single Phase Analysis
a a A
lyy |——@— Zina 4?
V ’
an I A
a ZA
n N

% Y-Connected Load
Vag = Van - V= Vo [0° - Vo [-120° = /3 V4[30° = /3 VI30°
Vac = Ve = Von = Vo [-120° - Vo [+120° = /3 Vol-90° = +/3 Vgy[30°
Via = Von = Van= Vo [120° - Vo [0° = 4/3 Vo|+150° = \/§VCNJ3_OO
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% Y->A Connection

Zn

Zy

Z

Zy

Zp

Delta-€<-> Y Transformation
Zr=32Zy or Zy=12Z,/3
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11.6. Additional Resources

% Nilsson, J. Electrical Circuits. (2004) Pearson.
Chapter 11. Another academic approach to the topic.

% en.Wikipedia.org, Search for “Three-phase electric Power”
An industrial view with animated graphics of the three-phase electric power operations.
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11.7. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.
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Chapter 12. Frequency Selective RLC Circuits (Filters)

Key Concepts and Overview

% Frequency Selective Circuits (Filters)
+ First-order Low-Pass Filters

« First order High-Pass Filters

% Band Pass Filters

« Band Reject Filters

+ Bode Plots

« Additional Resources
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12.1. Frequency Selective Circuits (Filters)

Filters or frequency-selective circuits are used to amplify or attenuate signals based on the signal’s
frequency. Filters are used in all types of devices such as radios, televisions, audio/visual systems,
medical diagnostics and cell phones.

One way to categorize filters is based on the elements used in their construction. Active Filters are
designed using active elements such as Operational Amplifiers and are covered in the next chapter. This
chapter focuses on Passive Filters which are designed only using passive circuit elements (R, L, and C).

As discussed earlier, any system can be defined by its input x(t), output y(t) and impulse function h(t). x(t)
and y(t) represent the signal and may be represent either current or voltage. Basically, Impulse function
relates the input to the output function in time domain as shown below:

X(t) Filter |
Input Si | > 0
nput Signa h(t) Output or Response Signal

h(t) is referred to as the system impulse function response.

By leveraging the learning from the Phasor or frequency domain and allowing for s=jw, the system
relationship may be re-drawn in Phasor or frequency domain as shown below:

X(s) Filter -, Y(s)
Input Signal H(s)=Y(s)/X(s) Output or Frequency Response

H(s) is the system transfer function response.

This system definition is also referred to as the s-domain. The key benefit of using the frequency domain
is the introduction of transfer function H(s) which relates the input to output with a simple algebra:

Y(s) _ Output
X(s) Input

System Transfer Function H(s) = or Y(s)=H(s)X(s) where s=jw

In other word:

Y(jw)

System Transfer Function H(jw) = -
X(jw)

or Y(jw)=H(jw)X (jw)

Transfer function, H(jw), describes the relationship between input and output at a given frequency. H(jw)
serves a very important role in the discussion on filters design and circuit performance. For a complete
understanding of the system and its transfer function with respect to frequency, we need to utilize both
the magnitude of H(jw) represented by |H(jw)| and phase of H(jw) represented by 6(jw). These two
parameters completely describe the relationship between system input, X(jw) and output, Y(jw).

Filters are functionally categorized based on transfer function magnitude |H(jw)| vs. frequency w, and
transfer function phase 6(jw) vs. frequency w. The following diagrams show the transfer function
magnitude and phase graphs for ideal low pass, high pass, band reject and band pass filters. lItis
important to remember that real filter’s transfer function changes over time but here we will assume ideal
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filter where the transfer function changes instantaneously.

% Ideal Low Pass Filter
Low pass filter allows for signals with frequency from 0 to cut off frequency w, to pass through while
blocking signals above cut off frequency w.

IH(jw)|
1
Pass band Stop band
W
W
0 jw)
0 «
0 (jwe) w

®,

% ldeal High Pass Filter
High pass filter blocks signals with frequency from 0 to cut off frequency w, and passes through
signals with frequency above cut off frequency wc.

IH(w)|
1
Stop band Pass band
w
We
o (jw)
(L T —— \
0 w

®,

« Ideal Band Pass Filter
Band pass filter allows for signals with frequency between frequencies w.; and w,, to pass through
while blocking signals with frequency outside the range.
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[H(jw)|

’
Stop band | Pass band| Stop band
w
Weq Weo

0 (jw)
O(We1) o

0 \ w
0(jwe2)

o,

% ldeal Band Reject Filter

Band reject filter blocks signals with frequency between frequencies w.; and w, while allowing
signals with frequency outside the range to pass through.

[H(jw)|

y
Pass band Stop band Pass band

We1 Weo

B(jwe2) 1=

O(wet) 1

As discussed earlier, real filter transfer function does not change instantaneously from one level to
another, therefore, it becomes important to define a criterion to calculate the cut off frequency (w.). The
accepted definition is that the cut off frequency (wg) is the frequency at which half of the maximum power
is being passed through the filter. Remember that H(jw) represents the voltage transfer, therefore, the
power transfer function which is the ratio of power would be square of H(jw) which is the ratio of voltages.

2

IH(jw,)|2=$ or | P(jw, = tmx
‘ 2 )
or
IH(jw.)I=LH
c \/E max

In the remaining sections of this chapter, typical circuits for each of the filter types will be presented along
with their transfer functions in-terms of its components (R,L,and C). The transfer function is derived by
application of node-voltage or mesh-current along with the transfer function definition as shown below:
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V,(s)

|H(s)|= V.(5)

All passive filters are designed using passive components (R, L, and C). Further, they are analyzed
without a load. As itis true in all passive circuits, load has the potential to significantly change the circuit
characteristics. Therefore, it is important to design the filter circuit for a specific range of load.

Each of the following sections cover one type of filter as defined by the range of frequencies which
signals are stopped and allowed to pass through.
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12.2. First-order Low-Pass Filters

A low pass filter can be implemented by using a RC or RL circuit as shown here:

% Low Pass Series RL Circuit
This section analyzes the low pass series RL design and derives corresponding transfer function and

cut off frequency.

step 1) Apply KVL to derive :
R
Vo) L

H(s) =
=y~ R
L

=~ =

step 2) H(jw) =

Jw

+
~ =

R

L

(o)=L
W,W +(z)

o wL
0(jw) =—tan (R)

1
atw, SH(jw )=—H __
c c \/E max

IH(ijIz%IlIz—R

implementation Independent H (s) :

C

s+w,

H(s)=

[H(jw)|

sL

We

» Example
Design a RL low pass filter with cut off frequency of 2,000 Hz and pass band gain of 1.

Solution:
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< Low-Pass Series RC Circuit

This section analyzes the low pass series RC design and derive corresponding transfer function and

cut off frequency.

step 1) Apply KVL to derive : R
1
(s)= Vel __RC I
V.(s) - L Vi(s) 1/sC Z—=V,(s)
RC -
1
step 2) H(jw) = RCl
jW + E
IH(jw)|
1
SN — RC
IH (jw) = 2 . Pass band ~Stopband
w +(—— w
( R C) we
6(jw) =—tan"' (WRC) 0 (jw)
1 0
atw, =»IH(jwl=—4=H_ 0
V2
1
— e g R S ——
|H<jwc)|:i|1|: RC
V2 R
w. + ()
RC
1
W, =——
RC
implementation independent H(s):
H(s) = w,
s+w,
» Example

Design a RC low pass filter with cut off frequency of 80,000 radian/sec and pass band gain of

1.

Solution:
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12.3. First order High-Pass Filters
A high pass filter can be implemented by using a series RC or RL circuit as shown here:

% High-Pass Series RL Circuit
This section analyzes the high pass series RL design and derives corresponding transfer function and
cut off frequency.

step 1) Apply KVL to derive : R
V (s) Ky
(5) = =
Vi) o R +
L Vi(s) sk V(s)
step 2) H(jw) = ]WR B
W+ —
/ L
. w
IH (jw) = ———= .
W +(5)2 IH(w)]
V L T Lo
Q.7 -
O(jw)=90° —tan™ (WT{J) S Pass band
w, U (jw, ) == H "
arw, JW = \/E max 0 (W)
H(jw = e %0
V2 R
w. +(—)

R
w, =—

L
implementation Independent H(s) :
H(s)=—

s+w,

Note: Cut off frequency, w. = R/L = 1/T where T = time Constant

» Example
Using resistors, inductors and a white noise generator (outputs full spectrum of 0 to infinity
HZ), design a system that will drive away bats (Bats hear 200 kHz +/- 50 kHz). The system
should not bother humans (hear 20 kHz max.) and dogs (hear 40 kHz max.)

Solution:
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% High-Pass Series RC

This section analyzes the high pass series RC design and derives corresponding transfer function

and cut off frequency.

step 1) Apply KVL to derive :

V (s) s
H = o =
(s) Vi)
RC

step 2) H(jw) :Ll
w+——
RC

IH (jw) = id

w2t ()
(RC)

6(jw) =90° —tan"' (WRC)

atw, =>H(jw, )= LHmax

V2
1 w,
H(jw ) =—7IlkF ————
V2 SRR
w. + ()
RC
1

W, =—

RC
implementation Independent H (s) :
H(s)=—"

s+w,

1/sC
+

vis) RVl

IH(w)|

1 oo nessenecnscnaes
07 .............................. >
S Pass band
W

0 (jw)
" \
0° +

Note: Cut off frequency, w.= 1/RC = 1/T where T = time Constant
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12.4. Band Pass Filters
Band pass filters as discussed earlier allow for signals with frequencies in the range between the cut off
frequencies w.; and wc, to pass through. All other signals will be blocked. The two cut off frequencies

1
Wi and we, occur when [H(jwe)|=(—=)H . -

V2

Furthermore, we need to define resonant or center frequency (wy) which is the frequency where circuit’'s
transfer function (H(jw)) is purely real. Mathematically wy is the geometric center of the pass band

Wo = A WeWer -
Defined below are two other parameters which characterize the quality of filter:

> The bandwidth, 8 = wg — Wy
Bandwidth defines a range of frequencies that signal passes through the filter.

» Quality factor, Q
Quality factor is defined as the ratio of center frequency to Bandwidth (Q=w,/ £). Quality factor

(Q) is a measure of filter quality since Q normalizes the bandwidth with respect to its pass band
frequency.
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% Band Pass Filter using series RLC circuit

This section analyzes the band pass filter using series RLC design and derives corresponding
transfer function, cut off frequencies, Bandwidth and quality factor.

Apply KVL to derive :

R sL 1/sC
V. (s) s s
H(s)=—"—= L
Vi(s) s2+(£)s+L +
L LC Vi(s) R Vo(s)
R . _
(—)jw
H(jw)= b
(w)* + () jw+——
L LC
R
VL
H (jw) =
" \/<1—w2>2+<wR)2
LC L
R
S

0(jw) =90° — tan™' (1—L)
2

— =W
LC

Calculate Key Band pass filter paramenters :

1 1
1) w, occures when total impedance is real then = jw L+— =0=>w, =,—
Jw,C C

2) Cutoff — Freq.,w, occures when IH (jw, ) = % H,. and H =IH(jw,) =1

w, —

L L S S (. A L G TR SN (S I

V2 \/(1_W2)2+(W R, 2L V2L LC 2L V2L Le
LC c c

/ 1
Note that wy = \|w.w,, = Ic same as before

3) Bandwidth — [ = wc2—wcl = %

4) QualityFactor = Q = v;) =0= 1/ CIL?Z
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implementation Independent H(s),w_,,W,,,:

2 2
H(s)=%; w,, =W, —L+ 1+ 1 W, =W, +L+ 1+ 1
ST+ Bs+w, 20 20
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% Band Pass Filter using parallel RLC circuit
This section analyzes the band pass filter using parallel RLC design and derives corresponding
transfer function, center frequency, cut off frequencies, Bandwidth and quality factor.

Apply KVL to derive: R
V (s) s/RC
H =2 =
© Vi(s) s’+s/RC+1/LC Vi(s) L .
w, =+1/LC 1/sC sk & Vo(s)
B=1/RC B
Q=w,/p

Implementation Independent H (s),w,,,W,,,:

2 2
H(s)z%; W, =W, —L+ I+ L ;W =W, +L+ I+ L
s°+ fBs+w, 20 20 20 20
» Example

Design a filter that has pass band from 100 to 400 rad./sec.

Solution:

» Example
Design a filter that detects whistling.

Solution:

» Example
Design a filter that shuts off lights when there is no sound ranging from 10 Hz to 20 kHz
present.

Solution:

» Example
Design a band pass filter with:
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WO = 200,000 rad/sec
B = 500 rad/sec

Solution:
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12.5. Band Reject Filters

Band reject, like band pass filter, is characterized by five parameters: 2 cut off frequencies, center
frequency, bandwidth and quality factor. Again only 2 of the 5 parameters (W, W, W, p and Q) can be

specified independently and the rest can be derived.

% Band Reject Filter Using Series RLC

This section analyze the band reject filter using series RLC design and derives corresponding transfer
function, center frequency, cut off frequencies, Bandwidth and quality factor.

Apply KVL to derive:

+ Vo(S) -
v (s) L+ sL | |1/sC
Vi) s+ 4R
sC V((s) R
R
H(s)= LC
) 1
ST s+ — _
LC [H(jw)|
1
e 1
H(]W):(W/R)+(1_W2) 0.707 : ....... /
L’ e
1
| — w2 Wei Wo Wy v
H(jw) = .
R 6 (jw)
e )
90° |—
wR
. _ -1 L
6(jw)=—tan L . 0° w
LC
-90°
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Calculate Key filter paramenters :

1) w, occures when total impedance is real then = jw, L+

1 / 1
=0=>w, =,/—
jw,C LC

2) Cutoff — Freq.,w, occures whenIH (jw, ) = L H,, and H , = H(jw,) =1

ﬁ max
Y
1 R 1 R R 1
== Lo G 42 and wy=——+ G +)
V2 1 R 2L° LC oL V2L LC
(—=w. )+, )’
LC ¢ ‘L
3) Bandwidth—)ﬁzch—wclz%
w L
4)QualityFactor —» Q =—2= =
)Quality 0o B RC

implementation Independent H(s),w . ,W.,,:

e R ) [ ey (o
sS4+ fBs+w, 20
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% Band Reject Filter Using Parallel RLC
This section analyzes the band reject filter using parallel RLC design and deriving the corresponding
transfer function, cut off frequencies, Bandwidth and quality factor.

Apply KVL to derive: + Vo(s) -
H(s)=V"(S)= : s*+1/LC R
Vi(s) s +s/RC+1/LC
w, =+1/LC Vi(s) 1/sC =— sL
B=1/RC | 1
_w,_ |RC
y/] L

Implementation Independent H (s),w ., W,,,:

2+ 2 2 2
H(s):%; W, =W, —L+ 1+ L 5 W, =W, +L+ I+ =
sT+ Bs+w, 20

» Example
Design a band reject filter with:
WO = 200,000 rad/sec
B = 500 rad/sec

Solution:
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12.6. Bode Plots

A Bode plot, named after Hendrik Wade Bode, is a logarithmic plot of either magnitude or phase of the
transfer function (H(jw)) versus frequency(w). It is intended to approximate the characteristic of a given
filter circuit without the need to calculate every point and plot it. This is a useful tool for engineers to
estimate filter behavior during the design phase. For an exact plot of the circuit transfer function, designer
may use a modeling tool such as Mat lab.

Before starting with Bode plot, we need to do a brief review of common log definitions and operations.
Log is defined by the following relationship:

Log,a=x=a=>b" where

“a” is the value being logged

“b” is the log base. In the following special cases, base is not shown:
“base 10” is written as log(a) = x = a= 10"
“pase e” is called natural log and is written as In(a) = x > a= &*

Below are some of the most common log operations:
Log(ab) = Log(a) + Log (b)
Log(a/b) = Log(a) - Log (b)
Log(a") = n (Log(a))

Here are three ftrivial log calculations to remember:
Log,,10=1
Log,,1=0
Log,,0 < Invalid

The remainder of this section describes the process of drawing a magnitude Bode plots based on the
circuit transfer function {H(s) = V,(s)/Vi(s)}.

Bode plot’s horizontal axis represent frequency (w radians/second) in logarithmic scale. The vertical axis
of Bode plot is the value of Ags which is {Ags = 20 log |H(s)|}. Here is a typical Bode plot axis and labels:

Aqgs = 20Log{IH(s)|}

20dB |-
10dB [
I I ) A w, Radian/Sec.
0 01 ] 10 100 Frequency in log scale
-10dB |
-20dB - Note: “w=0"is an invalid w value since log (0) does not exit.

Now, let’s explore the relationship between H(s) and Ags on the Bode Plot. A typical transfer function may
have the following form:
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_ K(s+z) S H(jw) = K(jw+z)

H(s) —~
s(s+p)) Jw(jw+ p,)

Kz, (1+ jw/z)
p(w)d+ jwl p))

Stepl) Convert to Standard Form H (jw) =

Kz L
Let K, = Y which is a constant .".
Pi

Ko ll+jwlz Vg K 11+ jw/z |
[wlBOI1+ jw/ p, I@ [wlll+ jw/ p, |

H(jw) = lp, —90 - 5,

where: @, =tan"'w/z, B, =tan”' w/p,
Next, evaluate the value Agg = 20 log |H(s)| where units are decibels (dB)

A, =20Log,, | H(jw) |
0 M where K | = Xz which is a constant ..
[wlll+ jw/p, | 2
A, =20Log, K, +20Log,, 11+ jw/z, |-=20Log,,w —20Log,, |1+ jw/ p, |
Look at each term and then combine the graphs from each term
20Log K, = straight line : (+Value if K, >0) (equals 0 if K, =1) (-Value if K, <1)
20Log,, 11+ jw/z, 1> 0asw—0
20Log,, 11+ jw/z, |= 20Log,,(w/z,) as w — o

A, =20Log

dB

General form of H(s) is shown below:

)= K, (s+z)(s+2,)(s+25)...
s(s+ p)(s+ p)s+ ps)...

Leveraging the log operations (log a/b = Log a — log b) as done in the earlier example, we can turn all
these multiplications and divisions to additions and subtractions as shown below:

A, =20Log, K, +20Log,, |11+ jw/z |+...—20Log,,w —20Log,, 11+ jw/ p, 1 —...
Each term adds to or subtracts from the slop of Bode plot as shown below:

*  K,=>20LogK,
This is a horizontal line on Bode plot representing constant value.

* 1/s=20Log,w

This term is a straight line with a slope of -20 dB/decade that intersects the 0 dB axis at w=1.
Note: A decade is 1-to-10 change in frequency. For example w=100 to w=1000 is a decade.

® (s+z)=20Log,, 11+ jw/z |
This term is a straight line with a slope of 20 dB/decade that intersects the 0 dB axis at w=z;.

*  1/(s+p,)=-20Log,, |1+ jw/ p,|
This term is a straight line with a slope of -20 dB/decade that intersects the 0 dB axis at w=p;.
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o,
°n

Example — Bode plot

Graph the Bode plot for H(s) =

k, =~/10 = A,, =201og,,(10)°  Note k, =

J10(s +0.1)
—_— W,

hen

s(s+5)

P

Kz,

7z, =0.1rad / Sec. = 20dB per Decade with 0 dB axis intersect at w = z; (0dB when w < z,)

—20Log,,w — —20dB per Decade with O dB axis intersect at w =1

p, =5 rad | Sec. — —20dB per Decade with 0 dB axis iintersect at w = p,(0dB when w < p,)

AdB

+50 dB

+40 dB

+30 dB

+20 dB

+10 dB

+00 dB

-10dB

-20dB

-30dB

-40 dB

-50 dB

An Octave
<>

A Decade

0.01

» Example

0.1

1

2 5

w, rad/s

10

100

1000

if the input to the circuit represented by the above Bode plot is v(t)=10Sin(10wt) volts, what is
the output at w=100 rad/sec in volts.

Solution:
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A better approximation may be achieved by a 3 dB at the cut-off frequencies as shown below:

+50dB =g
+40 dB w1398

+30 dB I

+20 dB \\‘ \

+10 dB ‘3B

+00 dB TN

-10 dB B

-20dB

-30dB

-40 dB

-50 dB

0.01

0.1

5

10

100

1000

w, rad/s

As discussed earlier 34p ~ 1010g% improves the graph’s approximation of the real filter transfer function.
2

This is due to the fact the 3dB represent the point where power is one half of maximum power at cut-off
frequency.
% Example — Bode plot

10°

Graph the Bode plot for H(s) = ———
P P (1000 + 5)°

Solution:
"Student Exercise”
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% Example — Bode plot

Graph the Bode plot for H (s) = s(s +100)(s +1,000)
(s +5,000)(s +10,000)
Solution:
"Student Exercise”
% Example — Bode plot
3
For the transfer function, H (s) = 10”(s +100)
s(s +10)(s +1000)

a) draw Bode Plot.
b) find output voltage magnitude if the input in vi(t) = 25 Cos(100t — 1/2).
c) find output voltage magnitude if the input in vi(t) = 25 Sin(10,000t + M1/3).

Solution:
“Student Exercise”
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% Example — Bode plot

For the following filter circuit use a bode plot to graph and describe its response (functionality):

5 kQ 5kQ 10 nF 5mH
VATAVAN
v v i
+
+
Vi(t) —— 25nF ;OH Vo(t)

Solution:
"Student Exercise”
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12.7. Summary

®,

Vi(s) —»

% Transfer Function and Cut-off Frequency

System

Transfer Function, H (jw) =

Vo (s)
Vi(s)

Cut-off frequency, Wc, satisfies the following equation:

0

% RL Circuit, {WC =

«+ RC Circuit, {wc

H (w0l ==
R
L
sL
N L Low Pass Filter:
+ Voup(S) - . HLP (S) _ V;LI(’ (;) - w,
i(s s+w,
R i iiter:
Vyip(s) High Pass Flgeor. o) )
Hyp(s)=—"—=
Vi(s) S+ w,
_ b
RC
1/sC
I I Low Pass Filter:
Vv Vo,,(s) W,
+ Vaie(s) - + H,,(s)=—X""=
R Voup(s) Vi(s) s+w,
B High Pass Filter:
Vi
H,, (s) = 2 (5) __s
Vi(s) S+w,
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< RLC Series Circuit, | w, = L & p= 5}
NLC L
sL 1/sC
I | Band Pass Filter:
VoriS) - Vop(s) ﬂs
H,,(s)=— = 2
Vi(s) R + Vi(s) s+ fs+w,
Vor(s) Band Reject Filter:
- v, 4w’
Hop(s) = 2ot S0,
Vi(s) s*+fBs+w,
_— 1 1
< RLC Parallel Circuit, | w, =— & f=—
N LC RC
R
T Voms) - ' Band Pass Filter:
Vi(s) _Vor(s) _ Ps
+ HB (S) - . - 2 2
1/sC Vi(s) s>+ fs+w
sL VOP(S) ) . ¢
_ Band Reject Filter:
V . (s) 57+ wo2
Vi(s) s+ fs+w,
% Quality Factor
w,
0=—
B
< Filter equations
Filter Type W, ¢] Q Wc H(s)
RL RIL W
Low Pass ‘
RC 1/RC s+w,
RL RIL s
High Pass
9 RC 1/RC St+w,
Series R/L Bs
Band Pass | parallel 1/RC 1 1Y s*+ Bs+ w02
Series VI/LC R/L Wo/B | W, i@—k 1+ E e
Band Reject | Parallel 1/RC 2—02
s*+ Bs+w,
% Bode Plot

Graphical representation of transfer function, H(S), using logarithmic frequency scale.
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12.8. Additional Resources

% Nilsson, J. Electrical Circuits. (2004) Pearson.
Chapter 14.
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12.9. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.
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Chapter 13. Active Filters

Key Concepts and Overview

% Active vs. Passive Filter

% First-order Active Low Pass Filters

« First-order Active High Pass Filters

% Scaling Filter Elements and Parameters
% Active Band Pass Filters

< Active Band Reject Filters

% Higher Order Active Filter

% Specialized Filter Designs

« Additional Resources
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13.1. Active vs. Passive Filter

This chapter covers design and analysis of active filters. Many of the concepts introduced in the previous
chapter apply directly to active filters. All four basic filter types (low pass, high pass, band pass and band
reject) can be designed using Op Amps, resistors and capacitors. The use of Op Amp, an active
component, is the reason for naming this type of filter active.

Active filters have three distinct advantages over their equivalent passive filter designs:

1) All active filters can be designed without inductors. This is an advantage since inductors are
large, heavy, highly variable and costly to produce. Additionally, Inductors produce an
undesirable electromagnetic field effect in the circuit.

2) Active filters can be designed with gains larger than one which is the maximum gain possible
with passive filter. In other words, active filters allow signal amplification.

3) Active filters’ cut off frequency and magnitude of transfer function do not change with the
addition of load impedance, unlike a passive filter.

In general, an active filter is preferred, due to the advantages listed above, as long as the power required
for the Op Amp DC Bias is available.

The remainder of this chapter is dedicated to the analysis and design of Active filters for each of the major
filter types (low pass, high pass, band pass and band reject). Unless specified otherwise, we will be
using ideal Op Amp model which means Op Amp input currents Ip = In = 0, input voltages Vp = Vn and
open loop gain A = «.
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13.2. First-Order Active Low Pass Filters

This section introduces a first-order active low pass filter design with a Bode plot of its transfer function
and definition of its prototype design.

Note: Gain and Cut off frequency can be set
independently; and the gain may be >1.

Vo
H(s)=—="?
)= C >1/C
At Vi write KCL Equation 1
Vn—Vl+Vn—V0+Vn—Vo: R2
R, R, 1/sC s
Vp=Vn=0 R1 |
n
Vo R 1 —>
H(s)=—=—-2 ¢ I °
(s) Vi R R,Cs+1 . L T
R : \%
H(s)=—K—<—where K=—% w, = ! Vi °
+w, R, R,C -

Age =20 log [H(s)|

20log K

B3

"""""""""""""""""" /‘ : ‘L\ -3 dB=20log(1/(2)*°
==X
AdB S
NN\ Slope = -20dB
Corner Frequency b "N
. |
W/2 W, 2w, w, rad/s

% Prototype low pass Op Amp filter

In general prototype filter is a filter where the gain K=1 and cut off frequency w,=1. Therefore, a
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prototype low pass filter may be defined by:
H(s) = (-1)/(s+1)
Ry=R,=1 ohm and C=1 F.
% Example
Design an active low pass filter with a gain of 230 and cut off frequency of 2000 Hz.

Solution:

s Example
10°

Design an active filter with transfer function: H(s) = ———.
s+ 5000

Solution:
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13.3. First-Order Active High Pass Filters
This section introduces a first-order active high pass filter design, Bode plot of its transfer function and

definition of its prototype design.

H(s)= V—? =? R2
Vi A/
At Vn write KCL Equation R1 G 31/3C
. I
Vn-Vi Vn—Vo .
+ =0 ‘—
R +1/sC R, W lp —e
+ = +
Vp=Vn=0 v Vo
I
P -
Vi R +1/sC 1
H(s)=-K where K = Ry w L
s+w, R, RC
AdB =20 |Og |H(S)|
W2 w, 2W w, rad/s

o,

< Prototype High Pass Op Amp Filter

As discussed earlier, prototype filter has a gain K=1 and cut off frequency w.=1. A prototype high

pass filter may be defined by:
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H(s) = (-s)/(s+1)
R;=R,=1 ohm and C=1 F.

+ Example — Active High Pass Filter Design
Compute the values of R, and C that yields a high-pass filter with a pass band gain of 1 if Ry is 1 Q.

Solution:
Gain=K=R,/R1=1 > R, =1Q
Cut Off Frequency =w,=1/(R{C) > C=1F

Note: This is the prototype of high pass filter (unity) where C=1F, R; = R>=1Q

All the other filter types such as band pass and band reject may be designed using a combination of low
and high pass filter. Next section introduces scaling process before discussing other types of filters.

s Example
Design an active low pass filter using 10,000 Q resistors with a cut off of 50 krad/s. Start with a
prototype filter.

Solution:
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13.4. Scaling Filter Elements and Parameters

This section introduces the concept of filter design scaling with respect to cut off frequency and
magnitude of transfer function. The scaling process applies to both active and passive filters. By the
definition component scaling factor Ky and frequency scaling factor K; are positive. These parameters
scale the value of capacitors, inductors, resistors and frequencies.

In the following analysis the prime is used to identify scaled parameters (R’, L', C’, w’) and the original
parameters are shown as not primed (R, L, C, w). Active and passive design differ only in the fact that
passive filter gain is less than 1 (due to loss) and active filter gain is equal to the ratio of feedback
impedance and source impendence control the gain.

The following steps outline the process of scaling factor application:

» Select the cut off frequency, w, for low/high pass or center frequency, w, for band pass/band
reject filters at 1 rad/s

» Select gain, K= 1
> Select C=1F

» Calculate the value of resistors needed to the reach the desired pass band gain at 1 rad/s cut-off
or center frequency.

» Use the scaling steps below to compute component values that provide the desired cut off or
center frequency & gain. Note that original component values are without prime (R, L, C, w,).
and scaled component values are shown with prime (R, L', C’, w’).

e Component Value Scaling
K. is the component value scaling factor which allows changes in value of component without
impacting the frequency or the filter transfer function.

R=KR, L=KL C=C/K, >K=R/R=L/L=C/C

e Frequency Scaling
Kt is frequency scaling factor (K: = w¢'/wg) for low or high pass and (Ki=w,’/w,) for band reject
or band pass filters. By adjusting based on as shown below, the cut off frequency is adjusted
to the desired value.

R=R, L=UK, C=CK >K=LL=C/C

e Simultaneous Frequency and component value scaling
R =K.R, L =(KJ/K)L, C =C/(KcKy)

% Example — Scaling
What scale factors will transform the prototype high-pass filter into a high-pass filter with a 0.5 uF
capacitor and a cutoff frequency of 10 Khz.

Solutions:
We know for the prototype high-pass filter W, = 1 rad/sec and C = 1F

Frequency Scale Factor > K= w,/ w, =20,000 1/1 =62,831.85
Component Value Scale Factor > K;= C/(KC')= 1/ (62,831.85 x 0.5 10'6) =31.831
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13.5. Active Band Pass Filter (Multi-stage Cascading Filter)
As discussed earlier active band pass filter can be designed using multiple low pass and high pass filters.

The gain may be controlled using an amplifier stage. Below is example of a prototype (Unity) band pass

filter block diagram, circuit and Bode plot of the magnitude of transfer function:

Unity Gain Low-Pass Filter Unity Gain High-Pass Filter
Vi w » S
7 H)=-——2 H(s)=-
S+W,, S+wWy
CL>1/SC,
I
R. Ry

\ﬁ

v A ——

Ags =20 log [H(s)|

RH CH 91/SCH

—/\f—

Inverting Amplifier

R
Hs)=——" B
Ry
/\/
_.
+
Vo

Gain

-3dB point

N
X

Low pass Fi@\
X

Wez 41 000

x1 x10 cl x100 X10,00 X100,000
w, rad/s
The transfer function of the above active band pass filter may be calculated by multiply transfer
function of each of the stages as shown below:
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Vo w s R Kw s
H(S) — — —| — c2 _ _ _f - _ c2
Vi S+ W, s+w, R, (s+w)(s+w,)
The Bode plot and transfer function show that the cut-off frequency, Wy, is equal to the high pass filter
stage cut off frequency while the cut-off frequency, W, is equal to the low pass filter cut off frequency.

The above process of treating each stage independently is only valid if the W, s much larger than W4
(Weo >> W¢q) which means that W, s at least twice the value of W, (W, >= W¢4). Using the assumption
that W, >> W, the transfer function for H(s) may be rewritten as:

K
H(s)=— Weal
(s+w ))(s+w,)
Where :
1
W, =W, = Low pass filter cut —off frequencey
RLCL
1
W, =W, = High pass filter cut —off frequencey
RH CH
W, =W, W, Center frequencey by definition
Rf . .
K= e define the gain

i

% Example — Active Band pass Filter Design
Design a filter that can pass signals between 250,000 to 500,000 Hz with a gain of 3. The Circuit can
only use 10 pF capacitors.

Solution:

Given: fo; = 250 kHz, f., = 500 kHz, K=3, C=10 pF and all resistors.
Find: Filter Design

1

W, =w, = = 27.500000=———— = R, =314Q
R,C, R, x10x10

W =Wy = ! = 27.250,000 = —— = R, = 63.7 Q
R,;Cy R, x10x10

R R
K=—L = 3=-—L
R, R,

Assume R, =1kQ = R, =3kQ
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C|_=1OUF
&

RFE{-{“ Q Ry=63.70Q A3 kO
=

R.=31.4Q 10 uF 8%
Vv e ) Ri=1 kQ
. RH=63.7 Q —A\— .,
Vi + N
I Vo

Page 289
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13.6. Active Band Reject Filter (Multi-stage cascading filter)

As discussed earlier active band reject filter can be designed using multiple low pass and high pass
filters. The gain may be controlled using an amplifier stage. Below is an example of a prototype (Unity)
band pass filter block diagram, circuit, and Bode plot of the magnitude of transfer function:

. . . W(/l
»| Unity Gain Low-Pass Filter H(s) =— : —
s+w, Summing Amplifier
i R, —> v
p H(s)=——— °
L»| Unity Gain High-Pass Filter H (s) =— R;
s+w,,
o
F
Re
A —
Rc
Ri
2% ’ L A—
R
+
v
) —e
+ RH + +
Vi /\/ Vo
} Ry Cx -
i — " 1
_/\r-—
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Ganp=——=z-=——z—- -~~~ —————F—-—-——————— P =

v
-30B POINt |---weemmmmemmmeee b _____ \\ _____ //
N\

High Filt
Low pass Filter Igh pass Filter

7.

X1 x10 x100 x1000 x10,000 x100,000

w, rad/s

The bode plot and transfer function shows that the cut-off frequency, W4, is equal to the low pass filter
stage cut off frequency, while the cut-off frequency, W, is equal to the high pass filter cut off frequency.

Vo -w, - R R, \s>+2w, s+w. w
H(S):_: cl + __f — _f cl cl "2
Vi stw, stw, R, R\ (s+w, )(s+w,)
The above process of treating each stage independently is only valid if the W, is much larger than W,

(We2 >> W) which means that W, is at least twice the value of Wy (W >= W¢4). Using the
assumption that W, >> W, the transfer function for H(s) may be rewritten as:

2
sTH2w s+ w W,

H(s)=K
(s+w, )(s+w,)
Where :
W, =w, = ! Low pass filter cut —off frequencey
RLCL
1
W, =W, = High pass filter cut —off frequencey
RH CH
Wy =W, W, Center frequency by definition
R, : :
K = e Defines the gain

< Example — Active Band Reject Filter Design
Design a filter that onlg/ passes through signals with frequencies below 10° rad/sec and signals with
frequencies above 10" rad/sec. The only resistors available are 10 kQ resistors but you can use
various capacitors in the design.

Solution:
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Given: wg = 10° rad/sec, w., = 10° rad/sec, R=10 kQ
Find: Band reject filter design.

w, = ! = 10°= 41 = C, =100 pF
R,C, 10°C,
1 8 1
W, = = 10" =— = C, =1pF
R,C, 10°Cy,
Wy =AW W,y Center frequency by definition

R
K=" = 1="L= R, =R, =10 kQ
R R

i i

Ri=10 kQ
A

C. =100 pF
F
R. =10 kQ
/\ﬁ
R.=10 kQ
A/ . Ri=10 kQ
A —
+
‘___
. Ru=10 kQ
Vi
- CH=1 pF
1 ‘/Y_{ Ri=10kQ
Ru=10 kQ AN\ —
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13.7. Higher Order Active filter

So far we have designed filters with transfer function delivering a “ -20 dB/decade” slope transition
between pass band and stop band of filters which we have referred to as 1* order. For the majority of
applications a much faster transition is expected between the pass and stop band. One way to meet this
need is to cascade multiple 1% order filters to increase the transition period slop. In general, an n-stage
cascade filter with n identical low-pass filters will transition from pass band to stop band with a slope
equal to “(-20)(n) dB/decade”

For example a three stage Low Pass filter:

Unity Gain low- Unity Gain low- Unity Gain low-
i Pass Filter Pass Filter
Vi —» Pass Fllter1 R 1 L, : L v
H(s)=——— H(s)=- H(s)=———
() s+1 s+1 s+1

Agg =20 |Og H(s)| < w, direction as n increases

0B L. 5 5
' 1% order
-20 dB ! .
-40 dB l \\:g"" order
60 dB E 3 order™
x1 x10 x100 x1000 %1000 x100,00
w, rad/s

Mathematics and the above Bode plot for the nth order low pass demonstrate the effects of using multiple
stages of the same type filters is to create steeper transition. The only issue is that the cut-off frequency
moves back closer to w=0 every time n increases as shown below:
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For an n stage low pass filter, transfer function is derived below:

e e ) v eee) e
Vi s+1 A\ s+1 s+1 s+1 (s+D"

Calculating the new cut —off frequency for nth order filter
| H(s) = €L

V2
1 1

lH(jw ) H ——m— |=—
R P R

1 1
(w2 +n7 N2

w,, =\ (2)" =1 new cut — off frequency (3 dB point) for nth order filter

The cut-off frequency of a third order prototype unity low pass filter is:

w, =432 -1=0.51rad / sec

ch = |: % - 1j|WCl

Example
Design a 4" order low pass filter with cut off frequency of 12400 rad/sec.

Solution:

This assumes that each stage has a cut off frequency of 1 rad/sec. If the cut off frequency of each
stage is W4, the n order cut off frequency would be:
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% Example
Design a low pass filter with cut off frequency of 20,000 Hz and drop off in gain of 220 dB/decade
using active low pass filters.

a) How many stages are needed?
b) find Wc, R and C for one low pass filter stage.

Solution:
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13.8. Specialized Filter Designs

In this chapter, we have presented generic filters for each of the four categories (low pass, high pass,
band pass and band reject). There are numerous specialized filter designs, in use with each providing a
unique advantage in a given application. Here are some examples with brief description:

< Butterworth Filter Design
The Butterworth filter design provides maximum pass band flatness which means it is optimal for
applications requiring uniform gain across a range of frequencies in the pass band.

% Tschebyscheff Filter Design
Tschebyscheff filter design provides higher gain roll off but has more ripples in the pass band.

% Notch Filter Design
A notch filter is a band reject filter with a high Q factor (narrow stop band). It is commonly used in
audio applications to reduce effect of feedback.

% Bessel Filter Design
Bessel filter design provides linear phase response (near constant group delay), which means the
signal shape is preserved in the pass band.

As mentioned earlier, there are numerous specialized filter designs based on the application
requirements. It is important to research available designs when selecting filter design for your
application.
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13.9. Summary

®,

+»+ Active First Order Low Pass Filter

H(s)=v—0.=—K .
Vi s+w,

% Active First Order High Pass Filter

C >1/SC
|
R2
\—
R1 |
NV
I Y
. —> +
A Vo
R2
\
R1 C->1/SC
+
Vi

!
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®,

% Scaling

Gainscaling > R =KjR, L =Kg, C =C/Kq

Frequency Scaling >R’ =R, L =L/K;, C =C/K;

« Band Pass Filter

Vi(S) —» Wo

Low Pass Filter

WCL > WL‘H

Wo = V WCLWL‘H

ﬁ = WL‘L - WCH

_Vo(s) _

A 4

Ps

High Pass Filter
WecH

H(s)

®,

« Band Reject Filter

Low Pass Filter
WeL

A 4

High Pass Filter
WeH

A 4

% n" Order Low Pass Filter Cut Off Frequence

We, = lt\/%—lkﬂfcl

CVils) P+ fstw,”

WL‘L < WL‘H

W, =

V WCL WL‘H

IB: WL‘H - WL‘L

H(s)

_Vo(s) _ 57+ W02

Vis) s+ fBs+w,’
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13.10. Additional Resources

% Nilsson, J. Electrical Circuits. (2004) Pearson.
Chapter 15.
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13.11. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.
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Chapter 14. Two-Port Circuit or Network

Key Concepts and Overview

D3

» Introduction

R?

»  Two-Port Circuit Models

R

»  Two-Port Circuit Analysis

D3

» Interconnecting Multiple Two-Port Circuits

D3

» Additional Resources
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14.1. Introduction

As discussed in earlier chapters, it is beneficial to use models in simplifying design and analysis
processes. The Two-port Network model makes it possible to use of 4 parameters to define a passive
electrical circuit. The Two-port Network model may also be referred to as Two-Port Circuit model or Four-
Terminal circuit. This model is used in Analysis of filters, transistors and other electrical devices.

A Two-port circuit is an electrical device with two pairs of terminals. Each pair of terminals is referred to as
a port which is defined by its voltage and current. Typically the two ports are input and output of the
circuit. Below is a system diagram of Two-port circuit using passive convention:

- %a coet+—
+ +
Vi Two-Port Network Vo
— b de—M

The following restrictions apply to all Two-port Circuit analysis in this chapter:

e Circuit cannot include any stored energy.

e Circuit should not contain any independent sources. Although, dependent source are
allowed.

e The current in and out of each port must be equal. In other words, current entering terminal
“a” must be equal to current exiting terminal “b” while current entering terminal “c” must equal
current exiting terminal “d”.

e External connections are only made at the two ports.

Two-port Circuit is modeled based on the ports’ current and voltage variables (i, vy, i2, Vo) and make no
use of the internal current and voltages in its external definition. Furthermore, Two-port Circuit analysis is
performed in s-domain since it provides a more general analysis environment:

—— %a ceo—
+
V, S-domain \72
- 2-Port Network )
—¢b de——
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14.2. Two-Port Network Models
There are multiple approaches to selecting, calculating and measuring the value of two-port network
parameters. The most common parameter types used to model two-port network are listed below:

(1) Impedance Parameters (z-Parameters)

(2) Admittance Parameters (y-Parameters)

(3) Hybrid Parameters (h-Parameters)

(4) Inverse Hybrid Parameters (g-Parameters)

(5) Transmission Parameters (ABCD-Parameters)

These parameters may be calculated if the internal circuitry is exposed for analysis otherwise they may
derived from measurement of ports’ currents and voltages. Any of these parameter sets may be
converted to any other by algebraic operations.

In the following sections, Two-port Network models will be introduced utilizing of the five parameter sets:

®,

« Impedance Parameters (Z Parameters)
The circuit is defined by the following two equations:

Vi=zul, + 2,1,
V=20 + 21,

. . |:‘/1:|_|:le Z12}|:Il:|
or in matrix form =
v, 2 In L

where :
ZHZKQ and zmzﬁQ when I, =0
1 1
zzzzﬁQ and ZIZZKQ when I, =0
2 12

The z parameter definitions above simply state that z;; and z,; are measured or calculated with 1,=0
(or port 2 is open). While, z,, and z4, are measured or calculated with 1,=0 (or port 1 is open).

When working with 2 port network, you are either given access to circuit drawing (White box) or just
given access to the external two port (Black box).

» White box problem example
You are given a circuit diagram such as the one shown below and asked to write the Z

paramaters.
l4 10 kQ 5kQ l>
E— . 4t
/\/ /\/
+ +
V1 2 20 kQ V2

To solve this type of problem, apply circuit analysis techniques such as KCL/KVL and z
parameter definitions to calculate each parameter:
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i =0-> Zyz=Vy/l,=20 KQ
Zy = Vo/l; =25 KQ

lb=0-> Zy; =V4/l1=30KQ
Zyy = Vo/l; =20 KQ

30 20
Z = KQ
20 25
Black box problem example

In this Black box type problem, you are only given the data that can be obtained using multimeter
and access to external port such as the following table:

I Vi 2 Va
0 1V 2A 3V
1A 2V 0 4V

To solve this type of problem, apply the data in the table to the Z parameter definition to calculate
each parameters:

h=0-> Z1,=V/I,=050Q
Zy=Vo/l,=150Q

b=0-> Zy;=Vy/1=2Q
Zy=Vo/l1=4Q

2 05
Z = Q
4 1.5
» Example — z-parameters
Redraw this circuit as two-parameter network and calculate the corresponding z-parameters.

|
I 5kQ 4 kQ <
+

- A AU

10 kQ 20 kQ 10 kQ
V1 V2

Solution:
Start with |, = 0 to find Zy; = V4/l; and Zy; = V,/l; a which is the same as the equivalent
resistance of the following circuit:
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l,=0
_h 5kQ 4k/9\/ ,2_
+
10 kQ 20 kQ 10 kQ
\'2

Vi

Write KCL equations for V¢ and Va:
-ly + V4/10,000 + (V4- V,)/5,000 =0
-l + V»/10,000 + V,/20,000 + (V»- V4)/5,000 =0

Rewrite equations:
-10,0001; + 3V,- 2V, =0
No,-4Vi=0 > Vo= (4/7)V,

Substitute V; into the First equation >-10,000l; + (16/7)Vy =0 > Z4; = V4/I; =5384.6 Q
Substitute Vo, 2 Zyy = (4/7)V4 /1 = 3076.9 Q

Next, Set |y = 0 to find Z4» = V4/l, and Z,, = VJ/l, a which is the same as the equivalent
resistance of the following circuit:

4 kQ l>

;=0 5KkQ Vs <«
— A A .
+ +

10 kQ 20 kQ 10 kQ
V1 V2

Write KCL equations for V¢ and Va:
-ly + V4/10,000 + (V4- V3)/5,000 =0
(Vs- V1)/5,000 + V3/10,000 + V4/20,000 + (V3- V5)/4,000 =0
-lo+ (V2- V3)/4,000 = 0

Rewrite equations:
3Vi-2V; =0 > V;3=(3/2)V,
'4V1 - 5V2 +12V3 =0 -> V2 = (14/5)V1
-4,0001, + Vo - V3=0 > -4,000l, + (13/10)V,; =0 Z4,=V4/l, =40,000/13 =3076.9 Q

Substitute V1 > 222 = V2/|2 = (13/1 O)V1 /|2 =8615Q

Z-parameter 2 port network may be represented as:
Zy1=5384 Q, Z,,=3076.9 Q, Z,; =3076.9 Q, Z,, =8615Q,
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——%a cCe——~—
+ +
V1 V2

—b de—

Vi B 5384 30769 || 1,
V,| |30769 8615 ||1,
< Admittance Parameter (y-Parameters)
The circuit is defined by the following two equations:
I =y,V,+y,V,
I, =y,Vi +y,V,

. . {11}_{)’11 y12j||:vl:|
or in matrix form =
I, Ya Yu V2

where :

I I
yH:VlS and ymzsz when V, =0

1 1

1 1
Yy, =—S and y12=v—15 when 'V, =0

2 2

The y parameter definitions above state that y;; and y»; are measured or calculated with V=0 (or port
2 is shorted). While, zo, and zy, are measured or calculated with V,=0 (or port 1 is shorted).

» Example — y-parameters
Find the y-parameters for the following circuit?

4 5Q >

Solution:

Step 1. let V2=0 which means short output to find y11 & yy2
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—> 4—
+ /\/ +
15Q
Vi 20 Q V2

|1=V1/(20||5)9y11 =|1/V1= =1AS
lo=-Vi/(5) D> ya21 =2/ V4= =1/58S

Step 2. Let V1 = 0 which means the input is short circuited

I 50

—> 4—
+ +
V1 20 Q 15Q

|2= V2/(15 || 5) > Yoo = |2/V2= =4/158S
|1='V2/(5) > Y12 = |1/V2= -1/58S

L[4 151V,
L| |1/5 4/15]|V,

« Hybrid Parameters (h-Parameters)
Vi=h,I, +h,V,

I, = h2111 +h22V2

. . {‘G}_{hn h12}{11}
or in matrix form =
12 h21 h22 V2

where :
V 1
h,=—Q and h, =—> whenV,=0
Il 1
V 1
h,=—- and h,=-=S when I =0
2 VZ

l4 5/0\/ I
+
V1 20 Q
I 50 B
— 4—
+
15Q
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» Example — h-parameters

Find the h-parameters for the following circuit?

l4 7 kQ
——

I
. N\ ‘2_6
+
10 kQ
V1 V2
- = -.
Solution:
Set V2 =0 to find h11 = V1/|1 and h21 = |2/|1 >
l4 7 kQ l2
o A —
+
10 kQ
V1 V2=0
e - .
hiy = Vi/ly = Reg = 1/(1/10 + 1/7) = 4.1 Q
We have 10('1 + |2) =7 |2 > h21 = |2/|1 =-10/3
Set I = 0to find hys = V4/Vo and hyy = 15/Vs >
l,=0 7kQ l2
- N\ 0
+ +
10 kQ
Vi Va
- = - .

hi, = V4/Vo =10/17 (voltage divider)
hy, = I/V, = 1/17 S

v,| [ 41 10n17][1,
L] |-10/3 1/17 ||V,
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% Inverse Hybrid Parameters (g-Parameters)
I =g,V +gnl,
Vy=8,V +8xnl,

. . I, gn & ||V
or in matrix form =
v, 8n 8&xn ||l

where :
I, v
=—LS and =—2 whenl, =0
8 v, 821 v, 2
Ji
gzzzﬁQ and gu:I_l whenV, =0

S8}

2

» Example — g-parameters
Find the g parameters for the following circuit:

l4 2/k€/ o
+ +
V2/1,000 1001, 10ka
V1 V2
Solution:
Set |2=0 and find g11=|1/V1 and Oo1 = V2/V1
I 2kQ =0
— —
+ +
V/1,000 100 I, 10k
V1 V2

Write KVL equations for both side>
Vo =-10°1,
V; =2,000 Iy + Vo/1,000 -> Replace |; with equivalent from the above equation
V; =-0.002V;, + 0.001V, > goy = Vo/V1 =-0.001
Replace V2 in the V./V; = - 0.001 equation with V, = -10° I; > g;=1,/V; = 107

Set V1=0 and find J12 =|1/|2 and Joo = V2/|2
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’ 2kQ I,
> -
+ +
V,/1,000 100 I, 10kQ
V1 =0 V2

Write equations for both side—>

I, =V,/10,000 + 100 I4

V,/1000 = - 2,000 Iy &> V, = - 2,000,000 I,
Replace V., in first equation = I, =-200 I; + 100 Iy =-100 |; = g2 =l4/I> = -0.001
Replace |1 in the g12 equation > -5x10°V,/l, = -0.001-> 022 = Vo/lo=2000 Q

1| | 107 -0.001||V,
V, —-0.001 2,000 |1,
% Transmission Parameters (ABCD-Parameters)
The ABCD-parameters are also known as Chain, Cascade or Transmission parameters. ABCD-

parameter assumes that the current I, is running the opposite direction so that it would considered
positive for the next stage input in cascading two-port networks>

V, =AV, + BI,
-1,=CV,+ DI,
. . v, A BV,
or in matrix form =
-1, C D|I,
where :

V. I
A=72 and C=--2=S whenl, =0

1 Vl

1
Bz%ﬂ and D:—I—2 when 'V, =0

1 1

» Example — ABCD-parameters
Find the value of ABCD parameter if the following equations are give for the circuit:

25 |1 +30 |2=4V1
161, =401, =8V,

Solution:
Set ;=0 and rewrite the equations to find A=V,/V; and C = - I,/V,
30 |2 = 4V1 > C='|2/V1 = -4/30 Mhos
40 1, =8V, > replace I, with value from first eq. > 40*4*V,/30 =8V, > 16 V=8V,
A=V,/V; =2

Set V=0 and rewrite the initial equations to find B=V,/l; and D = - I/l,
251, +301,=0 > 251;=-301, > D=-1Iyl; =25/30 =5/6
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16 |, —40 I, = 8V, > Replace |, with its value from first eq. > 16 |; + 40*(5/6)*l; = 8V,
2> 296 1, =48V, > B=Vy/l; =296/48 Q

v, [ 2 296/48]V,
I,| |-4/30 5/6 |1,
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14.3. Two-Port Network Analysis

As mentioned early, any of the two port parameter sets can be converted to any other by rearranging one
set of the two simultaneous equations to the form for the desired parameter set equation. This is simply
a exercise in algebra as shown by the example of writing h-parameter equation for a circuit that is
originally described by the z-parameter equations:

V, =251, +5I,
V, =41, +16I,

We know that h-parameter equation must be of the form:

Vi=hI +h,V,
I, =hyl, +hy,V,

Let’s focus on the deriving the first h-parameter equation:
Derive I, equation from second z-parameter equation > 1, =(V, —41,)/16

Plug this value into first z-parameter equation > V, =251, +5(V, —41,)/16
Simplify to get the first h-parameter eq. > V, =23.51, +(5/16)V,

Now we turn our attention to deriving the second h-parameter equation:
Simply re-arrange second Z-parameter > [, =(4/16)1, +(1/16)V,

Therefore the circuit may be represented with the following h-parameter equations:
V, =23.501, +0.31V,

1, =0.25I,+0.06V,

In special case 2-port networks allow us to simplify analysis. The two special cases that will be discussed

here are Reciprocal and Symmetric:

% Reciprocal 2-port Network
A 2-port network is Reciprocal if placing an ideal voltage source on port 1 and an ideal Ammeter on
port 2will provide you with the same reading as placing the ideal voltage source on port 2 and an
ideal Ammeter on port 1. In other words, current (l) will be the same in both cases:

Reciprocal 2- Reciprocal 2-
Port Circuit Port Circuit

V
V | Port1 Port2 II ” II Port1 Port2
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For the Reciprocal two-port network, the following port parameter relationships exist:

2 =2y
Y2 = Vo
hy, ==hy,
812 = ~8x

» Student exercise — What are the relationships between ABCD parameters if the Two-port
Network is a Reciprocal circuits

% Symmetric 2-port Network
A reciprocal 2-port network is also symmetric if its ports may be interchanged without affecting the
values of current and voltage at each port. In other words, ratio of voltage and current are the same
(Vi/ly = Vo/lp).

In a symmetric 2-port network, these additional parameter relationships exist:
51 = 2n

Yiu=VYn
Ah = hyhy, —hyh,, =1

Ag =818, 818xn =1

» Student exercise — What are the additional relationships between ABCD parameters when the
Two-port Network is Symmetric circuit in addition to being a Reciprocal circuits

Here are four example of Symmetric network:
Note: By definition these examples are also Reciprocal.
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— Za T Za Za

Zb Zb Zb

Zc
i (Za |——

Za Za ;
Zb Zb
Zb
| Za

As seen here, by recognizing Reciprocal and Symmetric network, the parameter calculation is

significantly simplified.
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14.4. Connecting Multiple Two-Port Circuits

Two port parameters may be connected in five different connection patterns such as cascade, series,
parallel and series-parallel and parallel series. The following diagrams show each of the connection

il

patterns:
—o ——
A B
——0 [ ] —o
(1) Cascade
[ ] [ ® ¢ ] o
A A
] [ |:'.
—e rJ o
B B
¢ o e o
(3) Parallel (4) Series-Parallel

— o

———o
A
9
—
B
———o
(2) Series
*— o——=o
A
|
—e o
B
. ] —o

(3) Parallel-Series

The parameter equations may be used to derive two port equations for each of the configuration shown

above.
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14.5. Summary

+ +
Vi 2-Port Network Vo
—— b de—

Design (uses KCL & KVL, also called White Box approach)

Parameters Analyze (uses power supply and measurement

< tools also called Black Box approach)

Five common 2-port network parameters are listed as system of equations below:

®,

« Impedance Parameters (z-Parameters)
|:‘/lj|:|:zll le}{ll}
v, 1 In ||,
» Admittance Parameters (y-Parameters)
I, _ Y )’12}{‘/1}
_12_ 1Y Y v,
< Hybrid Parameters (h-Parameters)
‘/1 — hll h12:|{11j|
12 _h21 hzz Vz
Inverse Hybrid Parameters (g-Parameters)
11}:{311 glz}rﬁ}
Vv, 8y 8xnlll:
s Transmission Parameters (ABCD-Parameters)

el

RS

o,
°n

Circuit/Device
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14.6. Additional Resources

% Nilsson, J. Electrical Circuits. (2004) Pearson.
Chapter 18.

% S-Parameter is a generalized form of the discussion in the two-port network and it is also the basis for
high frequency measurement tools. For more information on the topic refer to:

» Pozar, D. “Microwave Engineering” (2005) Wiley & Sons
Pages 170-185.

» S-Parameter Application note “AN 154" by Agilent
http://cp.literature.agilent.com/litweb/pdf/5952-1087.pdf
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14.7. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.
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Chapter 15. Electromagnetic Coupling

Key Concepts and Overview

«» Introduction

¢ Mutual Inductance

«+ Transformers

< AC Motors

<+ DC Motors

«» Additional Resources
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15.1. Introduction
< TBC
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15.2. Mutual Inductance

» So far we have talk only about circuit elements that are linked directly. Now we need to introduce
the case where the magnetic field generated by energy in one element creates current in a
second element.

R1
Mesh Current Analysis:
- M P

., Y\ . - KCV for Mesh 1

Vom Vis V2s Vim ~vg + i1R1+ (L1di1/dt - Mdi2/dt)=0
R2
Vg L1 L2 KCV for Mesh 2
L o i2R2+ (L2di2/dt - Mdi1/dt)=0
S

* Magnetically Coupled Coils (M stands for Mutual Inductance)
* The curved arrow show which two elements are coupled

» Here the two circuit are linked by magnetic field
1) Time Varying current in one circuit induces voltage in a second circuit.
2) The voltage in second circuit is related to current in the first circuit by the mutual inductance
(M)

» Mesh current analysis is the best way to analyze circuits containing Mutual Inductance
1) Step 1: Pick a reference direction for current through each coil.
2) Step 2: Sum the voltage around each mesh (KVL)
Note there are two voltages across each coil (for example in L1)
(1) Self induced voltage L1di1/dt
(a) Signis + where the current enters the inductor
(2) Mutually induced voltage Mdi2/dt (see the current is from the other coil)
(a) Sign on mutual inductance depend on the winding direction. In order to simplify the
process a dot convention is used.
(b) When the reference current enters the dotted terminal of a coil then the reference
polarity of the voltage that it induces in the other coil is positive at its dotted terminal.
OR
when the reference direction for a current leaves the dotted terminal of a coil, the
reference polarity of the voltage that it induced in the other coil is negative at its
dotted terminal.

» Example — To Be Added

» The procedure for determining the Dot Marking
1) Physical construction is known— right hand rule and flux has to be in same direction. The six

steps:

1) Arbitrarily select one terminal (For example D and mark it with a dot)

2) Assign a current into the dotted terminal (Id)

3) Use the right hand rule (wrap your hand in the direction of current, then your thumb will
pointing in the direction of created flux (Magnetic field inside the core, ¢d")

4) Arbitrarily select one terminal on the second coil and assign a current into the dotted
terminal (la)

5) Use the right hand rule (wrap your hand in the direction of current, then your thumb will
pointing in the direction of created flux (Magnetic field inside the core, ¢a")

6) If both fluxes are in the same direction then place a dot on the terminal that current
enters. Otherwise place a dot on the terminal that current leaves.
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0a
A “. i C
o D)
-
C/% Io
B d =
q)D$ °

» Relative marking when Physical construction is not known
This is done through experimentation using the following steps
1) Connect DC voltage source, a resistor, a switch in series to one winding
2) Connect Voltmeter to the other winding
3) Mark the terminal connect to the positive side of DC voltage source with a dot
4) If the momentary deflection is upscale, the coil terminal connected to positive terminal of the
voltmeter should be marked with a dot. Otherwise, mark the other terminal.

R
. ~ D_‘
Dc
D Voltmeter
D

ﬂ\/‘]ﬂ
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15.3. Transformers

o,

% The Transformer

» Linear Transformer (two magnetically coupled winding with a single core)use in Communication
Circuits to:
e Match impedance
e Eliminate DC signals

» Ideal Transformer (Two magnetically coupled windings, each around a different core)used in
Power systems

Observation: When dealing with Mutual inductance, mesh-current method is much less cumbersome
than Node-voltage method.

a
Zs
o
I1
Vs Z
b
- Load
Source Frequency domain circuit
model for a Transformer

o,

% Linear Transformer
» A Linear transformer is created when two coils are wound on a single core to ensure magnetic
coupling.
e Source-side winding is called Primary Winding
(1) R1 =the resistance of the primary winding
(2) L1 =the self-inductance of the primary winding
e load-side winding is called Secondary Winding
(1) R2 = the resistance of the secondary winding
(2) L2 = the self-inductance of the secondary winding

e M= the mutual inductance = K/L,L, where Kis coefficient of coupling.

e Z,;=Primary Self inductance=Zs + Ry + jwL;
e Zx=Secondary Self inductance = R, + jwL, + Z,

» Write the mesh for primary and secondary loop to relate various parameters
L4 Vs = (ZS + R1 + JWL1)I1 - JWMIQ = Z11I1 - JWMIQ
L4 0= (Z|_ + Rg + JWL2)11 - JWMIQ = 22212 - JWMIQ
> Impedance seen by source = Zint = Vs/l; = Z1; + WM%/Zy,
> Impedance at “ab” port = Zab = Zint — Zs = R; + jwL; + W*M%( Ry + jwL, + Z,)

» Note the third term is purely due to the secondary winding being reflected back
e Reflected impedance = Zr = w*M?/( R, + jwL; + Z))
When Z|_ = RL + ]XL
Then Zr = W"M?/{( Rz + R + j(wLp + X)}
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Multiplyztoép and bzottom by the conjugate and simplify
Zr = {WM"/ | Zo|"} {(R2 + R0) - j(wlz + X1)}
e Notice that Zr is a scalar value multiplied by the conjugate of Zy, = (R + Ry) + j(wLs + X|)

% Example — To Be Added.

« Ideal Transformer (Ferro Magnetic core material is closest to ideal transformer due to high
permanence)
» ldeal Transformer consists of two magnetically coupled coils & core having the following
characteristics:
e N1 turn in primary winding and N2 turns in secondary winding

e Unity coefficient of coupling (k=1) which means M = /L, L,
e Infinite self inductance (L1— & L2—«)
¢ Negligible coil loss due to parasitic resistance (R1 = R2 =0)

» Applying the ideal characteristic we will arrive at:

Vi N1
e Voltage > —=t—+
V2 N2
If the voltage polarities are the same at the dots use minus sign other wise use plus.
I 2
e Current > —=i‘N—
12 N1

If the current flows are both in or out of the dots use minus sign otherwise use plus.

Examples:

% Using an ideal transformer for Impedance Matching
» Let a=N2/N1 be the scaling factor
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- idea -

ViN2=1/a>V1=V2/a & I/2=a > I1=al2
Then Zin =V1/11 = (1/a2)(V2/I2) or

Zin = (1/a2)ZL which means The ideal transformer’s secondary coil reflects the load impedance
back to the primary coil, with scaling factor (1/a%

*.

% Example - TBC
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15.4. DC Motors

% TBC
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15.5. AC Motors

% TBC
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15.6. Summary
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15.7. Additional Resources

% Nilsson, J. Electrical Circuits. (2004) Pearson.
Chapters 6, 7 & 8.

% Matsch, L. Electromagentic & Electromechanical Machines (1977) IEP.
Chapters 1, 3,4 & 5
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15.6. Problems

Refer to www.EngrCS.com or online course page for complete solved and unsolved problem set.
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Appendix A. Resistor Band Color Definition

Resistor Value Color Bands

Band Colors

Value Bands, 1°' & 2°

Multiplier Color Band, 3"

x1

x10

x100

x1,000 or 1K

YELLOW
GREEN
BLUE
VIOLET

x10,000 or 10K

x100,000 or 100K

x1,000,000 or 1M

x10,000,000 or 10M

x100,000,000 or 100M

WHITE

OO N [WIN|—=|O

x1000,000,000 or 1G

Note: If third band is gold then divide by 10 and if silver divide by 100.

Resistor Tolerance Color Bands

Band Colors

Tolerance Color Band, 4"

5%

SILVER 10%
NONE 20%
Example (1.2 KO or 1200 O resistor)
1st Color Multiplier
Band -\ /-Culur Band

Znd Color

Tolerance

Band Color Band
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Appendix B. LM 324 OpAmp

The LM324 series is a low—cost, quad operational amplifier with true differential inputs. They are the most
commonly used general low power and low frequency Op Amps. The usage is limited to low frequency
(less than 10 Hz) since the gain changes as the frequency changes. For many applications, it may be
used as long as it is understood that open loop gain at higher frequency will be lower. One of its major
advantages is that it only requires a single supply for operation. LM 324 operate with supply voltage
ranging as low as 3.0 V or as high as 32 V.

It may also be useful to know that LM 324 DC parameters are as follows:
» Open Loop Gain A = 100,000
» Output Resistance Ro =75 Q
» Input Resistance Ri =2 MQ

For a complete data sheet on LM 324 and other Op Amps, refer to the course website.
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Appendix C. Additional Resources & Future Improvements

« Additional resources are available on the course website http://www.EngrCS.com.
% Submit all your improvement ideas to www.EngrCS.com

°oe

o
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